Атомный реактор на быстрых нейтронах. Рекордсмен на быстрых нейтронах

Сопровождающееся выделением температуры, в зависимости от конструктивных особенностей различают две их разновидности - реактор на быстрых нейтронах и медленных, иногда называемых тепловыми.

Нейтроны, выделившиеся в процессе реакции, обладают очень высокой начальной скоростью, теоретически преодолевая за секунду тысячи километров. Это - быстрые нейтроны. В процессе перемещения из-за столкновения с атомами окружающей материи их скорость замедляется. Одним из простых и доступных способов искусственно снизить скорость является размещение у них на пути воды или графита. Таким образом, научившись регулировать уровень этих частиц, человек получил возможность создать два типа реакторов. Свое название «тепловые» нейтроны получили благодаря тому, что скорость их перемещения после замедления практически соответствует естественной скорости внутриатомного теплового движения. В численном эквиваленте она составляет до 10 км в секунду. Для микромира это значение относительно низко, поэтому захват частиц ядрами происходит очень часто, вызывая новые витки деления (цепную реакцию). Следствием этого является необходимость в гораздо меньшем количестве делящегося вещества, чем не могут похвастаться реакторы на быстрых нейтронах. Кроме того, снижаются некоторые другие Данный момент как раз и объясняет, почему большинство работающих ядерных станций используют именно медленные нейтроны.

Казалось бы - если все просчитано, то зачем нужен реактор на быстрых нейтронах? Оказывается, не все так однозначно. Важнейшее преимущество таких установок - способность обеспечивать другие реакторы, а также создавать увеличенный цикл деления. Остановимся на этом более подробно.

Реактор на быстрых нейтронах более полно использует загруженное в активную зону топливо. Начнем по порядку. Теоретически, использовать в качестве горючего можно лишь два элемента: плутоний-239 и уран (изотопы 233 и 235). В природе встречается лишь изотоп U-235, но его совсем мало, чтобы говорить о перспективности такого выбора. Указанные уран и плутоний - это производные от тория-232 и урана-238, которые образуются в результате воздействия на них потока нейтронов. А вот уже эти два гораздо чаще встречаются в естественной форме. Таким образом, если бы удалось запустить самоподдерживающуюся цепную реакцию деления U-238 (или плутония-232) , то ее результатом стало бы возникновение новых порций делящегося вещества - урана-233 или плутония-239. При замедлении нейтронов до тепловой скорости (классические реакторы) такой процесс невозможен: топливом в них служат именно U-233 и Pu-239, а вот реактор на быстрых нейтронах позволяет выполнить такое дополнительное преобразование.

Процесс выглядит следующим образом: загружаем уран-235 или торий-232 (сырье), а также порцию урана-233 или плутония-239 (топливо). Последние (любой из них) обеспечивают поток нейтронов, необходимый для «зажигания» реакции в первых элементах. В процессе распада выделяется преобразуемая генераторами станции в электричество. Быстрые нейтроны воздействуют на сырье, преобразуя эти элементы в…новые порции топлива. Обычно количества сгоревшего и образовавшегося топлива равны, но если сырья загружено больше, то генерация новых порций делящегося материала происходит даже быстрее, чем расход. Отсюда второе название таких реакторов - размножители. Излишки топлива можно использовать в классических медленных разновидностях реакторов.

Недостаток моделей на быстрых нейтронах в том, что перед загрузкой уран-235 должен быть обогащен, что требует дополнительных финансовых вложений. Кроме того, сама конструкция активной зоны более сложна.

После пуска и успешной эксплуатации Первой в мире АЭС в 1955 году по инициативе И. Курчатова было принято решение о строительстве на Урале промышленной атомной электростанции с водо-водяным реактором канального типа. К особенностям этого типа реакторов относится перегрев пара до высоких параметров непосредственно в активной зоне, что открывало возможность для использования серийного турбинного оборудования.

В 1958 году в центре России в одном из живописнейших уголков уральской природы развернулось строительство Белоярской АЭС. Для монтажников эта станция началась еще в 1957 году, а так как в те времена тема атомных станций была закрыта, в переписке и жизни она называлась Белоярская ГРЭС. Начинали эту станцию работники треста «Уралэнергомонтаж». Их усилиями в 1959 году была создана база с цехом изготовления водопаропроводов (1 контур реактора), построено три жилых дома в поселке Заречный и начато возведение главного корпуса.

