1 форма проявления солнечной активности. Индекс геомагнитной возмущенности и магнитные бури

Здесь представлено моделирование солнечной активности в реальном времени. Обновление изображений происходит раз в 30 минут. Возможно периодическое отключение датчиков и камер на спутниках в виду технических неисправностей. Проект не отвечает за изображения.

Изображение Солнца в реальном времени(онлайн).

Ультрафиолетовый телескоп, яркие пятна соответствуют 60-80 тыс. градусам по Кельвину. Спутник SOHO LASCO C3

Изображение короны солнца в реальном времени(онлайн).

Показывает солнечный ветер протяженностью около 8,5 миллионов километров от Солнца.

Изображение солнечного ветра в реальном времени(онлайн).

Пустое поле соответствует 32 диаметрам Солнца. Диаметр изображения около 45 миллионов километров на расстоянии от Солнца, или половина диаметра Меркурия. За Солнцем можно наблюдать много ярких звезд. Спутник SOHO LASCO C2

Вспышки на СолнцеНа шкале существует пять категорий (по возрастанию мощности): A, B, C, M и X. Помимо категории каждой вспышке присваивается некоторое число. Для первых четырех категорий это число от нуля до десяти, а для категории X - от нуля и выше.

Индекс геомагнитной возмущенности и магнитные буриИндекс Kp определяет степень геомагнитной возмущенности. Чем выше индекс Kp тем возмущения больше. Kp 4 - сильные возмущения.

Сравнение основных графиков по солнцу
Прогноз солнечной активности на 27 дней
HAARP феррозонд (магнитометр)"Компонент H" (черный след) положителен магнитный север,
"Компонент D" (красный след) положителен Восток,
"Компонент Z" (синий след) положителен вниз

Примечание: Время на картинках указано североатлантическое, то есть относительно московского времени нужно отнять 7 часов (UTC=MST-4)
Источники информации: http://www.swpc.noaa.gov/
http://www.irf.se/
http://www.tesis.lebedev.ru/

Характеристики Солнца

Расстояние до Солнца : 149.6 млн. км = 1.496· 1011 м = 8.31 световая минута

Радиус Солнца : 695 990 км или 109 радиусов Земли
Масса Солнца : 1.989 · 1030 кг = 333 000 масс Земли

Температура поверхности Солнца : 5770 К
Химический состав Солнца на поверхности : 70% водорода (H), 28% гелия (He), 2% остальных элементов (C, N, O, ...) по массе

Температура в центре Солнца : 15 600 000 К
Химический состав в центре Солнца : 35% водорода (H), 63% гелия (He), 2% остальных элементов (C, N, O, ...) по массе


Нам кажется, что источник жизни на Земле - солнечное излучение - постоянен и неизменен. Непрерывное развитие жизни на нашей планете в течение последнего миллиарда лет как бы подтверждает это. Но физика Солнца, за минувшее десятилетие достигшая больших успехов, доказала, что излучение Солнца испытывает колебания, имеющие свои периоды, ритмы и циклы. На Солнце появляются пятна, факелы, протуберанцы. Число их возрастает в течение 4-5 лет до наивысшего предела в год солнечной активности.

Это и есть время максимума солнечной активности. В эти годы Солнце выбрасывает дополнительное количество заряженных электричеством частичек - корпускул, которые со скоростью более 1000 км/сек несутся в межпланетном простран-стве и врываются в атмосферу Земли. Особенно мощные потоки корпускул исходят при хромосферных вспышках - особом виде взрывов солнечной материи. Во время этих исключительно сильных вспышек Солнце выбрасывает так называемые космические лучи. Эти лучи состоят из осколков атомных ядер и приходят к нам из глубины Вселенной. В годы солнечной активности усиливается ультрафиолетовое, рентгеновское и радиоизлучение Солнца.

Периоды солнечной активности оказывают огромное влияние на изменение погоды и усиление природных катаклизмов, что прекрасно известно из истории. Опосредованно пики солнечной активности, а также вспышки на Солнце могут воздействовать на общественные процессы, вызывая голод, войны и революции. При этом утверждение о наличии прямой связи между максимумами активности и революциями не имеет под собой никакой научно подтвержденной теории. Однако, в любом случае, понятно, что прогноз солнечной активности в связи с погодой является важнейшей задачей климатологии. Повышенная солнечная активность отрицательно воздействует на здоровье людей и их физическое состояние, нарушает биологические ритмы.

Излучение Солнца несет с собой большие запасы энергии. Все виды этой энергии, попадая в атмосферу, в основном поглощаются ее верхними слоями, где происходят, как говорят ученые, «возмущения». Силовые линии магнитного поля Земли направляют обильные потоки корпускул в полярные широты. В связи с этим там возникают магнитные бури и полярные сияния. Корпускулярные лучи начинают проникать даже в атмосферу умеренных и южных широт. Тогда вспыхивают полярные сияния в таких отдаленных от полярных стран местах, как Москва, Харьков, Сочи, Ташкент. Такие явления наблюдались неоднократно и будут не раз наблюдаться в будущем.

