4 основные силы в физике. Фундаментальные силы

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10 -13 см.

Слабые силы , как и ядерные, действуют на малых расстояниях порядка 10 -15 см. В результате их действия происходят процессы внутри ядра.

Механика рассматривает гравитационные силы, силы упругости и силы трения.

Гравитационные силы

Гравитация описывается законом всемирного тяготения. Этот закон был изложен Ньютоном в середине XVII в. в работе «Математические начала натуральной философии».

Гравитацией называют силу тяготения, с которой любые материальные частицы притягиваются друг у другу.

Сила, с которой материальные частицы притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними .

G – гравитационная постоянная, численно равная модулю силы тяготения, с которой тело, имеющее единичную массу, действует на тело, имеющее такую же единичную массу и находящееся на единичном расстоянии от него.

G = 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

На поверхности Земли сила гравитации (сила тяготения) проявляется в виде силы тяжести .

Мы видим, что любой предмет, брошенный в горизонтальном направлении, всё равно падает вниз. Падает вниз также и любой предмет, подброшенный вверх. Происходит это под действием силы тяжести, которая действует на любое материальное тело, находящееся вблизи поверхности Земли. Сила тяжести действует на тела и на поверхности других астрономических тел. Эта сила всегда направлена вертикально вниз.

Под действием силы тяжести тело движется к поверхности планеты с ускорением, которое называется ускорением свободного падения .

Ускорение свободного падения на поверхности Земли обозначается буквой g .

F t = mg ,

следовательно,

g = F t / m

g = 9, 81 м/с 2 на полюсах Земли, а на экваторе g = 9,78 м/с 2 .

При решении простых физических задач величину g принято считать равной 9,8 м/с 2 .

Классическая теория тяготения применима только для тел, имеющих скорость намного ниже скорости света.

Силы упругости

Силами упругости называются силы, которые возникают в теле в результате деформации, вызывающей изменение его формы или объёма. Эти силы всегда стремятся вернуть тело в его первоначальное положение.

При деформации происходит смещение частиц тела. Сила упругости направлена в сторону, противоположную направлению смещения частиц. Если деформация прекращается, сила упругости исчезает.

Английский физик Роберт Гук, современник Ньютона, открыл закон, устанавливающий связь между силой упругости и деформацией тела.

При деформации тела возникает сила упругости, прямо пропорциональная удлинению тела, и имеющая направление, противоположное перемещению частиц при деформации.

F = k l ,

где к – жёсткость тела, или коэффициент упругости;

l – величина деформации, показывающая величину удлинения тела под воздействием сил упругости.

Закон Гука действует для упругих деформаций, когда удлинение тела мало, а тело восстанавливает свои первоначальные размеры после того, как исчезают силы, вызвавшие эту деформацию.

Если деформация велика, и тело не возвращается в свою исходную форму, закон Гука не применяется. При очень больших деформациях происходит разрушение тела.

Силы трения

Сила трения возникает, когда одно тело движется по поверхности другого. Она имеет электромагнитную природу. Это следствие взаимодействия между атомами и молекулами соприкасающихся тел. Направление силы трения противоположно направлению движения.

Различают сухое и жидкое трение. Сухим называют трение, если между телами нет жидкой или газообразной прослойки.

Отличительная особенность сухого трения – трение покоя, которое возникает при относительном покое тел.

Величина силы трения покоя всегда равна величине внешней силы и направлена в противоположную сторону. Сила трения покоя препятствует движению тела.

В свою очередь, сухое трение разделяется на трение скольжения и трение качения .

Если величина внешней силы превышает величину силы трения, то в этом случае появится проскальзывание, и одно из контактирующих тел начнёт поступательно перемещаться относительно другого тела. А сила трения будет называться силой трения скольжения . Её направление будет противоположно направлению скольжения.

Сила трения скольжения зависит от силы, с которой тела давят друг на друга, от состояния трущихся поверхностей, от скорости движения, но не зависит от площади соприкосновения.

Сила трения скольжения одного тела по поверхности другого вычисляется по формуле:

F тр. = k · N ,

где k – коэффициент трения скольжения;

N – сила нормальной реакции, действующая на тело со стороны поверхности.

Сила трения качения возникает между телом, которое перекатывается по поверхности, и самой поверхностью. Такие силы появляются, например, при соприкосновении шин автомобиля с дорожным покрытием.