В 1959 году на строительстве появились работники треста «Центроэнергомонтаж», которым поручалось монтировать реактор. В конце 1959 года на строительство АЭС был перебазирован участок из Дорогобужа Смоленской области и монтажные работы возглавил В. Невский, будущий директор Белоярской АЭС. Все работы по монтажу тепломеханического оборудования были полностью переданы тресту «Центроэнергомонтаж».

Интенсивный период строительства Белоярской АЭС начался с 1960 года. В это время монтажникам пришлось вместе с ведением строительных работ осваивать новые технологии по монтажу нержавеющих трубопроводов, облицовок спецпомещений и хранилищ радиоактивных отходов, монтаж конструкций реактора, графитовую кладку, автоматическую сварку и т.д. Обучались на ходу у специалистов, которые уже принимали участие в сооружении атомных объектов. Перейдя от технологии монтажа тепловых электростанции к монтажу оборудования атомных электростанций, работники «Центроэнергомонтажа» успешно справились со своими задачами, и 26 апреля 1964 года первый энергоблок Белоярской АЭС с реактором АМБ-100 выдал первый ток в Свердловскую энергосистему. Это событие наряду с вводом в эксплуатацию 1-го энергоблока Нововоронежской АЭС означало рождение большой ядерной энергетики страны.

Реактор АМБ-100 стал дальнейшим усовершенствованием конструкции реактора Первой в мире атомной электростанции в Обнинске. Он представлял собой реактор канального типа с более высокими тепловыми характеристиками активной зоны. Получение пара высоких параметров за счет ядерного перегрева непосредственно в реакторе стало большим шагом вперед в развитии атомной энергетики. реактор работал в одном блоке с турбогенератором мощностью 100 МВт.

В конструктивном отношении реактор первого энергоблока Белоярской АЭС оказался интересен тем, что он создавался фактически бескорпусным, т. е, реактор не имел тяжелого многотонного прочного корпуса, как, скажем, аналогичный по мощности реактор водо-водяного типа ВВЭР с корпусом длиной 11-12 м, диаметром 3-3,5 м, толщиной стенок и днища 100-150 мм и более. Возможность строительства АЭС с реакторами бескорпусного канального типа оказалась весьма заманчивой, поскольку освобождала заводы тяжелого машиностроения от необходимости изготовления стальных изделий массой 200-500 т. Но осуществление ядерного перегрева непосредственно в реакторе оказалось связано с известными трудностями регулирования процесса, особенно в части контроля за его ходом, с требованием точности работы очень многих приборов, наличием большого количества труб различных размеров, находящихся под высоким давлением, и т. д.

Первый блок Белоярской АЭС достиг полной проектной мощности, однако из-за относительно небольшой установленной мощности блока (100 МВт), сложности его технологических каналов и, следовательно, дороговизны, стоимость 1 кВтч электроэнергии оказалось существенно выше, чем у тепловых станций Урала.

Второй блок Белоярской АЭС с реактором АМБ-200 был построен быстрее, без больших напряжений в работе, так как строительно-монтажный коллектив был уже подготовлен. Реакторная установка была значительно усовершенствована. Она имела одноконтурную схему охлаждения, что упростило технологическую схему всей АЭС. Так же как в первом энергоблоке, главная особенность реактора АМБ-200 выдаче пара высоких параметров непосредственно в турбину. 31 декабря 1967 года энергоблок № 2 был включен в сеть – этим было завершено сооружение 1-й очереди станции.

Значительная часть истории эксплуатации 1-й очереди БАЭС была наполнена романтикой и драматизмом, свойственными всему новому. В особенности это было присуще периоду освоения блоков. Считалось, что проблем в этом быть не должно – были прототипы от реактора АМ «Первой в мире» до промышленных реакторов для наработки плутония, на которых апробировались основные концепции, технологии, конструктивные решения, многие типы оборудования и систем, и даже значительная часть технологических режимов. Однако оказалось, что разница между промышленной АЭС и ее предшественниками настолько велика и своеобразна, что возникли новые, ранее неведомые проблемы.