Иногда магнитные бури достигают такой силы, что прерывают работу телефонной и радиосвязи, нарушают работу линий электропередач, вызывают сбои в электроснабжении.

Ультрафиолетовые лучи Солнца почти целиком поглощаются высокими слоями атмосферы

Для Земли это имеет огромное значение: ведь в большом количестве ультрафиолетовые лучи губительны для всего живого.

Солнечная активность, воздействуя на высокие слои атмосферы, существенным образом влияет на общую циркуляцию воздушных масс. Следовательно, оно отражается на погоде и климате всей Земли. По-видимому, влияние возмущений, возникающих в верхних слоях воздушного океана, передаются в его нижние слои - тропосферу. При полетах искусственных спутников Земли и метеорологических ракет были обнаружены расширения и уплотнения высоких слоев атмосферы: воздушные приливы и отливы, подобные океаническим ритмам. Однако механизм взаимосвязи индекса высоких и низких слоев атмосферы полностью еще не удалось раскрыть. Бесспорно, что в годы максимума солнечной активности происходит усиление циклов циркуляции атмосферы, чаще происходят столкновения теплых и холодных течений воздушных масс.

На Земле существуют области жаркой погоды (экватор и часть тропиков) и гигантские холодильники - Арктика и особенно Антарктика . Между этими областями Земли всегда существует разница в температуре и давлении атмосферы, что приводит в движение огромные массы воздуха. Идет непрерывная борьба между теплыми и холодными течениями, стремящимися выровнять разницу, возникающую из-за изменений в температуре и давлении. Иногда теплый воздух «берет перевес» и проникает далеко к северу до Гренландии и даже к полюсу. В других случаях массы арктического воздуха прорываются на юг до Черного и Средиземного морей, доходят до Средней Азии и Египта. Граница борющихся воздушных масс представляет собой самые неспокойные области атмосферы нашей планеты.

Когда разница в температуре движущихся воздушных масс возрастает, то на границе возникают мощные циклоны и антициклоны , порождающие частые грозы, ураганы, ливни.

Современные климатические аномалии вроде лета 2010 в европейской части России, и многочисленных наводнений в Азии не являются чем-то экстраординарным. Их не стоит считать предвестниками скорого конца света, или свидетельством глобального изменения климата. Приведем пример из истории.

В 1956 г. бурная погода охватила северное и южное полушария. Во многих районах Земли это вызвало стихийные бедствия и резкое изменение погоды. В Индии паводки на реках повторялись несколько раз. Вода затопила тысячи сел и смыла посевы. От наводнений пострадало около 1 млн. человек. Прогнозы не работали. От ливней, гроз и наводнений летом этого же года пострадали даже такие страны, как Иран и Афганистан, где обычно в эти месяцы бывают засухи. Особенно высокая солнечная активность с пиком излучения в период 1957-1959 годов, вызвала еще больший рост числа метеорологических катастроф - ураганов, гроз, ливней.

Всюду наблюдались резкие контрасты погоды. Например, в Европейской части СССР за 1957 г. оказалась необычайно теплой: в январе средняя температура была -5°. В феврале в Москве средняя температура достигла -1°, при норме -9°. В это же время в Западной Сибири и в республиках Средней Азии стояли сильные морозы. В Казахстане температура понизилась до -40°. Алма-Ата и другие города Средней Азии были буквально засыпаны снегом. В южном полушарии - в Австралии и в Уругвае - в те же месяцы стояла небывалая жара с суховеями. Атмосфера бушевала до 1959 г., когда начался спад солнечной активности.

Влияние вспышек Солнца и уровня солнечной активности на состояние растительного и животного мира сказывается косвенным путем: через циклы общей циркуляции атмосферы. Например, ширина слоев спиленного дерева, по которым определяется возраст растения, зависит главным образом от ежегодного количества осадков. В засушливые годы слои эти очень тонки. Количество годовых осадков изменяется периодически, что можно увидеть на годичных кольцах старых деревьев.

Срезы, сделанные на стволах мореных дубов (их находят в руслах рек), позволили узнать историю климата за несколько тысячелетий до нашего времени. Существование определенных периодов, или циклов, солнечной активности подтверждает исследования материалов, которые выносят реки с суши и откладывают на дне озер, морей и океанов. Анализ состояния проб донных отложений позволяет проследить течение солнечной активности на протяжении сотен тысяч лет. Взаимосвязи солнечной активности и процессов природы на Земле очень сложны и не объединены в общую теорию.

Ученые установили, что колебания солнечной активности совершаются в пределах от 9 до 14 лет

Солнечная активность влияет на уровень Каспийского моря, на соленость вод Балтийского и ледовитость северных морей. Для цикла повышенной солнечной деятельности характерно низкое стояние уровня Каспия: повышение температуры воздуха вызывает усиленное испарение воды и уменьшение стока Волги - главной питающей артерии Каспия. По той же причине повысилась соленость Балтийского моря и уменьшилась ледовитость северных морей . В принципе, ученые могут дать прогноз будущего режима северных морей на ряд ближайших десятилетий.