Величина силы трения качения вычисляется по формуле

где F t – сила трения качения;

f – коэффициент трения качения;

R – радиус катящегося тела;

N – прижимающая сила.

Сила - мера механического взаимодействия тел. Сила является причиной изменения скорости тела или возникновения в нём деформаций (изменение формы или объема). Сила − векторная величина, характеризующаяся модулем (величиной), направлением и точкой приложения силы. Линия действия силы - прямая, проходящая через точку приложения силы, и продолжающая направление вектора силы. Единицей измерения силы в системе СИ является Ньютон [Н]. Все силы в природе основаны на четырех типах фундаментальных взаимодействий:

  • электромагнитные силы, действующие между электрически заряженными телами,
  • гравитационные силы, действующие между массивными объектами,
  • сильное ядерное взаимодействие, действующее в масштабах порядка размера атомного ядра и меньше (отвечает за связь между кварками в адронах и за притяжение между нуклонами в ядрах).
  • слабое ядерное взаимодействие, проявляющееся на расстояниях, значительно меньших размера атомного ядра.

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» условно. Действие силы может место как при непосредственном контакте (трение, давление те друг на друга при непосредственном контакте), так и посредством создаваемых телами полей (поле тяготения, электромагнитное поле). Интересный и познавательный сайт http://mistermigell.ru для вас.
С точки зрения действия сил на систему, рассматривают:

  • внутренние силы - силы взаимодействия между точками (телами) данной системы;
  • внешние силы - силы, действующие на точки (тела) данной системы со стороны точек (тел), не принадлежащих данной системе. Внешние силы называют нагрузками.

Силы можно разделить на:

  • реактивные силы − реакции связи. Если движение тела в пространстве ограничивается другими тела (связями, опорами), силы, с которыми эти тела действуют на данное тело, называют реакциями связи (опоры).
  • активные силы - силы, характеризующие действие других тел на данное и изменяющее его кинематическое состояние. Активны силы, в зависимости от вида контакта, подразделяются на
  • объемные - силы, действующие на каждую частицу тела, например, вес тела;
  • поверхностные - силы, действующие на участок тела и характеризующие непосредственный контакт тел. Поверхностные силы бывают:
  • сосредоточенными - действующими на площадках, которые малы по сравнению с телом, например, давление колеса на дорогу;
  • распределенными - действующими на площадках, которые не малы по сравнению с телом, например, давление гусеницы трактора на дорогу.

Наиболее известные силы:
Силы упругости − силы, возникающие при деформации тела и противодействующие этой деформации, имеет электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Вектор силы упругости направлен противоположно перемещению, перпендикулярно поверхности. Например, если сжать резинку, после снятия нагрузки она восстановит свою форму под действием силы упругости.
Силы трения − сила, возникающие при относительном движении твёрдых тел и противодействующие этому движению, имеют электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости. Например, сила трения возникает при скольжении санок по снегу, между подошвой ног и землей.
Силы сопротивления среды — силы, возникающие при движении твёрдого тела в жидкой или газообразной среде, имеют электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости. Например, при движении самолета в воздухе.
Силы поверхностного натяжения − силы, возникающие на поверхности фазового раздела, имеют электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз. Например, монетка может лежать на поверхности жидкости, насекомые бегают по воде.
Сила всемирного тяготения − сила, с которой любые тела Вселенной притягивают друг друга, она прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Например, Земля притягивается к Солнцу, и, в то же время, Земля притягивает Луну и Солнце.
Сила тяжести − сила, действующая на тело со стороны Земли, которая сообщает ему ускорение свободного падения. Сила тяжести - это сумма сил гравитационного притяжения и центробежной силы вращения Земли. Например, под действием силы тяжести тела падают Земли.
Сила инерции − фиктивная сила (не является мерой механического взаимодействия), вводимая при рассмотрении относительного движения в неинерциальных системах отсчёта (движущихся с ускорением) для того, чтобы в них выполнялся второй закон Ньютона. В системе отсчёта, связанной с равноускоренно движущимся телом, сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила, направленная от оси вращение тела, и сила Кориолиса, возникающая при движении тела относительно вращающейся системы отсчета.
Существуют и другие силы.

