Аксиоматический способ построения теории. Аксиоматический метод: описание, этапы становления и примеры

АКСИОМАТИЧЕСКИЙ МЕТОД - метод построения научной теории, при котором выбирается ряд исходных утверждений, называемых аксиомами, а дальнейшие утверждения (теоремы) получаются из них с помощью чисто логических рассуждений (доказательств). Классический образец применения аксиоматического метода - изложенная в «Началах» Евклида (около 300 года до нашей эры) аксиоматическая система, которая охватывала всю известную в то время математику. Влияние аксиоматического метода распространилось и на другие области знания: физику, биологию, философию, богословие.

На протяжении многих столетий «Начала» Евклида были единственным примером аксиоматической теории. Начиная с 19 века, создаются новые теории, например Лобачевского геометрия, аксиоматические теории действительных и натуральных чисел. В начале 20 века были построены аксиоматические теории множеств, повлиявшие на развитие всей математики.

Формальное определение аксиоматической теории было дано Д. Гильбертом. При формальном описании теории задаётся её язык (правила построения выражений различных типов, в том числе формул, которые соответствуют содержательным утверждениям), выделяется класс формул, называемых аксиомами теории, и описываются правила вывода, позволяющие строить доказательства теорем. Доказательство есть последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих по одному из правил вывода. Теория называется непротиворечивой, если в ней нельзя получить противоречие, т. е. отрицания её теорем не являются теоремами; и полной, если для любой формулы А, либо А, либо отрицание А является теоремой. При построении формальных теорий вопрос о непротиворечивости является ключевым. Для установления непротиворечивости обычно используется метод интерпретаций. При синтаксической интерпретации теории Т выбирается другая теория Т1, непротиворечивость которой предполагается известной; интерпретация переводит формулы Т в формулы Т1, а теоремы Т в теоремы Т1. При семантической интерпретации строится модель теории: теоремы превращаются в истинные содержательные утверждения об объектах некоторого универсума. Если теория имеет модель, то она непротиворечива. Путём интерпретации доказательство непротиворечивости евклидовой геометрии сводится к доказательству непротиворечивости теории действительных чисел, а доказательство непротиворечивости геометрии Лобачевского - к доказательству непротиворечивости евклидовой геометрии.

Вопросы о непротиворечивости стали особенно актуальны в начале 20 века после обнаружения парадоксов множеств теории. В связи с этим в начале 20 века Д. Гильбертом выдвинута программа обоснования математики, целью которой было доказательство непротиворечивости формальных теорий, использующих бесконечные множества. Программа Гильберта существенно переосмыслена после открытий К. Гёделя (1931-32). Для любой непротиворечивой теории S, содержащей арифметику и заданной алгоритмически перечислимым списком аксиом, установлено, что теория S неполна (теорема Гёделя о неполноте) и непротиворечивость теории S нельзя доказать средствами самой теории S (теорема Гёделя о непротиворечивости). Первый результат, по существу, означает, что окончательная формализация научного знания невозможна, и в любой достаточно сильной аксиоматической теории имеются проблемы, которые неразрешимы в самой этой теории. Второй результат показывает, что такой проблемой является непротиворечивость теории S, и для её доказательства требуются неарифметические средства. С помощью дополнительных принципов были получены доказательства непротиворечивости арифметики, анализа и ряда других теорий. Была усилена теорема Гёделя о неполноте: найдены арифметические утверждения, которые истинны, но недоказуемы в формальной арифметике.

Формальная аксиоматическая теория называется алгоритмически разрешимой, если для любой формулы А существует алгоритм, который за конечное число шагов определяет, является ли формула А теоремой. Программа Гильберта подразумевала, что формальное доказательство теорем можно механизировать. Однако неразрешима даже простейшая теория - исчисление предикатов, неразрешима всякая непротиворечивая теория, содержащая арифметику, и многие другие теории. С другой стороны, обнаружены и нетривиальные примеры разрешимых теорий, например евклидова геометрия и теория конечных полей.