В настоящее время часто слышатся доводы, что Северный Ледовитый океан вскоре освободится ото льда и будет пригоден для судоходства. Следует искренне посочувствовать «познаниям» «экспертов», делающих такие заявления. Да, возможно, частично освободится на год-другой. А потом снова замерзнет. И чего Вы нам сказали такого, о чем мы не знали? Зависимость ледяного покрова северных морей от циклов и периодов повышенной солнечной активности надежно установлена более 50 лет назад и подтверждена десятилетиями наблюдений. Поэтому можно с высокой уверенностью утверждать, что лед нарастет так же, как и растаял, по мере прохождения цикла солнечной активности.

Просто о сложном – Солнечная активность и ее влияние на природу и климат в справочнике
  • Галерея изображений, картинки, фотографии.
  • Солнечная активность и ее влияние на природу и климат – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Солнечная активность и ее влияние на природу и климат.
  • Ссылки на материалы и источники – Солнечная активность и ее влияние на природу и климат в справочнике.
    Похожие записи

Мониторинг солнечной активности и геомагнитной обстановки Земли онлайн по различным параметрам... А также карты озонового слоя Земли и землетрясений в мире за последние двое суток, карты погоды и температуры.

Рентгеновское излучение Солнца

Рентгеновское излучение Солнца показывает график вспышечной активности Солнца. Рентгенограммы показывают события на Солнце, здесь используются для отслеживания солнечной активности и солнечных вспышек. Крупные солнечные рентгеновские вспышки могут менять ионосферу Земли, которая блокирует высокочастотные (ВЧ) радиопередачи на освещенную Солнцем сторону Земли.

Солнечные вспышки также связаны с Корональными выбросами массы (квм), которые в конечном итоге могут привести к геомагнитным бурям. SWPC посылает оповещения космической погоды на М5 (5х10-5 Вт/МВт) уровне. Некоторые крупные вспышки сопровождаются сильными радиовсплесками, которые могут конфликтовать с другими радиочастотами и вызывают проблемы для спутниковой связи и радио-навигации (GPS).

Шумановские резонансы

Резонансом Шумана называется явление образования стоячих электромагнитных волн низких и сверхнизких частот между поверхностью Земли и ионосферой.

Земля и её ионосфера - это гигантский сферический резонатор, полость которого заполнена слабоэлектропроводящей средой. Если возникшая в этой среде электромагнитная волна после огибания земного шара снова совпадает с собственной фазой (входит в резонанс), то она может существовать долгое время.

Шумановские резонансы

Прочитав в 1952 году статью Шумана о резонансных частотах ионосферы, немецкий врач Герберт Кёниг (Herbert König) обратил внимание на совпадение главной резонансной частоты ионосферы 7,83 Гц с диапазоном альфа-волн (7,5-13 Гц) человеческого мозга. Ему это показалось любопытным, и он связался с Шуманом. С этого момента начались их совместные исследования. Выяснилось, что и другие резонансные частоты ионосферы совпадают с главными ритмами человеческого мозга. Возникла мысль о неслучайности этого совпадения. Что ионосфера – своего рода задающий генератор для биоритмов всего живого на планете, своего рода дирижер оркестра, называемого жизнью.

И, соответственно, интенсивность и любые изменения шумановских резонансов влияет на высшую нервную деятельность человека и его интеллектуальные способности, что было доказано еще в середине прошлого века.

Индекс протонов

Протоны являются основным источником энергии Вселенной, генерируемой звездами. Они принимают участие в термоядерных реакциях, в частности, реакциях pp-цикла, которые являются источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

Поток протонов

Поток электронов и протонов взяты из GOES-13 GOES Hp, GOES-13 и GOES-11. Высокоэнергетические частицы могут добраться до Земли где-то от 20 минут до нескольких часов после солнечного события.

Компоненты магнитного поля

GOES Hp - это минутный график, содержит усредненные параллельные компоненты магнитного поля Земли в нано Теслах (nT). Измерения: GOES-13 и GOES-15.

Космическое излучение

Через 8-12 минут после крупных и экстремальных солнечных вспышек к Земле долетают протоны высоких энергий - > 10 Мэв или их еще называют - солнечные космические лучи (СКЛ). Поток протонов высоких энергий, вошедших в атмосферу Земли, показывает настоящий график. Солнечная радиационная буря может вызвать нарушения или поломки в аппаратуре космических аппаратов, вывести из строя электронную технику на Земле, привести к радиационному облучению космонавтов, пассажиров и экипажи реактивных самолётов.

Геомагнитная возмущенность Земли

Усиление потока солнечного излучения и приход волн солнечных корональных выбросов вызывают сильные колебания геомагнитного поля - на Земле происходят магнитные бури. На графике показаны данные с космических аппаратов GOES, уровень возмущенности геомагнитного поля вычисляется в режиме реального времени.