Денис, 6 класс, ХФМЛ % 27

>>Физика: Силы в природе. Гравитационные силы

Выясним сначала, много ли видов сил существует в природе.
На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне ее бесконечное множество. Они взаимодействуют по-разному. Так, например, камень падает на Землю; электровоз тянет поезд; нога футболиста ударяет по мячу; потертая о мех эбонитовая палочка притягивает легкие бумажки, магнит притягивает железные опилки; проводник с током поворачивает стрелку компаса; взаимодействуют Луна и Земля, а вместе они взаимодействуют с Солнцем; взаимодействуют звезды и звездные системы и т. д. Подобным примерам нет конца. Похоже, что в природе существует бесконечное множество взаимодействий (сил)? Оказывается, нет!
Четыре типа сил. В безграничных просторах Вселенной , на нашей планете, в любом веществе, в живых организмах, в атомах, в атомных ядрах и в мире элементарных частиц мы встречаемся с проявлением всего лишь четырех типов сил: гравитационных, электромагнитных, сильных (ядерных) и слабых.
Гравитационные силы , или силы всемирного тяготения, действуют между всеми телами - все тела притягиваются друг к другу. Но это притяжение существенно обычно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна. Иначе эти силы столь малы, что ими можно пренебречь.
Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сфера их действия особенно обширна и разнообразна. В атомах, молекулах, твердых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными. Велика их роль в атомах.
Область действия ядерных сил очень ограничена. Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10 -13 см). Уже на расстояниях между частицами порядка 10 -11 см (в тысячу раз меньших размеров атома - 10 -8 см) они не проявляются совсем.
Слабые взаимодействия проявляются на еще меньших расстояниях, порядка 10 -15 см. Они вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.
Ядерные силы - самые мощные в природе. Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10 -2 , гравитационных - 10 -40 , слабых взаимодействий - 10 -16 .
Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.
В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.
Силы в механике. В механике обычно имеют дело с тремя видами сил - силами тяготения, силами упругости и силами трения.
Силы упругости и трения имеют электромагнитную природу. Мы не будем здесь объяснять происхождение этих сил, с помощью опытов можно будет выяснить условия, при которых возникают эти силы, и выразить их количественно.
В природе существуют четыре типа взаимодействия. В механике изучаются гравитационные силы и две разновидности электромагнитных сил - силы упругости и силы трения .

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Одним из величайших достижений физики за последние два тысячелетия стало выделение и определение четырех видов взаимодействия, которые правят вселенной. Все они могут быть описаны на языке полей, которым мы обязаны Фарадею. К несчастью, однако, ни один из четырех видов не обладает в полной мере свойствами силовых полей, описанных в боль­шинстве фантастических произведений. Перечислим эти виды взаимодействия.

1. Гравитация. Безмолвная сила, не позволяющая нашим ногам оторваться от опоры. Она не дает рассы­паться Земле и звездам, помогает сохранить целост­ность Солнечной системы и Галактики. Без гравитации вращение планеты вышвырнуло бы нас с Земли в космос со скоростью 1000 миль в час. Проблема в том, что свойства гравитации в точности противо­положны свойствам фантастических силовых полей. Гравитация - сила притяжения, а не отталкивания; она чрезвычайно слаба - относительно, разумеется; она работает на громадных, астрономических расстоя­ниях. Другими словами, являет собой почти полную противоположность плоскому, тонкому, непроницае­мому барьеру, который можно встретить едва ли не в любом фантастическом романе или фильме. К приме­ру, перышко к полу притягивает целая планета - Зем­ля, но мы легко можем преодолеть притяжение Земли и поднять перышко одним пальцем. Воздействие одного нашего пальца способно преодолеть силу притяжения целой планеты, которая весит больше шести триллио­нов килограммов.

2. Электромагнетизм (ЭМ). Сила, освещающая наши города. Лазеры, радио, телевидение, современная электроника, компьютеры, Интернет, электричество, магнетизм - все это следствия проявления электро­магнитного взаимодействия. Возможно, это самая по­лезная сила, которую удалось обуздать человечеству на протяжении всей его истории. В отличие от гравитации она может работать и на притяжение, и на отталкива­ние. Однако и она не годится на роль силового поля по нескольким причинам. Во-первых, ее можно легко нейтрализовать. К примеру, пластик или любой другой непроводящий материал без труда проникнет в мощ­ное электрическое или магнитное поле. Кусок пласти­ка, брошенный в магнитное поле, свободно пролетит его насквозь. Во-вторых, электромагнетизм действует на больших расстояниях, его непросто сосредоточить в плоскости. Законы ЭМ-взаимодействия описываются уравнениями Джеймса Клерка Максвелла, и похоже, силовые поля не являются решением этих уравнений.