Наиболее крупной и явной из них оказалась неудовлетворительная надежность испарительных и пароперегревательных каналов. После непродолжительного периода их работы появлялась разгерметизация твэлов по газу или течь теплоносителя с неприемлемыми последствиями для графитовой кладки реакторов, технологических режимов эксплуатации и ремонта, радиационного воздействия на персонал и окружающую среду. По научным канонам и расчетным нормативам того времени этого не должно было быть. Углубленные исследования этого нового явления заставили пересмотреть установившиеся представления о фундаментальных закономерностях кипения воды в трубах, так как даже при малой плотности теплового потока возникал неизвестный ранее вид кризиса теплообмена, который был открыт в 1979 году В.Е. Дорощуком (ВТИ) и впоследствии назван «кризис теплообмена II рода».

В 1968 году было принято решение о строительстве на Белоярской АЭС третьего энергоблока с реактором на быстрых нейтронах – БН-600. Научное руководство созданием БН-600 осуществлялось Физико-энергетическим институтом, проект реакторной установки был выполнен Опытным конструкторским бюро машиностроения, а генеральное проектирование блока осуществляло Ленинградское отделение «Атомэлектропроект». Строил блок генеральный подрядчик – трест «Уралэнергострой».

При его проектировании учитывался опыт эксплуатации реакторов БН-350 в г. Шевченко и реактора БОР-60. Для БН-600 была принята более экономичная и конструктивно удачная интегральная компоновка первого контура, в соответствии с которой активная зона реактора, насосы и промежуточные теплообменники размещаются в одном корпусе. Корпус реактора, имеющий диаметр 12,8 м и высоту 12,5 м, устанавливался на катковых опорах, закрепленных на фундаментной плите шахты реактора. Масса реактора в сборе составляла 3900 т., а общее количество натрия в установке превышает 1900 тонн. Биологическая защита была выполнена из стальных цилиндрических экранов, стальных болванок и труб с графитовым заполнителем.

Требования к качеству монтажных и сварочных работ для БН-600 оказались на порядок выше достигнутых ранее, и коллективу монтажников пришлось срочно переобучать персонал и осваивать новые технологии. Так в 1972 году при сборке корпуса реактора из аустенитных сталей на контроле просвечиванием крупных сварных швов впервые был применен бетатрон.

Кроме того, при монтаже внутрикорпусных устройств реактора БН-600 предъявлялись особые требования по чистоте, велась регистрация всех вносимых и выносимых деталей из внутриреакторного пространства. Это было обусловлено невозможностью в дальнейшем промывки реактора и трубопроводов с теплоносителем-натрием.

Большую роль в разработке технологии монтажа реактора сыграл Николай Муравьев, которого удалось пригласить на работу из Нижнего Новгорода, где он раньше работал в конструкторском бюро. Он являлся одним из разработчиков проекта реактора БН-600, и к тому времени уже находился на пенсии.

Коллектив монтажников успешно справился с поставленными задачами по монтажу блока на быстрых нейтронах. Заливка реактора натрием показала, что чистота контура была выдержана даже выше требуемой, так как температура застывания натрия, которая зависит в жидком металле от наличия посторонних загрязнений и окислов, оказалась ниже достигнутых на монтаже реакторов БН-350, БОР-60 в СССР и АЭС «Феникс» во Франции.

Успех работы монтажных коллективов на сооружении Белоярской АЭС во многом зависел от руководителей. Сначала это был Павел Рябуха, потом пришел молодой энергичный Владимир Невский, затем его сменил Вазген Казаров. В. Невский много сделал для становления коллектива монтажников. В 1963 году его назначили директором Белоярской АЭС, а в дальнейшем он возглавил «Главатомэнерго», где много трудился для становления атомной энергетики страны.

Наконец, 8 апреля 1980 г. состоялся энергетический пуск энергоблока № 3 Белоярской АЭС с реактором на быстрых нейтронах БН-600. Некоторые проектные характеристики БН-600:

  • электрическая мощность – 600 МВт;
  • тепловая мощность – 1470 МВт;
  • температура пара – 505 о С;
  • давление пара – 13,7 МПа;
  • термодинамический КПД брутто – 40,59 %.

Следует специально остановиться на опыте обращения с натрием в качестве теплоносителя. Он имеет неплохие теплофизические и удовлетворительные ядерно-физические свойства, хорошо совместим с нержавеющими сталями, двуокисью урана и плутония. Наконец, он не дефицитен и относительно недорог. Однако он весьма химически активен, из-за чего его применение потребовало решения, по крайней мере, двух серьезных задач: сведения к минимуму вероятности течи натрия из контуров циркуляции и межконтурных течей в парогенераторах и обеспечения эффективной локализации и прекращения горения натрия в случае го утечки.