Полярные сияния

Полярные сияния возникают, когда поток солнечного ветра сталкивается с верхними слоями земной атмосферы. Протоны вызывают диффузное явление Аврора, которое распространяется по силовым линиям магнитного поля Земли. Полярные сияния, как правило, сопровождается уникальным звуком, напоминающим легкое потрескивание, которое еще не изучено учеными.

Электроны возбуждаются путем ускорения процессов в магнитосфере. Ускоренные электроны распространяются в магнитном поле Земли в полярных регионах, где они сталкиваются с атомами и молекулами кислорода и азота в верхних слоях земной атмосферы. В этих столкновениях электроны передают свою энергию в атмосферу, таким образом, захватывая атомы и молекулы на более высокие энергетические состояния. Когда они расслабляются обратно вниз до нижних энергетических состояний, они
выделяют энергию в виде света. Это аналогично тому, как неоновая лампочка работает. Полярные сияния возникают, как правило, от 80 до 500 км над поверхностью земли.

Карта озонового слоя

Температурная карта

Погода в мире

Карта землетрясений

Карта показывает землетрясения на планете за последние сутки

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ ВВЕДЕНИЕ

Проблема «Солнце – Земля» является на сегодняшний день актуальной по многим причинам. Во-первых, это проблема альтернативных источников энергии на Земле. Солнечная энергия – неисчерпаемый источник энергии, притом безопасный. Во-вторых, это влияние солнечной активности на земную атмосферу и магнитное поле Земли: магнитные бури, полярные сияния, влияния солнечной активности на качество радиосвязи, засухи, ледниковые периоды и др. Изменение уровня солнечной активности приводит к изменению величин основных метеорологических элементов: температуры, давления, числа гроз, осадков и связанных с ними гидрологических и дендрологических характеристик: уровня озер и рек, грунтовых вод, солености и оледенения океана, числа колец в деревьях, иловых отложений и т.п. Правда в отдельные периоды времени эти проявления происходят только частично или вовсе не наблюдаются. В-третьих, это проблема «Солнце – биосфера земли». С изменением солнечной активности учеными было замечено изменение численности насекомых и многих животных. В результате изучения свойств крови: числа лейкоцитов, скорости свертывания крови и др., были доказаны связи сердечно-сосудистых заболеваний человека с солнечной активностью.

В данной работе мы ограничимся рассмотрением влияния солнечной активности на геофизические параметры, особое внимание уделив воздействию активности на погоду и климат.

1. Солнечная активность и ее причины

У Солнца есть собственная «жизнь», называемая солнечной активностью: раскаленная масса Солнца находится в непрерывном движении, которое порождает пятна и факелы, меняет силу и направление солнечного ветра. На эту солнечную жизнь сразу реагирует магнитное поле Земли и ее атмосфера, порождая различные явления, воздействуя на животный и растительный мир, провоцируя вспышки рождаемости разных видов животных и насекомых, а также наши с вами заболевания.

Помимо обычного излучения, исходящего от Солнца, обнаружено и интенсивное радиоизлучение. Советская экспедиция в Бразилии, наблюдавшая затмение 20 мая 1947 года, обнаружила падение интенсивности радиоизлучения Солнца в 2 раза во время полной фазы солнечного затмения, в то время, как интенсивность общего излучения Солнца уменьшилась в миллион раз. Это говорит о том, что радиоизлучение Солнца происходит главным образом от его короны.

Причины циклической деятельности Солнца остаются пока неведомыми. Одни ученые склоняются к мнению, что ее основой являются внутренние механизмы, другие утверждают, что это гравитационные влияния обращающихся вокруг Солнца планет. Вторая точка зрения выглядит логичнее. Нужно учитывать и тот факт, что обращение планет происходит не столько вокруг Солнца, сколько вокруг общего центра тяжести всей Солнечной системы, по отношению к которому само Солнце описывает сложную кривую. Если учесть к тому же, что Солнце – не твердое тело, то такая динамика вращения непременно воздействует и на динамику движения всей солнечной плазмы, задавая ритмы солнечной активности.

2. Параметры Солнечной активности и ее влияние на погоду и климат

Наиболее близкий к нам источник частиц высоких энергий это, разумеется, наша звезда – Солнце. Поэтому для того, чтобы понять и оценить уровень энергии (или мощность) рассматриваемых воздействий, допустимо ограничиться анализом энергии поступающей от Солнца, а точнее анализом вариаций энергии поступающих от него потоков.

На Солнце происходит множество процессов, большая часть из которых остается неизученной. Тем не менее, составить достаточное представление о вариациях поступающей от него энергии можно, рассмотрев один из главных факторов – близкое к периодической изменение солнечной активности. 22-летний солнечный цикл определяется периодическим изменением полярности гигантского магнита, который представляет собой Солнце.