3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие - это сила радиоактивно­го распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, зем­летрясениями и дрейфом континентальных плит. Силь­ное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимо­действие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.

Хотя защитные поля в научной фантастике и не подчиня­ются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фун­даментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от не­скольких дюймов до фута - а не на астрономических расстоя­ниях. (Правда, первые попытки обнаружить пятый вид взаимо­действия дали отрицательные результаты.)

Во-вторых, нам, возможно, удастся заставить плазму ими­тировать некоторые свойства силового поля. Плазма - это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, - твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электро­нов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.

Видимое вещество вселенной существует по большей ча­сти в форме различного рода плазмы; из нее образованы солн­це, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого доста­точно взглянуть на молнию, солнце или экран плазменного телевизора.

Во Вселенной существуют четыре типа сил, определяющих характер взаимодействия между объектами. Две из них известны как гравитационная и электромагнитная . Сила вызывает изменения в той или иной системе. Гравитационные силы в пространстве держат, например, планеты на их орбитах и собирают вместе космическую пыль, в результате чего образуются звезды. Законы движения Ньютона определяют силу, приложенную к телу, как произведение массы этого тела на получаемое им ускорение. Электромагнитные силы, действующие внутри атомов и между ними, оказывают большее воздействие, чем гравитационные (взаимное тяготение). Электрические силы, действующие между противоположно заряженными протонами и электронами, удерживают атомы и молекулы от распада. Те же самые электрические силы обеспечивают связность твердых и жидких материалов. Еще два типа сил во Вселенной называются сильным и слабым взаимодействиями . Они действуют только внутри атомных ядер и не оказывают влияния на Вселенную в целом.

В физике, в свою очередь, существует так называемая стандартная модель - это теоретические представления (набор уравнений) о существующих во Вселенной существующих четырех типах фундаментальных сил взаимодействия между объектами. Два из этих четырех взаимодействий — сильное и слабое — проявляются лишь внутри атомных ядер. Третье является электромагнитным взаимодействием и четвертое — гравитационным.

В совокупности эти теоретические представления позволяют прогнозировать результат любого известного фундаментального взаимодействия. Слабое взаимодействие управляет радиоактивным распадом. Сильное взаимодействие связывает вместе протоны и нейтроны (называемые также нуклонами) в ядрах атомов, а также связывает вместе элементарные частицы, называемые кварками, в нуклон. Электромагнитное взаимодействие участвует в генерации света и других видов электромагнитного излучения. Оно связывает также атомы в молекулы, образуя все известные нам вещества. Благодаря гравитационному взаимодействию удерживаются планеты около звезды, которые обращаются вместе с их спутниками вокруг звезд, а сами звезды движутся по своим орбитам в галактиках.

2. Сильное взаимодействие

Сильное взаимодействие удерживает протоны и нейтроны внутри атома. Каждый атом состоит из центрального положительно заряженного ядра, построенного из протонов и нейтронов и занимающего лишь малую долю объема атома, но содержащего большую часть его массы, и из окружающего его облака значительно более легких отрицательно заряженных электронов. Число электронов в атоме равно числу заряженных частиц ядра — протонов и определяет то, как данный атом будет связан в молекуле с другими атомами. Протоны представляют собой один из трех видов элементарных частиц, которые образуют атом. Электрически нейтральные частицы (нейтроны) ядра определяют его массу, но не влияют на число электронов и, следовательно, не оказывают почти никакого влияния на связь данного атома с другими.

Химические свойства атома определяются числом протонов в его ядре и соответствующим числом электронов, обращающихся вокруг ядра. Почти вся масса атома сосредоточена в ядре. Масса в отдельности протона и нейтрона примерно в 1800 раз больше, чем у электрона.

Однако, когда физики проникли глубже во внутреннее устройство атома, они обнаружили, что нейтрон и протон, в свою очередь, построены из кварков , причем на каждый из них приходится по три кварка. Главный вопрос современной физики состоит в том, не построены ли также и кварки из еще более мелких частиц.

Сильное взаимодействие , является самым сильным из фундаментальных взаимодействий элементарных частиц. В сильном взаимодействии участвуют адроны . (Адроны т.е. кварки , элементарные частицы, участвующие в сильном взаимодействии (барионы и мезоны, включая все резонансы).