Альтернативным аксиоматическим методом является генетический (конструктивный) метод, при котором новые научные законы находятся опытным путём, а не как логические следствия известных результатов. Генетический метод развивался в 20 веке в интуиционистском (французский математик Г. Вейль, голландский математик Л. Брауэр) и конструктивном (А. А. Марков) направлениях математики.

Аксиоматический метод сыграл и продолжает играть важную роль в основаниях математики.

Лит.: Бурбаки Н. Начала математики. М., 1965. Ч. 1. Кн. 1: Теория множеств; Клини С. К. Математическая логика. М., 1973; Новиков П. С. Элементы математической логики. М., 1973; Ефимов Н.В. Высшая геометрия. 6-е изд. М., 1978; Гильберт Д., Бернайс П. Основания математики: Теория доказательств. М., 1982; Справочная книга по математической логике: В 3 часть М., 1982; Успенский В. А. Что такое аксиоматический метод? 2-е изд. Ижевск, 2001.

АКСИОМАТИЧЕСКИЙ МЕТОД

АКСИОМАТИЧЕСКИЙ МЕТОД (греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные (»принципы») и требующие доказательства (»доказываемые»). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат «Начала» Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие «аксиома». Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К, Геде-лем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как «полуаксиоматический») и методом математической гипотезы. Гипотетико-де-дуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики «во всех мирах»; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.


Новейший философский словарь. - Минск: Книжный Дом . А. А. Грицанов . 1999 .

Смотреть что такое "АКСИОМАТИЧЕСКИЙ МЕТОД" в других словарях:

    Способ построения науч. теории, при котором в её основу кладутся некоторые исходные положения (суждения) аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логич. путём, посредством… … Философская энциклопедия

    См. МЕТОД АКСИОМАТИЧЕСКИЙ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    АКСИОМАТИЧЕСКИЙ МЕТОД, метод математических рассуждений, основанный на логическом выводе из некоторых утверждений (аксиом). Этот метод является одной из основ математической науки: его использовали еще в древней Греции, а формализацию его… … Научно-технический энциклопедический словарь

    Современная энциклопедия

    Способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории … Большой Энциклопедический словарь

    аксиоматический метод - АКСИОМАТИЧЕСКИЙ МЕТОД (от греч. axioma) принятое положение способ построения научной теории, при котором в доказательствах пользуются лишь аксиомами, постулатами и ранее выведенными из них утверждениями. Впервые ярко продемонстрирован… … Энциклопедия эпистемологии и философии науки

    Аксиоматический метод - АКСИОМАТИЧЕСКИЙ МЕТОД, способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории (вспомогательные леммы и ключевые теоремы) получаются как… … Иллюстрированный энциклопедический словарь

    АКСИОМАТИЧЕСКИЙ МЕТОД - способ организации научного (в особенности, теоретического) знания, сущность которого состоит в выделении среди всего множества истинных высказываний об определенной предметной области такого его подмножества (аксиом), из которого логически… … Философия науки: Словарь основных терминов

    Способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путём логической дедукции получать утверждения (теоремы) данной теории. * * * АКСИОМАТИЧЕСКИЙ МЕТОД АКСИОМАТИЧЕСКИЙ МЕТОД, способ… … Энциклопедический словарь

    аксиоматический метод - aksiominis metodas statusas T sritis fizika atitikmenys: angl. axiomatic method vok. axiomatische Methode, f rus. аксиоматический метод, m pranc. méthode axiomatique, f … Fizikos terminų žodynas

Книги

  • Множества. Логика. Аксиоматические теории , Роберт Р. Столл. В книге дается элементарное изложение важнейших понятии, идей, методов и результатов теории множеств (включая алгебру операций над множествами), математической логики (элементы логики…

Аксиоматический метод дает возможность делать заключения и открывать законы без опоры на наблюдения и эксперименты, а посредствам логического вывода.