Поверхность Солнца очень неоднородна и находится в постоянном движении. Это подтверждают многочисленные снимки, которые в постоянном режиме делают станции наблюдения и обсерватории, в том числе международные, в различных диапазонах спектра. Приливы и отливы раскаленного и почти полностью ионизованного вещества, бушующие на Солнце, иногда приводят к эффекту, называемому корональным выбросом массы (впрочем, имеется, не существенный для понимания дальнейшего нюанс, связанный с различием между понятиями солнечной вспышки и коронального выброса массы). В этом случае от поверхности нашей звезды отрываются огромные потоки плазмы, которые уходят в межзвездное пространство и вполне могут достичь Земли.

Пятна на Солнце, которые в непрерывном режиме регистрируются уже более ста лет, как раз и являются основой для наиболее простого способа регистрации солнечной активности.

Впрочем, пятна на Солнце могут быть разного размера, причем появление группы пятен далеко не тождественно появлению одного пятна той же площади. Чтобы учесть это обстоятельство, в солнечно-земной физике давно используются так называемые числа Вольфа, которые позволяют довольно точно судить об активности светила по числу пятен, наблюдаемых с Земли. Число Вольфа или относительное цюрихское число солнечных пятен, определяется по формуле

где f – общее число пятен на видимой полусфере Солнца, g – число групп пятен. Коэффициент k обеспечивает учет условий наблюдений (например, тип телескопа). С его помощью наблюдения в любой точке планеты пересчитываются к стандартным цюрихским числам.

Число параметров, с помощью которых можно охарактеризовать активность Солнца очень велико и такой показатель как числа Вольфа, далеко не является исчерпывающим. Наглядно показать это можно, отталкиваясь только от одного факта – Солнце, как и всякое сильно разогретое тело, излучает электромагнитные волны в очень широком спектральном диапазоне. Помимо видимого света, оно испускает и радиоволны, и жесткие рентгеновские лучи. Учитывая, что спектр разогретых тел является практически сплошным, а вариации интенсивности в его отдельных участках могут и не быть коррелированны друг с другом, легко представить себе трудности, с которыми сталкивается солнечно-земная физика при попытках отыскать некий интегральный (или универсальный) показатель.

Единого универсального показателя для активности Солнца не существует, но в солнечно-земной физике установлено, что можно указать величины, которые позволяют в какой-то степени приблизиться к решению этой задачи. Одной из этих величин является интенсивность радиоизлучения Солнца на волне 10,7 см, которая также обладает примерно той же периодичностью, что и числа Вольфа. Многочисленные исследования показали, что вариации и этого, и многих других показателей с приемлемой точностью кореллируют с числами Вольфа. Поэтому во многих исследованиях по солнечно-земным связям проводится сопоставление наблюдаемых в различных оболочках Земли явлений с поведением солнечной активности. Впрочем, для более точных количественных оценок используется и интенсивность радиоизлучения на волне 10,7 см.

Известны многочисленные работы, показывающие, что изменение солнечной активности в течение 11-летнего цикла, влияет на многие показатели, относящиеся как к верхней, так и к нижней атмосфере. Одним из ярких примеров является цикл работ, выполненный в Научно-исследовательском институте физики Санкт-Петербургского университета. В этих работах было изучено влияние солнечной активности на многолетний ход температуры вблизи земной поверхности, т.е. в тропосфере. Работ аналогичного профиля существует очень много, например, предпринимались и определенные шаги по популяризации данных исследований, и тем более интересным является обзор, в котором рассматривались существенные трудности, которые возникают при попытках интерпретировать воздействие солнечной активности на события в тропосфере.

Первая трудность состоит в том, что поток энергии, поступающий от Солнца в околоземное космическое пространство с высокой точностью постоянен. По оценкам, подтверждаемых расчетами, проведенными на основании данных полученных со спутника "Нимбус-7", как это отмечалось в, в околоземное космическое пространство приходит энергия, характеризуемой величиной порядка 10 12 МВт. При этом ее изменчивая часть составляет всего около 10 6 – 10 4 МВт, т.е. менее одной десятитысячной процента от фонового значения. Другими словами, вариативная часть энергии, поступающей на Землю от Солнца сопоставима с той, что вырабатывается человеком в одном, сравнительно небольшом, регионе.

Поток лучистой энергии, поступающей от Солнца, можно также охарактеризовать с помощью солнечной постоянной

(величина потока энергии, отнесенная к единице площади). Спутниковые измерения, проведенные в максимуме и минимуме солнечной активности, показали, что величина с высокой точностью действительно остается постоянной. Разница составляет около 2 Вт/м 2 при средней величине около 1380 Вт/м 2 .

Сопоставление энергии, приходящейся на изменчивую часть потока от Солнца с энергией характерных для атмосферы явлений, скажем, одного-единственного циклона также показывает, что это – сравнимые величины. Иначе говоря, непосредственно воздействия на события в тропосфере изменения солнечной активности оказывать не должны, если отталкиваться только от энергетических соображений.

Однако это еще не все. Еще одна трудность, возникающая при рассмотрении воздействия вариаций солнечной активности на тропосферу, т.е. самый нижний слой атмосферы, состоит в том, что частицы и излучение, несущие вариативную часть энергии не доходят до поверхности земли. Коротковолновое излучение, а также такие частицы как электроны радиационных поясов и солнечные протоны поглощаются в более высоких слоях атмосферы (в стратосфере и мезосфере).