Сильное взаимодействие превосходит электромагнитное взаимодействие примерно в 100 раз, его радиус действия около 10-13 см. Частный случай сильного взаимодействия — ядерные силы. Современной теорией сильного взаимодействия является квантовая хромодинамика.

Квантовоя хромодинамика - это, квантовополевая теория сильного взаимодействия кварков и глюонов, которое осуществляется путем обмена между ними — глюонами. (Глюоны, гипотетические электрически нейтральные частицы с нулевой массой и спином 1, осуществляющие взаимодействие между кварками. Подобно кваркам, глюоны обладают квантовой характеристикой «цвет».)

В отличие от фотонов, глюоны взаимодействуют друг с другом, что приводит, в частности, к росту силы взаимодействия между кварками и глюонами при удалении их друг от друга. Предполагается, что именно это свойство определяет короткодействие ядерных сил и отсутствие в природе свободных кварков и глюонов.

3. Электромагнитное взаимодействие

Электромагнитное взаимодействие, фундаментальное взаимодействие, в котором участвуют частицы, имеющие электрический заряд (или магнитный момент). Переносчиком электромагнитного взаимодействия между заряженными частицами является электромагнитное поле, или кванты поля — фотоны. По «силе» электромагнитное взаимодействие занимает промежуточное положение между сильным и слабым взаимодействиями и является дальнодействующим. Оно определяет взаимодействие между ядрами и электронами в атомах и молекулах, поэтому к электромагнитному взаимодействию сводится большинство сил, проявляющихся в макроскопических явлениях: силы упругости, трения, химическая связь и т. д. Электромагнитное взаимодействие приводит также к излучению электромагнитных волн, участвует в генерации света и других видов электромагнитного излучения.

Оно связывает также атомы в молекулы, образуя все известные нам вещества.

В 1647г., французский физик и философ Пьер Гассенди высказал предположение, что атомы первоначально соединяются в особые группы, которые он назвал молекулами (от лат. moles — «масса», с уменьшительным суффиксом cula).

Сразу же возник вопрос: как образуется связь между атомами в молекулах? Представления о том, что атомы сцепляются посредством крючков, со временем перестали удовлетворять химиков, т.к. стало ясно, что сложные химические превращения невозможно объяснить примитивным механическим взаимодействием.

В начале XIX в. шведский химик Йенс-Якоб Берцелиус предложил электрохимическую теорию сродства. Он считал, что атомы притягиваются друг к другу благодаря наличию у каждого из них двух противоположных электрических зарядов, находящихся на некотором расстоянии друг от друга.

Идея о том, что силы, удерживающие атомы в молекуле, имеют электрическую природу, оказалась верной, но первые шаги в понимании природы химической связи удалось сделать только после открытия электрона и разработки электронной теории строения атома.

В 1907 г. российский химик Николай Александрович Морозов предположил, что химическая связь между атомами может получиться за счет образования электронных пар. Это подтвердил в 1916 г. американский физикохимик Гилберт-Ньютон Льюис. По расчетам Льюиса получилось, что молекула будет наиболее энергетически устойчивой, если вокруг каждого ее атома образуется восьмиэлектронная оболочка («электронный октет»). Недаром химически инертные благородные газы имеют именно такой набор внешних электронов. Химическую связь, по Льюису, образуют одна, две, три пары электронов, принадлежащие октетам двух соседних атомов.

Представления Льюиса понятны и удобны, но не дают знания о происхождении сил, вызывающих притяжение нейтральных атомов и образовании молекул.

В 1927 г. физики-теоретики объяснили образование молекулы водорода таким образом. Каждый из атомов этого элемента имеет один электрон, занимающий сферическую ls-атомную орбиталь и притягивающийся к положительно заряженному ядру. Если же удастся сблизить два атома водорода, то каждый из электронов начнет притягиваться уже к двум ядрам или (что то же самое) оба ядра будут притягиваться к электронам.

При этом устанавливается равновесие сил притяжения и отталкивания протон — протонного и электрон — электронного) и образуется устойчивая двухатомная молекула водорода.

Чтобы атомы не разбегались, электроны должны как можно больше времени находиться между ядрами. Как этого добиться?

Атомные орбитали при взаимодействии атомов частично перекрываются и проникают друг в друга. В области проникновения электронных «облаков» возникает дополнительный электрический заряд.

Область частичного перекрывания ведет себя как самостоятельная орбиталь, и здесь действуют те же правила, что и при заполнении атомных орбиталей, в том числе и принцип Паули. Согласно этому принципу, два электрона в молекуле водорода должны иметь разные спины (спин — это собственный магнитный момент электрона) — они обозначаются противоположно направленными стрелками:↓.