Пожалуй, одним из первых успешных применений аксиоматического метода стала геометрия древнегреческого математика Евклида (она появилась где-то в 330-320 гг. до н.э.). Евклидову аксиоматическую систему в общих словах можно охарактеризовать следующим образом. Изучение окружающего нас пространства дало возможность описать некоторые свойства объектов, которые получили название точка, прямая, плоскость, треугольник, круг и т.д. Несколько утверждений об этих объектах Евклид выбрал в качестве аксиом или постулатов. Их истинность, по его мнению, не нуждалось в доказательстве из-за их очевидности и легкого понимания. К числу аксиом он отнес суждения: «Через две точки можно провести только одну прямую», «Через прямую и точку вне ее может проходить лишь одна плоскость» и др. Из этих аксиом чисто логическим путем Евклиду удалось вывести все нужные геометрические утверждения и законы, которые обычно называются теоремами.

Справедливости ради нужно сказать, что доказательства Евклида (как и доказательства школьной геометрии, которую все мы изучили) сопровождаются многочисленными чертежами. И понадобилось немало времени, чтобы прийти к очевидной мысли, что чертежи не должны быть существенной частью самого процесса доказательства. Они должны либо облегчать процесс доказательства, либо помогать следить за ходом доказательства, либо, наконец, способствовать запоминанию доказательства. Этот недостаток геометрии Евклида исправил Д. Гильберт в своей книге «Основания геометрии» (1999).

То обстоятельство, что аксиоматически построенная геометрия давала чрезвычайно, простой, удобный и экономный способ установления истинности геометрических рассуждений, производило сильное впечатление. Аксиоматический метод стали пытаться применять не только в математических теориях, но даже в философии (Спиноза). Представители очень многих наук надеялись, что в конце концов многие теории с помощью аксиоматики можно довести до такого же изящества и совершенства как евклидовую геометрию. Аксиоматический метод подвергся тщательному изучению. Первые наиболее важные результаты были получены опять таки в геометрии.

Пятый постулат Евклида (его можно сформулировать так: две параллельные прямые не пересекаются, сколько бы мы их не продолжали) казался математикам менее очевидным, чем остальные. Было предпринято множество попыток доказать этот постулат, посредством вывода его из остальных постулатов евклидовой системы. Но все эти попытки потерпели неудачу. В 1923 году Н.Н. Лобачевский и в 1933 г. Бойаи построили геометрию, в которой в качестве постулата фигурировало отрицание пятого постулата Евклида, т.е. в качестве аксиомы было взято суждение о том, что через точку вне прямой можно провести бесконечно много прямых, параллельных данной прямой. Первоначально многие математики встретили неевклидовую геометрию в штыки из-за ее явного противоречия воспринимаемому физическому пространству. Однако, в 1950 г. Фр. Клейн нашел очень удачную интерпретацию (разъяснение) этой геометрии. Если под «плоскостью» понимать внутренность какого-то круга евклидовой плоскости, под «точкой» - точку этого круга, а под «прямой» - хорду его окружности, то внутри круга будут выполняться все аксиомы и теоремы геометрии Лобачевского-Бойаи. Из этих открытий были сделаны важные заключения о любой аксиоматической системе: аксиомы этой системы должны удовлетворять требованиям независимости, полноты, непротиворечивости и она не должна быть вырожденной.

Требование независимости означает, что не одна из аксиом не должна выводиться в качестве теоремы из остальных. Полнота аксиоматики какой-то теории означает, что из аксиом по правилам логики должны выводиться все утверждения этой теории. Система аксиом должна быть непротиворечивой. Из них не должно выводиться какое-то утверждение вместе со своим отрицанием. Если это случается, то по закону исключенного третьего одно из суждений обязательно ложно. Какое, установить нельзя, потому что и то и другое будет выводиться по законам логики. Наконец, система аксиом будет невырожденной, если удается найти какие-то объекты (физические или теоретические), которые описывает теория, выведенная из этих аксиом.