Первая задача в целом довольно успешно была решена в стадии разработки проектов оборудования и трубопроводов. Весьма удачной оказалась интегральная компоновка реактора, при которой все основное оборудование и трубопроводы 1-го контура с радиоактивным натрием были «спрятаны» внутри корпуса реактора, и поэтому его утечка в принципе оказалась возможной только из немногочисленных вспомогательных систем.

И хотя БН-600 сегодня является самым крупным энергоблоком с реактором на быстрых нейтронах в мире, Белоярская АЭС не входит в число атомных станций с большой установленной мощностью. Ее отличия и достоинства определяются новизной и уникальностью производства, его целей, технологии и оборудования. Все реакторные установки БелАЭС были предназначены для опытно-промышленного подтверждения или отрицания заложенных проектировщиками и конструкторами технических идей и решений, исследования технологических режимов, конструкционных материалов, тепловыделяющих элементов, управляющих и защитных систем.

Все три энергоблока не имеют прямых аналогов ни у нас в стране, ни за рубежом. В них были воплощены многие из идей перспективного развития ядерной энергетики:

  • сооружены и освоены энергоблоки с канальными водографитовыми реакторами промышленных масштабов;
  • применены серийные турбоустановки высоких параметров с КПД теплосилового цикла от 36 до 42 %, чего не имеет ни одна АЭС в мире;
  • применены ТВС, конструкция которых исключает возможность попаданий осколочной активности в теплоноситель даже при разрушении твэлов;
  • в первом контуре реактора 2-го блока применены углеродистые стали;
  • в значительной мере освоена технология применения и обращения с жидкометаллическим теплоносителем;

Белоярской АЭС первой из атомных электростанций России столкнулась на практике с необходимостью решения задачи вывода из эксплуатации отработавших ресурс реакторных установок. Развитие этого весьма актуального для всей атомной энергетики направления деятельности из-за отсутствия организационно-нормативной документальной базы и нерешенности вопроса финансового обеспечения имело длительный инкубационный период.

Более чем 50-летний период эксплуатации Белоярской АЭС имеет три достаточно выраженных этапа, каждому из которых были присущи свои направлений деятельности, специфические трудности ее осуществления, успехи и разочарования.

Первый этап (с 1964 года до середины 70-х гг.) был всецело связан с пуском, освоением и достижением проектного уровня мощности энергоблоков 1-й очереди, множеством реконструктивных работ и решением проблем, связанных с несовершенством проектов блоков, технологических режимов и обеспечением устойчивой работы топливных каналов. Все это потребовало от коллектива станции огромных физических и интеллектуальных усилий, которые, к сожалению, не увенчались уверенностью в правильности и перспективности выбора уран-графитовых реакторов с ядерным перегревом пара для дальнейшего развития атомной энергетики. Однако наиболее существенная часть накопленного опыта эксплуатации 1-й очереди была учтена проектировщиками и конструкторами при создании уран-графитовых реакторов последующего поколения.

Начало 70-х годов связано с выбором для дальнейшего развития атомной энергетики страны нового направления – реакторных установок на быстрых нейтронах с последующей перспективой строительства нескольких энергоблоков с реакторами-размножителями на смешанном уран-плутониевом топливе. При определении места строительства первого опытно-промышленного блока на быстрых нейтронах выбор пал на Белоярскую АЭС. Существенное влияние на этот выбор оказало признание способностей коллективов строителей, монтажников и персонала станции должным образом построить этот уникальный энергоблок и в дальнейшем обеспечить его надежную эксплуатацию.

Это решение обозначило второй этап в развитии Белоярской АЭС, которым большей своей частью был завершен с решением Государственной комиссии о приемке законченного строительства энергоблока с реактором БН-600 с редко применяемой в практике оценкой «отлично».

Обеспечение качественного выполнения работ этого этапа было поручено лучшим специалистам как у подрядчиков по строительству и монтажу, так и из состава эксплуатационного персонала станции. Персонал станции приобрел большой опыт в наладке и освоении оборудования АЭС, что было активно и плодотворно использовано в ходе пусконаладочных работ на Чернобыльской и Курской АЭС. Особо следует сказать о Билибинской АЭС, на которой кроме пуско-наладочных работ был выполнен глубокий анализ проекта, на базе которого был внесен ряд значительных усовершенствований.