Принцип Паули объясняет, почему невозможно образование двухатомной молекулы гелия. Чтобы такая молекула, Не 2 оказалась устойчивой, в области перекрывания должны находиться четыре электрона. Однако существуют только два направления спина, значит, только два электрона могут находиться между ядрами. Остальные электроны будут «растаскивать» ядра, и атомы разлетятся. Молекула не образуется. В перекрывании могут участвовать не только s-, но и другие орбитали. Однако электронные облака атомов перекрываются и проникают друг в друга только в том случае, если они имеют близкие значения энергии и одинаковую симметрию. Вот, например, фтор F, у атома которого электронная формула [Не] 2s22pK Каждый атом фтора имеет семь валентных электронов — так называют внешние электроны, способные образовывать химическую связь. |

Атомные орбитали, занятые парами электронов, даже валентных, не перекрываются по той же причине, что и орбитали атомов гелия. Однако каждый атом фтора имеет одну орбиталь с единственным (неспаренным) электроном — вот эти-то орбитали будут проникать друг в друга (перекрываться). В области перекрывания расположатся два электрона от двух атомов фтора, которые свяжут их в молекулу.

Могут перекрываться и разные орбитали. Именно так образуется связь в молекуле фтороводорода HF. Дело в том, что s-орбиталь атома водорода и p -орбиталь атома фтора имеют разную форму, но одинаковую симметрию: при вращении вокруг оси, соединяющей ядра атомов, они совпадают сами с собой. По одному электрону от обоих атомов располагаются в области перекрывания этих орбиталей. И вот пара электронов объединяет атомы водорода и фтора: получается молекула HF.

У сферических s -орбиталей существует только одна возможность для перекрывания, а вот p -орбитали могут перекрываться разными способами. Один из них показан на примере молекулы фтора. При таком перекрывании образуется так называемая σ-связь . Но есть и другая возможность — перекрывание боковыми областями электронного облака. В этом случае образуется π-связь , которая значительно слабее σ-связи и может возникнуть только в дополнение к ней. Для этого двум атомам надо иметь p -орбитали, которые могут участвовать в перекрывании. Такая возможность есть у атомов кислорода. Электронная формула атома кислорода [Не] 2s 2 2p 4 и здесь валентными являются шесть электронов. Атом кислорода имеет на одной p -орбитали два электрона, а на оставшихся двух — по одному. Вот эти-то атомные орбитали с одиночными (неспаренными) электронами и участвуют в перекрывании.

Две p -орбитали двух атомов кислорода, расположенные вдоль линии, соединяющей их ядра, перекрываются и образуют σ-связь. А p -орбитали, перпендикулярные этой линии, создают дополнительную π-связь. Связь становится двойной, а участвуют в ее образовании две пары электронов. Как будто атомы кислорода протянули друг другу по две руки.

У атома азота N (его электронная формула — [Не] 2s 2 2р 2) из семи электронов валентными являются пять, три из которых располагаются поодиночке на трех p -орбиталях. При перекрывании электронных облаков двух атомов азота образуются одна σ- и две π-связи. Это уже тройная связь. Она отличается необычайной прочностью, и становится понятным, почему молекулы азота N2 с таким трудом вступают в химические реакции. А вообше-то иметь несколько орбиталей с неспаренными электронами удобно — можно образовать несколько связей с другими атомами. Вместо того чтобы использовать две связи на объединение друг с другом в молекуле О 2 атом кислорода может присоединить к себе два атома водорода — получится молекула воды Н 2 О.

Механизм возникновения химической связи, при котором используется по одному электрону от каждого атома, называют обменным. Здесь все атомы как бы обмениваются своими электронами.

К примеру, если два человека обменяются яблоками, у каждого опять будет по одному яблоку, а если они обменяются идеями, у каждого их будет по две. А если один из них большой выдумщик и у него уже есть две идеи, а у его партнера ни одной? Что ж, во время общения результат окажется тем же — у каждого по две идеи, которые станут общими. Вот и пара электронов в области перекрывания может появиться и при перекрывании двух орбиталей — пустой и имеющей два электрона. Это донорно-акцепторный механизм образования химической связи: атом-донор безвозмездно отдает, а атом-акцептор принимает два спаренных электрона.