Но еще больше вопросов, связанных с аксиоматическим методом, возникло с открытием в XX1 веке парадоксов теории множеств. Они представляли собой рассуждения совершенно справедливые с интуитивной (содержательной) точки зрения, но тем не менее приводящие к противоречиям. Некоторые из них, например, парадокс «Лжец» были известны с древности. Напомним, что суть этого парадокса в следующем: некто говорит: «Я лгу». Если при этом он лжет, то сказанное им ложь, и, следовательно, он не лжет. Если же при этом он не лжет, то сказанное им истина, и, следовательно, он лжет. Так что в любом случае он лжет и не лжет одновременно. Однако связь парадокса «Лжец» с теорией множеств не была осознанной. Это случилось тогда, когда из аксиоматической теорией множеств, предложенной Г.Кантором и др. стали выводиться аналогичные парадоксы. Самый простой из них - парадокс Берри (2006). Суть его такова: множество всех натуральных чисел, которые могут быть названы по-русски посредством числа слогов (или букв), меньше некоторого конечного натурального числа, безусловно, конечно, следовательно, должно существовать наименьшее из чисел, которые не могут быть так названы. Но «наименьшее целое число, которое не может быть названо по-русски меньше, чем в пятьдесят слогов» (подсчитайте число слогов) есть выражение русского языка, содержащие менее пятидесяти слогов. Известны различные модификации этого парадокса. При исследовании систем аксиом арифметики, теории множеств и других аксиоматических теорий обнаружилось, что не существует полной системы аксиом, из которых можно было бы вывести такую простую теорию как арифметика (К.Гедель). Оказалось так же, что проблемы непротиворечивости систем аксиом теории множеств и других теорий чрезвычайно трудны. При попытках их решения математики и логики раскололись на враждующие между собой группировки. По мнению Гильберта и его формалистской школы, чтобы избавить математику от парадоксов нужно сформулировать ее в виде аксиоматической теории, после чего следует доказать непротиворечивость этой теории. По мнению интуиционистов, возглавляемых Бауэром, чтобы избавить математику от парадоксов, надо отказаться от признания универсального характера некоторых законов логики, в частности закона исключенного третьего.

Итак, суть аксиоматического метода в следующем. В теорию вводятся без определения некие объекты, природа которых не определена. Затем посредством аксиом задают определенные отношения между объектами. Построить аксиоматическую теорию - это значит вывести логические следствия из аксиом, отказавшись от каких-либо других предложений относительно природы рассматриваемых объектов. Для построенной таким образом теории стремятся доказать полноту, непротиворечивость, независимость и невырожденность системы её аксиом.

Аксиоматический метод – способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, которые называют аксиомами теории, а все остальные положения теории вытекают как логические следствия аксиом.

Большинство направлений современной математики, теоретическая механика, ряд разделов физики построены на основе аксиоматического метода. В математике аксиоматический метод дает возможность создания законченных, логичнозавершиних научных теорий. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, часто находит применение в других науках.

В математике аксиоматический метод зародился в работах древнегреческих геометров. Блестящим образцом его применения вплоть до XIX в. была геометрическая система, известная под названием «Начала» Евклида (ок. 300 до н.э.). Хотя в то время не стоял еще вопрос об описании логических средств, применяемых для получения содержательных последствий из аксиом, в системе Евклида уже достаточно четко прослеживается идея получения всего основного содержания геометрической теории чисто дедуктивным путем, с определенного, относительно небольшого, числа утверждений – аксиом, истинность которых представлялась наглядно очевидной.