Чтобы в будущем не пропускать вспышки на Солнце, и последующие за ними полярные сияния, добавляю информацию о солнечной активности в реальном времени. Для обновления информации перезагрузите страницу.

Солнечные вспышки

На графике представлен общий поток рентгеновского излучения Солнца получаемый со спутников серии GOES в режиме реального времени. Солнечные вспышки видны в виде всплесков интенсивности. Во время мощных вспышек происходят нарушения радиосвязи в ВЧ диапазоне на дневной стороне Земли. Степень этих нарушений зависит от мощности вспышки. Балл (C,M,X) вспышек и их мощность в Вт/м 2 указаны на левой оси координат в логарифмическом масштабе. Вероятный уровень нарушений радиосвязи по шкале NOAA (R1-R5) показан справа. На графике — развитие событий в октябре 2003г.

Солнечные космические лучи (всплески радиации)

Минут через 10-15 после мощных солнечных вспышек к Земле приходят протоны высоких энергий — > 10 Мэв или так называемые солнечные космические лучи (СКЛ). В западной литературе — High energy proton flux and Solar Radiation Storms т.е. поток протонов высоких энергий или солнечная радиационная буря. Этот радиационный удар может вызывать нарушения и поломки в аппаратуре космических аппаратов, приводить к опасному облучению космонавтов и получению повышенной дозы радиации пассажирами и экипажами реактивных самолётов на высоких широтах.

Индекс геомагнитной возмущенности и магнитные бури

Усиление потока солнечного ветра и приход ударных волн корональных выбросов вызывают сильные вариации геомагнитного поля — магнитные бури. По данным, поступающим с космических аппаратов серии GOES, в режиме реального времени вычисляется уровень возмущённости геомагнитного поля, который и представлен на графике.

Ниже индекс протонов

Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

Максимально ожидаемый значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

Значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

1 2 3 4 5 6 7 8 9 10 >10
низкий умеренный сильный очень сильный экстремальный
Данные значения УФ-индекса по планете Данные комплексного мониторинга в г.Томске

Компоненты магнитного поля

Зависимости вариаций компонент магнитного поля в гаммах от местного времени.

Местное время выражено в часах Томского летнего декретного времени (ТЛДВ). ТЛДВ=UTC+7часов.

Ниже представлен уровень возмущённости геомагнитного поля в К-индексах.

Вспышки на Солнце по данным спутника GOES-15

NOAA / Space Weather Prediction Center

Поток протонов и электронов взяты из GOES-13 GOES Hp, GOES-13 и GOES-11

Solar X-ray Flux

Вспышки на Солнце

На шкале существует пять категорий (по возрастанию мощности): A, B, C, M и X. Помимо категории каждой вспышке присваивается некоторое число. Для первых четырех категорий это число от нуля до десяти, а для категории X — от нуля и выше.

HAARP феррозонд (магнитометр)

«Компонент H» (черный след) положителен магнитный север,
«Компонент D» (красный след) положителен Восток,
«Компонент Z» (синий след) положителен вниз

Подробнее: http://www.haarp.alaska.edu/cgi-bin/magnetometer/gak-mag.cgi

График GOES Hp содержит 1-минутные усредненные параллельные компоненты магнитного поля в наноТеслах (nanoTeslas — nT) измеряемый GOES-13 (W75) и GOES-11 (W135).

Примечание: Время на картинках указано североатлантическое, то есть относительно
московского времени нужно отнять 7 часов (GMT-4:00)
Источники информации:
http://sohowww.nascom.nasa.gov/data/realtime-images.html
http://www.swpc.noaa.gov/rt_plots/index.html

Активность солнца в реальном времени

Здесь представлено моделирование солнечной активности в реальном времени. Обновление изображений происходит раз в 30 минут. Возможно периодическое отключение датчиков и камер на спутниках в виду технических неисправностей.

Изображение Солнца в реальном времени(онлайн).

Ультрафиолетовый телескоп, яркие пятна соответствуют 60-80 тыс. градусам по Кельвину. Спутник SOHO LASCO C3

Изображение короны солнца в реальном времени(онлайн). Характеристики Солнца

Расстояние до Солнца : 149.6 млн. км = 1.496· 1011 м = 8.31 световая минута

Радиус Солнца : 695 990 км или 109 радиусов Земли

Масса Солнца : 1.989 · 1030 кг = 333 000 масс Земли

Температура поверхности Солнца : 5770 К

Химический состав Солнца на поверхности : 70% водорода (H), 28% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Температура в центре Солнца : 15 600 000 К