Таким образом на основе электромагнитных взаимодействий объясняются не только электрические и магнитные явления, но и оптические, и тепловые, и химические.

4. Слабое взаимодействие

Слабое взаимодействие, одно из фундаментальных взаимодействий, в котором участвуют все элементарные частицы (кроме фотона). Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но неизмеримо сильнее гравитационного. Ожидаемый радиус действия слабого взаимодействия порядка 2·10-16 см. Слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействия нейтрино с веществом и др. Для слабого взаимодействия характерно нарушение четности, странности, «очарования» и др. В кон. 60-х гг. создана единая теория слабого и электромагнитного взаимодействий (т. н. электрослабое взаимодействие).

Четность , квантовое число, характеризующее симметрию волновой функции физической системы или элементарной частицы при некоторых дискретных преобразованиях: если при таком преобразовании y не меняет знака, то четность положительна, если меняет, то четность отрицательна. Для абсолютно нейтральных частиц (или систем), которые тождественны своим античастицам, кроме четности пространственной, можно ввести понятия зарядовой четности и комбинированной четности (для остальных частиц замена их античастицами меняет саму волновую функцию).

Странность (S), целое (нулевое, положительное или отрицательное) квантовое число, характеризующее адроны. Странность частиц и античастиц противоположны по знаку. Адроны с S≠0 называются странными. Странность сохраняется в сильном и электромагнитном взаимодействиях, но нарушается (на 1) в слабом взаимодействии.

«Очарование» (чарм, шарм), квантовое число, характеризующее адроны (или кварки); сохраняется в сильном и электромагнитном взаимодействиях, но нарушается слабым взаимодействием. Частицы с ненулевым значением «очарование» называются «очарованными» частицами.

Слабое взаимодействие, например, управляет радиоактивным распадом.

Радиоактивный распад - это постепенное уменьшение числа радиоактивных атомов вещества при спонтанном ядерном распаде, в результате чего эти атомы из нестабильного состояния переходят в стабильное. Время, в течение которого распадается половина таких атомов, называется периодом полураспада. Процесс радиоактивного распада сопровождается испусканием альфа-частиц, нуклонов, электронов и гамма-лучей либо непосредственно из нестабильных атомных ядер, либо вследствие ядерной реакции.

Радиоактивный распад представляет собой естественный процесс, протекающий вокруг нас постоянно. Именно радиоактивный распад таких элементов, как уран, торий и калий, нагревает недра Земли. Внутренняя теплота ядра Земли также генерируется радиоактивным распадом элементов, образовавшихся в теле звезд и вошедших в состав первобытной Земли вследствие Большого Взрыва. Эта же теплота, в свою очередь, питает энергией тектоническую активность Земли.

Время, необходимое для распада (с выделением энергии) половины данного количества радиоактивного материала называется периодом полураспада. Атом распадается путем деления (или расщепления) атомного ядра, переходя из нестабильного состояния в стабильное. Все радиоактивные вещества стремятся со временем прийти в стабильное состояние, и этот процесс сопровождается испусканием ионизирующего излучения. Период полураспада различных радиоактивных материалов варьирует от менее чем миллионной доли секунды до миллионов лет. Период полураспада какого-либо определенного вещества постоянен и не зависит от физических условий, таких, как давление или температура. Поэтому радиоактивность можно использовать для оценки интервалов времени, измеряя долю ядер, которая уже подверглась распаду. Например, измерив количество углерода, оставшееся в ископаемых остатках, можно узнать, сколь давно этот ископаемый материал образовался.

Периоды полураспада радиоактивных веществ, представляющих наибольшую угрозу человечеству, не являются ни очень короткими, ни очень долгими. Короткоживущие вещества теряют свою активность столь быстро, что не представляют опасности. Радиоактивность очень долгоживущих материалов уменьшается столь медленно, что вредное ионизирующее излучение от них практически безопасно.

5. Гравитационное взаимодействие

Гравитационное взаимодействие, универсальное (присущее всем видам материи) взаимодействие, самое слабое из фундаментальных взаимодействий элементарных частиц, имеет характер притяжения.