Открытие в начале XIX в. неевклидовой геометрии Н. И. Лобачевским и Я. Бойяи стало толчком к дальнейшему развитию аксиоматического метода. Они установили, что, заменив привычный и, казалось бы, единственно «объективно истинный» V постулат Евклида о параллельных прямых его отрицанием, можно развивать чисто логическим путем геометрическую теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков XIX в. обратить особое внимание на дедуктивный способ построения математических теорий, что привело к возникновению связанной с самим понятием аксиоматического метода и формальной (аксиоматической) математической теории новой проблематики, на основе которой выросла так называемая теория доказательств как основной раздел современной математической логики.

Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в XIX в. Уточнение основных понятий анализа и сведения сложных понятий к простейшему на точной и логически все более прочной основе, а также открытие неевклидовых геометрий стимулировали развитие аксиоматического метода и возникновения проблем общего математического характера, таких, как непротиворечивость, полнота и независимость той или системы аксиом.

Первые результаты в этой области принес метод интерпретаций, который может быть описан следующим образом. Пусть каждому выходному понятию и соотношению данной аксиоматической теории Т поставлен в соответствие определенный конкретный математический объект. Совокупность таких объектов называется полем интерпретации. Всякому утверждению U теории Т естественным образом ставится в соответствие определенное высказывание U * об элементах поля интерпретации, которое может быть истинным или ложным. Тогда говорят, что утверждения U теории Т соответствии истинное или ложное в данной интерпретации. Поле интерпретации и его свойства обычно сами являются объектом рассмотрения определенной математической теории T 1, которая, в частности, может быть тоже аксиоматической.

Метод интерпретаций позволяет устанавливать факт относительной непротиворечивости, то есть доказать утверждения типа: «если теория T 1 непротиворечива, то непротиворечивая и теория Т». Пусть теория Т проинтерпретированы в теории T 1 таким образом, что все аксиомы А и теории Т интерпретируются истинными утверждениями А и * теории Т 1. Тогда всякая теорема теории Т, то есть всякое утверждение А, логически выведено из аксиом А и в Т, интерпретируется в T 1 определенным утверждением А *, которое можно вывести в Т из интерпретаций А * и аксиом А и, и следовательно истинным. Последнее утверждение опирается на еще одно предположение, что делается неявно нами, определенного сходства логических средств, применяемых в теориях Т и Т 1. Практически это условие обычно выполняется. Пусть теперь теория Т противоречива, то есть некое утверждение А этой теории выведено в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждение А * и «не А *» будут одновременно истинными утверждениями теории Т 1, т.е. теория Т 1 противоречива. Этим методом была, например, доказано (Ф. Клейн, А. Пуанкаре) непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечивая геометрия Евклида, а вопрос о непротиворечивость гильбертово аксиоматизациы евклидовой геометрии был возведен (Д. Гильберт) к проблеме непротиворечивости арифметики.

Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома А теории Т не виводима из других аксиом этой теории и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в которой аксиома А была бы ошибочна, а все остальные аксиомы данной теории истинны. Вышеупомянутое возведения проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней – к вопросу о непротиворечивость арифметики имеет своим следствием утверждение, что V постулат Евклида не виводимий из других аксиом геометрии, если только непротиворечивой является арифметика натуральных чисел.

Слабая сторона метода интерпретаций заключается в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать только результаты, носят относительный характер. Важным достижением этого метода стал тот факт, что с его помощью была обнаружена особая роль арифметики как такой математической теории, к вопросу о непротиворечивости которой сводится аналогичный вопрос для целого ряда других теорий.

Дальнейшее развитие – в известном смысле это была вершина – аксиоматический метод получил в работах Д. Гильберта и его школы. В рамках этого направления было произведено дальнейшее уточнение понятия аксиоматической теории, а само понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математические теории как точные математические объекты и строить общую теорию, или метатеорию, таких теорий. При этом привлекательной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Всякая формальная система строится как точно очерченное класс выражений формул, в котором определенным точным образом выделяется подкласс формул, называют теоремами данной формальной системы. При этом формулы формальной системы сами не несут в себе никакой смысловой смысла, их можно строить по произвольным знаков или элементарных символов, руководствуясь только соображениями технической удобства. На самом деле способ построения формул и понятия теоремы той или формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для как можно более адекватного и полного выражения той или конкретной математической (или не математической) теории, точнее, как ее фактического содержания, так и ее дедуктивной структуры. Всякую конкретную математическую теорию Т можно перевести на язык пригодной формальной системы S таким образом, что каждое осмысленное (ложное или истинное) выражения теории Т выражается известной формулой системы S.