С пуском в эксплуатацию третьего блока начался третий этап существования станции, продолжающийся уже более 35 лет. Целями этого этапа было достижение проектных показателей блока, подтверждение практикой жизнеспособности конструктивных решений и приобретение опыта эксплуатации для последующего учета в проекте серийного блока с реактором-размножителем. Все эти цели к настоящему времени успешно достигнуты.

Концепции обеспечения безопасности, заложенные в проекте блока, в целом подтвердились. Так как точка кипения натрия почти на 300 о С превышает его рабочую температуру, реактор БН-600 работает почти без давления в корпусе реактора, который стало возможным изготовить из высокопластичной стали. Это практически исключает возможность возникновения быстроразвивающихся трещин. А трехконтурная схема передачи тепла от активной зоны реактора с увеличением давления в каждом последующем контуре полностью исключает возможность попадания радиоактивного натрия 1-го контура во второй (не радиоактивный) и тем более – в пароводяной третий контур.

Подтверждением достигнутого высокого уровня безопасности и надежности БН-600 является выполненный после аварии на Чернобыльской АЭС анализ безопасности, который не выявил необходимости каких-либо технических усовершенствований срочного характера. Статистика срабатывания аварийных защит, аварийных отключений, неплановых снижений рабочей мощности и других отказов показывает, что реактор БН-6ОО находится, по крайней мере, в числе 25 % лучших ядерных блоков мира.

По итогам ежегодного конкурса Белоярская АЭС в 1994, 1995, 1997 и 2001 гг. удостаивалась звания «Лучшая АЭС России».

В предпусковой стадии находится энергоблок № 4 с реактором на быстрых нейтронах БН-800. Новый 4-й энергоблок с реактором БН-800 мощностью 880 МВт 27 июня 2014 года был выведен на минимальный контролируемый уровень мощности. Энергоблок призван существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счёт организации замкнутого ядерно-топливного цикла.

Рассматривается возможность дальнейшего расширения Белоярской АЭС энергоблоком № 5 с быстрым реактором мощностью 1200 МВт – головного коммерческого энергоблока для серийного строительства.

Тем не менее, в декабре 2017 года стартовало строительство гораздо большего энергоблока CFR-600, который является аналогом БН-800 по идеологии и даже конструкции некоторых элементов (например парогенераторов, что дало повод слухам, что и здесь в проектировании не обошлось без России). Такая спешка со строительством объясняется конкуренцией с другими быстрыми программами, о которой ниже. Опытно-промышленный CFR-600, который хотят пустить в 2023 году должен открыть дорогу массовому строительству 1200-мегаваттных CCFR, которые и будут решать задачу топливообеспечения и уменьшения количества ОЯТ - в общем планы тут традиционная китайская копипаста французских и/или советских.


Секционно-модульное исполнение второго контура CFR-600 намекает на его близость к советской/российской линейке БН. Так же есть мысль, что наличие всего двух петель (а не 3 или 4) означает, что потом этот дизайн вырастет в мощности до 900 или 1200 мегаватт.


Однако на одной натриевой “классике” Китай не останавливается, и с каждым годом все больше денег вкладывает в альтернативы. Лучше всего известно о свинцово-висмутовом проекте , первый из которых представляет сборку 0 мощности (или критсборку, позволяющую исследовать вопросы нейтронно-физических характеристик будущего реактора), а второй - проект 10 мегаваттного(т) реактора с внешним нейтронным приводом (ADS-система). Ходят слухи о военных применениях этой разработки.


Кроме того, Китай в 2017 году поймал удачу за хвост - договорился с американской Terra Power о строительстве быстрого натриевого реактора TWR-300 на территории поднебесной. Terra Power, долгое время финансируемая Биллом Гейтсом (но в последнее время лишившаяся этих денег) в свое время собрала сильнейших американских разработчиков быстрых реакторов под своим крылом, и если проект 300-мегаваттного (электрических) реактора будет реализован - это будет важный впрыск американского опыта в китайскую программу.


Концептуальное изображение TWR-300 напоминает классические быстрые натриевые реакторы Phenix или БН-600, однако в конструкции активной зоны вполне может скрываться множество "фишек".


Наконец, Китай активно развивает тему жидкосолевых реакторов, впрочем тут до конца не известно, идет ли речь о реакторах с замедлителем или все же быстрых. Думается, в пределе нескольких лет эта тема станет яснее. Жидкосолевые реакторы часто рассматриваются в рамках большого парка БН с ЗЯТЦ как “дожигатели”, реализующие трансмутацию минорных актиноидов и долгоживущих продуктов деления, тем самым окончательно решая проблему невероятно длинных сроков выдержки ОЯТ или остатков от переработки ОЯТ.