Химический состав в центре Солнца : 35% водорода (H), 63% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Солнце — основной источник энергии на Земле.
Основные характеристики
Среднее расстояние от Земли 1,496×10 11 м
(8,31 световых минут)
Видимая звёздная величина (V) -26,74 м
Абсолютная звёздная величина 4,83 м
Спектральный класс G2V
Параметры орбиты
Расстояние от центра Галактики ~2,5×10 20 м
(26 000 световых лет)
Расстояние от плоскости Галактики ~4,6×10 17 м
(48 световых лет)
Галактический период обращения 2,25-2,50×10 8 лет
Скорость 2,17×10 5 м/с
(на орбите вокруг центра Галактики)
2×10 4 м/с
(относительно соседних звёзд)
Физические характеристики
Средний диаметр 1,392×10 9 м
(109 диаметров Земли)
Экваториальный радиус 6,955×10 8 м
Длина окружности экватора 4,379×10 9 м
Сплюснутость 9×10 -6
Площадь поверхности 6,088×10 18 м 2
(11 900 площадей Земли)
Объём 1,4122×10 27 м 2
(1 300 000 объёмов Земли)
Масса 1,9891×10 30 кг
(332 946 масс Земли)
Средняя плотность 1409 кг/м 3
Ускорение на экваторе 274,0 м/с 2
(27,94 g)
Вторая космическая скорость (для поверхности) 617,7 км/с
(55 земных)
Эффективная температура поверхности 5515 C°
Температура короны ~1 500 000 C°
Температура ядра ~13 500 000 C°
Светимость 3,846×10 26 Вт
~3.75×10 28 Лм
Яркость 2,009×10 7 Вт/м 2 /ср
Характеристики вращения
Наклон оси 7,25°(относительно плоскости эклиптики)
67,23°(относительно плоскости Галактики)
Прямое восхождение северного полюса 286,13°
(19 ч 4 мин 30 с)
Склонение северного полюса +63,87°
Скорость вращения внешних видимых слоёв (на экваторе) 7284 км/ч
Состав фотосферы
Водород 73,46 %
Гелий 24,85 %
Кислород 0,77 %
Углерод 0,29 %
Железо 0,16 %
Сера 0,12 %
Неон 0,12 %
Азот 0,09 %
Кремний 0,07 %
Магний 0,05 %


Мы сможем увидеть то, что происходит сейчас в космосе. Иногда, фото появляется на нашем портале через считанные минуты, после того, как сработал затвор камеры во Вселенной. А это означает, что перед этим изображение успело преодолеть… полтора миллиона километров. Именно на таком расстоянии находятся спутники.

Трансляцию изображений Солнца начнем с нового современного космического телескопа. Изображения эти — удивительные. Благодаря двум американским спутникам близнецам STEREO мы можем увидеть невидимое. То есть ту сторону звезды, которая скрыта от наблюдения с Земли.

На приведенной схеме видно, что спутники-обсерватории A и B позволяют наблюдать Солнце с противоположных сторон. Изначально было запланировано, что со временем их орбиты разойдутся так, что мы сможем увидеть Солнце не просто сбоку, а полностью с обратной стороны. И в феврале 2011 года это произошло.

То что мы можем видеть прямо сейчас — похоже на фантастику. Почти в реальном времени наблюдаем скрытую жизнь космоса. Его тайну. И нам никогда не помешают в этом облака, тучи и другие атмосферные явления. Космос — идеальное место для подобных наблюдений. Кстати, непонятного здесь для ученых — 90 процентов из всех происходящих явлений. В том числе и в поведении ближайшей к нам звезды. Может, именно Вы поможете сделать основопологающие разгадки?

Смотрите: вот оно — наше Солнце (на снимке — ниже) , скромно спрятанное за «заглушкой», чтобы не производить засветку изображения. Широкоугольный объектив позволяет сделать обзор на сотни тысяч километров вокруг. Сделано это специально для того, чтобы мы могли видеть солнечную корону.

Трансляция этого изображения ведется со спутника STEREO B. Время на изображении указано по Гринвичу.

Время GMT (Гринвич): Если происходят выбросы в сторону Земли, то их направленность будет исходить к правому краю. Именно такие яркие лучистые сполохи и представляют опасность для нас — землян. Иногда, ученые пишут наспех электронным пером подсказки на изображении. Извещая нас о появлении в кадре какой-нибудь кометы или планеты. Выше — следующая «картинка» со спутника STEREO B, c маркировкой — behind_euvi_195, — но теперь уже с видом непосредственно на само Солнце. Мы наблюдаем: есть ли активность на невидимой стороне? В зависимости от местоположения сполохов по правому краю можно будет самим прогнозировать их быстроту появления на видимой стороне. Напомним, что поверхностные слои Солнца делают полный оборот около 25 суток. Вращение происходит слева направо. Зеленоватый цвет изображения появляется потому, что телескоп отображает атмосферу Солнца в определенном диапазоне волн. В данном случае — 195 А (Ангстрем). Мы «заглядываем» в температурный слой звезды на уровне около полутора миллионов градусов Цельсия. А вот на следующем изображении (ниже) — можем разглядеть более поверхностный слой, нагретый до 80 000°С Но это мы уже видим трансляцию с другого удивительного телескопа — космической обсерватории SDO. Она была запущена в космос в 2010 году. Главная ее цель — исследование динамических процессов на Солнце.