Естественно ожидать, что метод формализации позволит строить весь положительный смысл математических теорий на такой точной и, казалось бы, надежной основе, как понятие выведенной формулы (теоремы формальной системы), а принципиальные вопросы типа проблемы непротиворечивости математических теорий решать форме доказательств соответствующих утверждений формальных систем, которые формализуют эти теории. Чтобы получить доказательства утверждений о непротиворечивость, не зависящих от тех мощных средств, которые в классических математических теориях раз и является причиной осложнений их обоснования, Д. Гильберт предлагал исследовать формальные системы т.н. финитными методами (см. метаматематики).

Однако результаты К. Геделя начале 30-х г. XX в. привели к краху основных надежд, что связывались с этой программой. К. Гедель показал следующее.

1) Всякая естественная, непротиворечивая формализация S арифметики или любой другой математической теории, содержащей арифметику (напр., теории множеств), неполная и непополняемые в том смысле, что: а) в S содержатся (содержательно истинные неразрешимые формулы, есть такие формулы А, ни А, ни отрицания А не виводими в S (неполнота формализованной арифметикы), б) какой бы конечным множеством дополнительных аксиом (напр., неразрешимыми в S формулам) расширять систему S, в новой, усиленной таким образом формальной системе неизбежно появятся свои неразрешимые формулы (непоповнюванисть; см. также Геделя теорема о неполноте).

2) Если формализованная арифметика действительности непротиворечива, то, хотя утверждение о ее непротиворечивость может быть выражено ее собственным языком, доведение этого утверждения невозможно провести средствами, формализуются в ней самой.

Это означает, что уже для арифметики принципиально невозможно исчерпать весь объем ее содержательно истинных суждений классом виводимих формул какой бы формальной системой и что нет никакой надежды получить какое-либо финитных доведение непротиворечивости арифметики, потому что, очевидно, всякое разумное уточнение понятия финитного доведение оказывается формализуемим в формальной арифметике.

Все это ставит определенные границы можливстям А. м. в том его виде, который он приобрел в рамках гильбертовського формализма. Однако и в этих границах он сыграл и продолжает играть важную роль в основании математики. Так, например, уже после описанных результатов К. Геделя им же в 1938-40 гг, а затем П. Коэном в 1963 г. на основе аксиоматического подхода с применением метода интерпретаций были получены фундаментальные результаты о совместимости (т.е. относительную непротиворечивость) и независимость аксиомы выбора и континуум-гипотезы в теории множеств. Что касается такого основного вопроса основ математики, как проблема непротиворечивости, и после результатов К. Геделя стало ясно, что для его решения, очевидно, не обойтись без других, отличных от финитистських, средств и идей. Здесь оказались возможными различные подходы, учитывая существование различных взглядов на допустимость тех или иных логических средств.

Из результатов о непротиворечивость формальных систем следует указать на доведение непротиворечивости формализованной арифметики, опирающегося на бесконечную индукцию к определенному счетно трансфинитной числа.

По П. С. Новиковым.

Аксиоматический метод впервые был успешно применен Евклидом для построения элементарной геометрии. С того времени этот метод претерпел значительную эволюцию, нашел многочисленные приложения не только в математике, но и во многих разделах точного естествознания (механика, оптика, электродинамика, теория относительности, космология и др.).