***

Ну вот мы и добрались до Российской быстрой программы. В России и в 2015 и в 2018 году для разработчиков быстрых реакторов одни из самых лучших в мире условий: есть большой парк экспериментальных и промышленных реакторов, есть финансирование программ, оператор АЭС заинтересован во внедрении быстрых реакторов хотя бы для сжигания плутония, который будет образовываться при переработке ОЯТ ВВЭР.



В России продолжаются строится гражданские быстрые реакторы - на фото стройка 150 мегаваттного

Казалось бы, в таких условиях мы давно уже должны были увидеть вытеснение новых ВВЭР-строек БН/БРЕСТ-стройками.


Однако, не все так радужно. Вырвавшись в лидеры в мире, быстрая программа России столкнулась с тремя проблемами: снижение мотивации что-то делать, внутренняя конкуренция и снижение финансирования.


Первой жертвой этих проблем стал проект СВБР-100 . Как известно, тяжелометаллические теплоносители для быстрых реакторов имеют некоторые плюсы перед натрием (и натрий-калием): негорючесть и инертность при взаимодействии с воздухом и водой, высокую температуру кипения, хорошие нейтронно-физические качества. Проект “Свинцово-висмутовый быстрый реактор” должен был использовать имеющийся опыт работы с свинцово-висмутовой эвтектикой (свинцово-висмутовые реакторы в количестве 7 штук эксплуатировались ВМФ СССР, и как минимум 1 опытный реактор работал на суше).



Реакторная установка СВБР-100 (в центре), второй контур (парогенераторы внутри реактора, снаружи сепараторы)

При этом, для разведения проектов быстрых реакторов по “разным углам”, Росатом привлек к финансированию разработки фирму “En+ ” Олега Дерипаски, а сам реактор решили сделать малым и в перспективе модульным с целью занять соответствующую нишу (вообще я хочу написать подробный рассказ про историю этого проекта). К 2016 году проект дошел до стадии, когда стала понятна стоимость сооружения и значит - цена киловатт*часа. Стоимость и цена получались запредельно высокими (100+ долларов за МВт*ч), без возможности отбиться на рынке России, да и в мире было не так много мест, где хотя бы потенциально этот проект бы отбивался. Разработчики от Росатома и Дерипаски кулуарно обвиняли друг друга в неумении проектировать малые АЭС, но так или иначе - проект был заморожен и пребывает в этом состоянии до сих пор. Такой “некомандный” подход, думается, надолго отбил желание у частных инвесторов вкладывать деньги в совместные с Росатомом проекты.


Оставшиеся две ветки - БРЕСТ и БН, хотя формально и были объединены в один проект “Прорыв”, смертельно воевали друг с другом за место под финансовым солнцем. В частности, флагманский БН-1200, который должен был вобрать в себя весь опыт натриевых быстрых реакторов и приблизиться по цене к ВВЭР-1200 регулярно подвергался критике и отправлялся на доработки, где пребывает до сих пор. Хотя, по сути, если заказчику (например концерну Росэнергоатом) нужен быстрый энергетический реактор, альтернативы БН-1200 у него нет, рефреном звучала мысль, что нужно построить БРЕСТ и БН и сравнить их. А поскольку БН-800 у нас уже есть, то возможно не стоит строить и новый.



Кстати, мало кто знает, но вплотную с ПО "Маяк" располагается площадка Южно-Уральской АЭС с двумя котлованами под БН-800, строительство которых было остановлено в начале 90х годов.

Впрочем, годы доработок БН-1200 привели к довольно удивительному результату. Проект был фантастически оптимизирован по строительным объемам, металлоемкости реакторной установки, количеству арматуры и т.п. и сейчас позиционируется, как равный по строительной стоимости с ВВЭР-1200. Равный на бумаге, но с учетом того, что БН-800 обошелся в почти в полтора раза дороже ВВЭР-1200 в расчете на мегаватт, это большое достижение. В итоге, хотя решение о строительстве блока БН-1200 не принято, и в условиях значительного сокращения инвестиций в строительство новых энергоблоков АЭС в России принять его будет крайне сложно, позиции натриевой классики как никогда сильны. Видимо, следующей важной точкой будет освоение МОКС-топлива на БН-800, т.к. именно оно планируется основным в текущем проекте БН-1200. Но тем не менее, сияя невероятной перспективностью, сегодня БН-1200 - бумажный проект.