SDO транслирует изображения очень оперативно. Вы это сами можете видеть по маркировке всемирного времени на снимке. Примечательно, что взгляд этой обсерватории на Солнце точно совпадает с тем, каким мы сами видим его с Земли. Именно с этой стороны и «выстреливают» в нас опаснейшие протуберанцы и приходят магнитные бури. А образуются они, в большинстве случаев, в темных областях — пятнах. Их обширное появление — тревожный знак магнитной неспокойности. Это означает, что на Земле может произойти магнитная буря. И именно транслируемое изображение ниже позволяет нам наблюдать за ее предвестниками — пятнами.

Появились пятна — уделите более пристальное внимание своему здоровью. Доказано, что магнитным бурям подвержены абсолютно все люди. Но у одних — защитные механизмы срабатывают лучше, у других — хуже. Причины такой разницы ученым непонятны.

КАК ВЕСТИ СЕБЯ ВО ВРЕМЯ МАГНИТНЫХ БУРЬ?

Обобщающий совет врача-терапевта Мирославы БУЗЬКО:

ВПЕРВЫЕ! На нашем портале начата прямая трансляция с Международной космической станции: жизнь космонавтов, служебные переговоры, стыковки, виды Земли в реальном времени .

Кстати, неспокойная геомагнитная обстановка, создаваемая на Земле Солнцем, наиболее актуальна для тех, кто живет поближе к Северу. Это вызвано строением нашей планеты и ее положением в космосе. Территориально больше всего достается солнечных бурь — России (Сибирь и Европейский Север), США (Аляска) и Канаде.

Напомним, что солнечные изображения появляются на портале с временной задержкой, необходимой на их передачу с космической обсерватории и обработку для показа. Все проделывается в автоматическом режиме.

Если Вы видите на изображении или искаженную «картинку» — это означает, что произошел технический сбой. Иногда, в этом может быть само Солнце, которое в очередной раз выплеснуло на окружающих свою гигантскую энергию: А выбросы эти могут очень серъезно угрожать нашей цивилизации. Большая часть современных электронных устройств не защищены от воздействия аномальных солнечных излучений. Они могут выйти из строя моментально.

О нынешнем неблагоприятном прогнозе активности Солнца и о причинах, которые могут сильно разрушить земную инфраструктуру, напомним, можете прочитать в материале «Ахиллесова пята нового века»

Наблюдайте за жизнью настоящей Звезды! От нее реально зависит наша с Вами жизнь:

(Трансляция обеспечивается благодаря открытости в предоставлении информации со стороны космических агентств ЕС и NASA)

Иформер воздействия Солнца

Показаны средние прогнозные значения глoбaльного геомагнитного индекса Кр, на основе геофизических данных с двенадцати обсерваторий мира, собранных Службой Солнца SWPC NOAA. Данные нижеприведенного прогноза обновляются ежедневно. Кстати, Вы можете легко убедиться, что ученые почти не умеют прогнозировать солнечные события. Достаточно сравнить их предсказания с реальной ситуацией. Сейчас прогноз на три дня выглядит следующим образом:

Кр-индекс — характеризует общепланетарное геомагнитное поле, то есть — в масштабах всей Земли. По каждому дню показаны восемь значений — на каждый трёхчасовой интервал времени, в течении суток (0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, 21-00 часов). Время указано московское (msk)

Вертикальные линии ЗЕЛЕНОГО цвета (I ) — безопасный уровень геомагнитной активности.

Вертикальные линии КРАСНОГО цвета (I ) — магнитная буря (Kp>5). Чем выше красная вертикальная линия, тем сильнее буря. Уровень, с которого вероятны заметные влияния на здоровье метеочувствительных людей (Kp=7) отмечен горизонтальной линией красного цвета.

Ниже вы можете видеть реальное отображение геомагнитного воздействия Солнца. По шкале значений Kp-индекса определяйтесь со степенью его опасности для вашего здоровья. Цифра выше 4-5 единиц означает наступление магнитной бури. Отметим, что в данном случае, на графике оперативно отображается уровень солнечного излучения уже достигшего Земли. Эти данные фиксируются и выдаются каждые три часа несколькими станциями слежения в США,
Канаде и Великобритании. А сводный результат мы видим благодаря Центру космических прогнозов (NOAA/Space Weather Prediction Center)

ВАЖНО! Учитывая, что опасный выброс солнечной энергии достигает Земли не ранее, чем через сутки, вы сами, с учетом оперативных изображений Солнца, транслируемых выше, сможете заранее подготовться к неблагоприятному воздействию, уровень которого отображается ниже.

Индекс геомагнитной возмущенности и магнитные бури

Индекс Kp определяет степень геомагнитной возмущенности. Чем выше индекс Kp тем возмущения больше. Kp < 4 — слабые возмущения, Kp > 4 — сильные возмущения.

Обозначение информера солнечного воздействия

Рентгеновское излучение Солнца*

Normal : Обычный солнечный рентгеновский поток.

Active : Возросшее солнечное рентгеновское излучение.