Развитие и совершенствование аксиоматического метода происходило по двум основным линиям: во-первых, обобщения самого метода и, во-вторых, разработки логической техники, используемой в процессе вывода теорем из аксиом. Чтобы яснее представить характер происшедших изменений, обратимся к первоначальной аксиоматике Евклида. Как известно, исходные понятия и аксиомы геометрии у него интерпретируются одним-единственным образом. Под точкой, прямой и плоскостью как основными понятиями геометрии подразумеваются идеализированные пространственные объекты, а сама геометрия рассматривается как учение о свойствах физического пространства. Постепенно выяснилось, что аксиомы Евклида оказываются верными не только для описания свойств геометрических, но и других математических и даже физических объектов. Так, если под точкой подразумевать тройку действительных чисел, под прямой, плоскостью - соответствующие линейные уравнения, то свойства всех этих негеометрических объектов будут удовлетворять геометрическим аксиомам Евклида. Еще более интересной является интерпретация этих аксиом с помощью физических объектов, например состояний механической и физико-химической системы или многообразия цветовых ощущений. Все это свидетельствует о том, что аксиомы геометрии можно интерпретировать с помощью объектов самой различной природы.

Такой абстрактный подход к аксиоматике в значительной мере был подготовлен открытием неевклидовых геометрий Н. И. Лобачевским, Я. Бойаи, К. Ф. Гауссом и Б. Риманом. Наиболее последовательное выражение новый взгляд на аксиомы как абстрактные формы, допускающие множество различных интерпретаций, нашел в известной работе Д. Гильберта «Основания геометрии» (1899г.). «Мы мыслим, - писал он в этой книге, - три различные системы вещей: вещи первой системы мы называем точками и обозначаем А, В, С,...; вещи второй системы мы называем прямыми и обозначаем а, b, с,...; вещи третьей системы мы называем плоскостями и обозначаем а, В, у,...». Отсюда видно, что под «точкой», «прямой» и «плоскостью» можно подразумевать любые системы объектов. Важно только, чтобы их свойства описывались соответствующими аксиомами. Дальнейший шаг на пути отвлечения от содержания аксиом связан с их символическим представлением в виде формул, а также точным заданием тех правил вывода, которые описывают, как из одних формул (аксиом) получаются другие формулы (теоремы). В результате этого содержательные рассуждения с понятиями на такой стадии исследования превращаются в некоторые операции с формулами по заранее предписанным правилам. Иначе говоря, содержательное мышление отображается здесь в исчислении. Аксиоматические системы подобного рода часто называют формализованными синтаксическими системами, или исчислениями.

Все три рассмотренных типа аксиоматизации находят применение в современной науке. К формализованным аксиоматическим системам прибегают главным образом при исследовании логических оснований той или иной науки. Наибольший размах такие исследования получили в математике в связи с обнаружением парадоксов теории множеств. Значительную роль формальные системы играют при создании специальных научных языков, с помощью которых удается максимальным образом устранить неточности обычного, естественного языка.

Некоторые ученые считают этот момент чуть ли не главным в процессе применения логико-математических методов в конкретных науках. Так, английский ученый И. Вуджер, являющийся одним из пионеров использования аксиоматического метода в биологии, полагает, что применение этого метода в биологии и других отраслях естествознания состоит в создании научно совершенного языка, в котором возможно исчисление. Основой для построения такого языка служит аксиоматический метод, выраженный в виде формализованной системы, или исчисления. В качестве алфавита формализованного языка служат исходные символы двух типов: логические и индивидуальные.

Логические символы отображают логические связи и отношения, общие для многих или большинства теорий. Индивидуальные символы обозначают объекты исследуемой теории, например математической, физической или биологической. Подобно тому как определенная последовательность букв алфавита образует слово, так и конечная совокупность упорядоченных символов образует формулы и выражения формализованного языка. Для отличия осмысленных выражений языка вводят понятие правильно построенной формулы. Чтобы закончить процесс построения искусственного языка, достаточно четко описать правила вывода или преобразования одних формул в другие и выделить некоторые правильно построенные формулы в качестве аксиом. Таким образом, построение формализованного языка происходит так же, как и построение содержательной аксиоматической системы. Поскольку содержательные рассуждения с формулами в первом случае недопустимы, то логический вывод следствий сводится здесь к выполнению точно предписанных операций обращения с символами и их комбинациями.