Если это взаимодействие относительно слабое и тела движутся медленно по сравнению со скоростью света в вакууме с , то справедлив закон всемирного тяготения Ньютона. В случае сильных полей и скоростей, сравнимых с c , необходимо пользоваться созданной А. Эйнштейном общей теорией относительности (ОТО), являющейся обобщением ньютоновской теории тяготения на основе специальной относительности теории. В основе ОТО лежит принцип эквивалентности — локальной неразличимости сил тяготения и сил инерции, возникающих при ускорении системы отсчета. Этот принцип проявляется в том, что в заданном поле тяготения тела любой массы и физической природы движутся одинаково при одинаковых начальных условиях. Теория Эйнштейна описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени (п.-в.); в свою очередь, эти свойства влияют на движение материи и другие физические процессы. В таком искривленном п.-в. движение тел «по инерции» (т. е. при отсутствии внешних сил, кроме гравитационных) происходит по геодезическим линиям, аналогичным прямым в неискривленном пространстве, но эти линии уже искривлены. В сильном поле тяготения геометрия обычного трехмерного пространства оказывается неевклидовой, а время течет медленнее, чем вне поля. Теория Эйнштейна предсказывает конечную скорость изменения поля тяготения, равную скорости света в вакууме (это изменение переносится в виде гравитационных волн), возможность возникновения черных дыр и др. Эксперименты подтверждают эффекты ОТО.

Проведя мысленные эксперименты, Эйнштейн пришел к выводу, что реальное гравитационное поле будет эквивалентно ускоренным системам только в том случае, если пространство-время является искривленным, т.е. неевклидовым: «Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения ОТО стремятся раскрыть геометрические свойства нашего мира» . Великий физик исходил из того, что пространственно-временной континуум носит риманов характер. А римановым (в узком смысле) называется пространство постоянной положительной кривизны. Его наглядный образ - поверхность обычной сферы, на которой кратчайшая линия не является прямой.

Итак, с точки зрения ОТО пространство нашего мира не обладает постоянной нулевой кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения. И время в разных точках течет по-разному. Поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального (евклидова) пространства. Поле тяготения в каждой точке определяется значением кривизны пространства в этой точке. При этом искривление пространства-времени определяется не только полной массой вещества, из которого слагается тело, но и всеми видами энергии, присутствующими в нем, в том числе энергии всех физических полей. Так, в ОТО обобщается принцип тождества массы и энергии СТО: Е = mc 2 . Таким образом, важнейшее отличие ОТО от других физических теорий состоит в том, что она описывает тяготение как воздействие материи на свойства пространства-времени, эти свойства пространства-времени, со своей стороны, влияют на движение тел, на физические процессы в них.

В ОТО движение материальной точки в поле тяготения рассматривается как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходимо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача заключается в том, чтобы, зная распределения тяготеющих масс в пространстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т.д.

Эйнштейн нашел общее уравнение гравитационного поля (которое в классическом приближении переходило в закон тяготения Ньютона) и таким образом решил проблему тяготения в общем виде. Уравнения гравитационного поля в общей теории относительности представляют собой систему из 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единственной величины — плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса.

Еще одно кардинальное отличие ОТО от предшествующих ей физических теорий состоит в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система», «евклидов характер пространства-времени» и др. В ОТО используют нежесткие (деформирующиеся) тела отсчета, поскольку в гравитационных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «моллюском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн. Гравитационные волны создаются переменным гравитационным полем, неравномерным движением масс и распространяются в пространстве со скоростью света. Гравитационные волны в земных условиях очень слабы. Есть возможность реальной фиксации гравитационного излучения, возникающего в грандиозных катастрофических процессах во Вселенной — вспышках сверхновых звезд, столкновении пульсаров и др.

Список использованной литературы

1. Альберт Эйнштейн и теория гравитации. - М., 1979. - С. 570.

  1. Большая серия знаний. Химия. - М.: Мир книги, Русское энциклопедическое товарищество, 2006. - С. 10 - 21.
  1. Большая энциклопедия Кирилла и Мефодия, 2007. - www.KM.ru [электронный мультипортал]

4. Бренан Р. Словарь научной грамотности. - М: Мир, 1997. - 368с.

5. Грушевицкая Т.Г., Садохин А.П., Концепции современного естествознания: Учебник для вузов. - М., 2002.

6. Ильченко В.Р. Перекрёстки физики, химии и биологии. - М.: Просвещение, 1986. - С.134 - 140.

7. Найдыш В.М., Концепции современного естествознания: учебник. - изд. 2-е, перераб. и доп. - М.: Альфа-М, ИНФРА-М, 2004.

8. Философские проблемы естествознания. - М.: Высшая школа, 1985.

9. Эйнштейн А., Инфельд Л., Эволюция физики. - М., 1965.