Проект БН-1200 (теперь он БН-1200М) удалось фантастически ужать в размерах и удельных расходах. Главное, что бы за это не пришлось заплатить тяжелую цену эксплуатации.

БРЕСТ-300-ОД в то же время провел эти три года в тяжелых позиционных боях, постепенно теряя финансирование и позиции. Хотя в 2014 году началось строительство модуля фабрикации топлива (одна из трех единиц БРЕСТ наряду с реактором и модулем переработки топлива) и сегодня эта очередь почти достроена и даже начат кое-какой монтаж оборудования фабрикации, дальнейшее строительство так и не началось. В том числе, на лабораторной стадии вскрылось, что получить нужные характеристики от пиропереработки ОЯТ не удается, а значит надо менять проект модуля переработки (довольно существенно - вводить большое хранилище для выдержки ОЯТ, цех PUREX и т.п.), хотя бы пока ученые не доведут пиро.


Одной из проблематичных особенностей свинцовых теплоносителей является шлакообразование/коррозия сталей. Оба процесса запускаются "неправильной" концентрацией кислорода в теплоносителе, которую надо удерживать в пределе 10^-5...10^-6 массовых процентов. Можно ли это технически в объеме десятков кубометров разогретого бурлящего свинца - никто не знает доподлинно.

Укрепилась критика и проекта реактора, т.к. даже весьма обширный НИОКР БРЕСТ с многочисленными стендами не может перепрыгнуть отсутствие хотя бы маленького, но реализующего все проблемные эффекты реактора. При этом на стендах всплыли некоторые неприятные особенности, которыми реальность всегда отличается от идей: насосы разрушались в свинцовом потоке, обеспечить точно заданную концентрацию кислорода в большом объеме свинца оказалось как минимум “очень непросто” и т.п.


Сегодня БРЕСТ остается в подвешенном состоянии. Модуль фабрикации, видимо, будет достроен и запущен, а вот на дальнейшее денег пока нет, и неясно - появятся ли. Как будто отражая вечное российское следование за европейскими странами, проекты превращаются в бесконечные и бесцельные процессы.



Стройплощадка БРЕСТ-300-ОД по состоянию на лето 2018 года. Кроме совсем вспомогательных зданий построен административно-бытовой комплекс, санпропускник (2 здания внизу и по центру) и комплекс модуля фабрикации-рефабрикации и зданий по обращению с радиоактивными отходами (справа вверху). Реактор планировался к строительству в пустом месте слева вверху.


Однако во всем этом сомне бредущих в тумане есть одно яркое пятно. Это исследовательский реактор МБИР. Его задача - замена БОР-60, который доживает последние годы. Этот реактор сооружается в НИИАР, рядом со своим предшественником, и хотя так же как и БРЕСТ, не получил пока финансирования на полное сооружение (в частности, не согласованы деньги на второй контур, турбину и научную часть), не очень большой масштаб проекта скорее всего позволит эти деньги получить либо от государства, либо от заинтересованных разработчиков со всего мира. На данный момент это единственный гражданский быстрый реактор, сооружаемый в России.


***

В сложившейся ситуации, когда у быстрых программ нет коммерческих потребителей, а государственный интерес капризен и непостоянен, наличие современного быстрого реактора помогает сохранить эту технологическую ветвь от забвения и кто знает - может быть в какой-то момент общество снова станет благосклонным к атомной энергетике, а той, в свою очередь понадобятся быстрые реакторы и замыкание топливного цикла.

Академик Ф. Митенков, научный руководитель ФГУП "Опытное конструкторское бюро машиностроения" им. И. И. Африкантова (г. Нижний Новгород).

Академик Федор Михайлович Митенков был удостоен премии "Глобальная энергия" 2004 года за разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах (см. "Наука и жизнь" №8, 2004 г.). Исследования, проведенные лауреатом, и их практическое воплощение в действующие реакторные установки БН-350, БН-600, строящуюся БН-800 и проектируемую БН-1800, открывают человечеству новое, перспективное направление развития атомной энергетики.

Белоярская АЭС с реактором БН-600.

Академик Ф. М. Митенков на церемонии вручения премии "Глобальная энергия" в июне 2004 года.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Принципиальная схема реактора на быстрых нейтронах БН-350.