Главная цель использования формализованных языков в науке - критический анализ рассуждений, с помощью которых получается новое знание в науке. Поскольку в формализованных языках отображаются некоторые аспекты содержательных рассуждений, то они могут быть использованы также для оценки возможностей автоматизации интеллектуальной деятельности.

Абстрактные аксиоматические системы получили наибольшее применение в современной математике, для которой характерен чрезвычайно общий подход к предмету исследования. Вместо того чтобы говорить о конкретных числах, функциях, линиях, поверхностях, векторах и тому подобных объектах, современный математик рассматривает различные множества абстрактных объектов, свойства которых точно формулируются с помощью аксиом. Такие совокупности, или множества, вместе с описывающими их аксиомами теперь часто называют абстрактными математическими структурами.

Какие преимущества аксиоматический метод даст математике? Во-первых, он значительно расширяет границы применения математических методов и зачастую облегчает процесс исследования. При изучении конкретных явлений и процессов в той или иной области ученый может воспользоваться абстрактными аксиоматическими системами как готовыми орудиями анализа. Убедившись в том, что рассматриваемые явления удовлетворяют аксиомам некоторой математической теории, исследователь может без дополнительной трудоемкой работы сразу же воспользоваться всеми теоремами, которые следуют из аксиом. Аксиоматический подход избавляет специалиста конкретной науки от выполнения довольно сложного и трудного для него математического исследования.

Для математика этот метод дает возможность глубже понять объект исследований, выделить в нем главные направления, понять единство и связь разных методов и теорий. Единство, которое достигается с помощью аксиоматического метода, по образному выражению Н. Бурбаки, не есть единство, «которое дает скелет, лишенный жизни. Это питательный сок организма в полном развитии, податливый и плодотворный инструмент исследования...». Благодаря аксиоматическому методу, особенно в его формализованном виде, становится возможным полностью раскрыть логическую структуру различных теорий. В наиболее совершенном виде это относится к математическим теориям. В естественнонаучном знании приходится ограничиваться аксиоматизацией основного ядра теорий. Далее, применение аксиоматического метода дает возможность лучше контролировать ход наших рассуждений, добиваясь необходимой логической строгости. Однако главная ценность аксиоматизации, особенно в математике, состоит в том, что она выступает как метод исследования новых закономерностей, установления связей между понятиями и теориями, которые раньше казались обособленными друг от друга.

Ограниченное применение аксиоматического метода в естествознании объясняется прежде всего тем, что его теории постоянно должны контролироваться опытом.

В силу этого естественнонаучная теория никогда не стремится к полной законченности и замкнутости. Между тем в математике предпочитают иметь дело с системами аксиом, которые удовлетворяют требованию полноты. Но как показал К. Гёдель, всякая непротиворечивая система аксиом нетривиального характера не может быть полной.

Требование непротиворечивости системы аксиом гораздо существеннее требования их полноты. Если система аксиом будет противоречивой, она не будет представлять никакой ценности для познания. Ограничиваясь неполными системами, можно аксиоматизировать лишь основное содержание естественнонаучных теорий, оставляя возможность для дальнейшего развития и уточнения теории экспериментом. Даже такая ограниченная цель в ряде случаев оказывается весьма полезной, например для обнаружения некоторых неявных предпосылок и допущений теории, контроля полученных результатов, их систематизации и т.п.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития.

Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории. Таким образом, аксиоматический метод в большей мере, чем гипотетико-дедуктивный, приспособлен для исследования готового, достигнутого знания.

Анализ возникновения знания, процесса его формирования требует обращения к материалистической диалектике, как наиболее глубокому и всестороннему учению о развитии.