Принципиальная схема быстрого энергетического реактора БН-600.

Центральный зал реактора БН-600.

Реактор на быстрых нейтронах БН-800 имеет электрическую мощность 880 МВт, тепловую 1,47 ГВт. При этом его конструкция обеспечивает полную безопасность как при нормальной работе, так и при любой мыслимой аварии.

Наука и жизнь // Иллюстрации

Потребление энергии - важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность и благосостояние населения любой страны. Рост энергопотребления всегда сопровождал развитие человеческого общества, но особенно стремительным он был на протяжении ХХ века: потребление энергии увеличилось почти в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающихся странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь ее наиболее универсального вида - электричества. К середине XXI века прогнозируется удвоение мирового энергопотребления и утроение потребления электроэнергии.

Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, порождает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.

Поэтому в не столь уж отдаленном будущем человечество будет вынуждено перейти на использование альтернативных "безуглеродных" технологий производства энергии, которые позволят в течение длительного времени надежно удовлетворять растущие потребности в энергии без недопустимых экологических последствий. Однако приходится признать, что известные на сегодня возобновляемые источники энергии - ветровой, солнечной, геотермальной, приливной и др. - по своим потенциальным возможностям не могут служить для крупномасштабного энергопроизводства (см. "Наука и жизнь" № 10, 2002 г. - Прим. ред. ). А весьма многообещающая технология управляемого термоядерного синтеза все еще находится на стадии исследований и создания демонстрационного ядерного реактора (см. "Наука и жизнь"№8, 2001 г. ,№9, 2001 г. - Прим. ред. ).

По мнению многих специалистов, к числу которых относится и автор настоящей статьи, реальным энергетическим выбором человечества в XXI веке станет широкое использование ядерной энергии на основе реакторов деления. Атомная энергетика могла бы уже сейчас взять на себя значительную часть прироста мировых потребностей в топливе и энергии. Сегодня она обеспечивает около 6% мирового потребления энергии, в основном электрической, где ее доля составляет около 18% (в России - около 16%).

Для более широкого использования ядерной энергии, с тем чтобы она стала основным базовым источником энергии уже в текущем столетии, необходимы несколько условий. Прежде всего, атомной энергетике нужно отвечать требованиям гарантированной безопасности для населения и окружающей среды, а природным ресурсам для производства ядерного топлива - обеспечивать функционирование "большой" атомной энергетики по меньшей мере в течение нескольких столетий. И, кроме того, по технико-экономические показателям атомная энергетика должна не уступать лучшим источникам энергии на углеводородном топливе.

Посмотрим, насколько современная атомная энергетика отвечает этим требованиям.

О гарантированной безопасности атомной энергетики

Вопросы безопасности атомной энергетики с момента ее зарождения рассматривались и достаточно эффективно решались системно и на научной основе. Однако в период ее становления все-таки возникали аварийные ситуации с недопустимыми выбросами радиоактивности, в том числе две крупномасштабные аварии: на АЭС "Три Майл Айленд" (США) в 1979 году и на Чернобыльской АЭС (СССР) в 1986-м. В связи с этим мировое сообщество ученых и специалистов-атомщиков под эгидой Международного агентства по атомной энергии (МАГАТЭ) разработало рекомендации, соблюдение которых практически исключает недопустимые воздействия на окружающую среду и население при любых физически возможных авариях на АЭС. Они, в частности, предусматривают: если в проекте с достоверностью не обосновано, что расплавление активной зоны реактора исключается, возможность такой аварии необходимо учитывать и доказывать, что предусмотренные в конструкции реактора физические барьеры гарантированно исключают недопустимые последствия для окружающей среды. Рекомендации МАГАТЭ вошли составной частью в национальные нормативы по безопасности атомной энергетики многих стран мира. Некоторые инженерные решения, обеспечивающие безопасность эксплуатации современных реакторов, описаны ниже на примере реакторов БН-600 и БН-800.

Ресурсная база для производства ядерного топлива

Специалистам-атомщикам известно, что существующая технология атомной энергетики, основанная на так называемых "тепловых" ядерных реакторах с водяным или графитовым замедлителем нейтронов, не может обеспечить развития крупномасштабной атомной энергетики. Это связано с низкой эффективностью использования природного урана в таких реакторах: используется только изотоп U-235, содержание которого в природном уране составляет всего лишь 0,72%. Поэтому долговременная стратегия развития "большой" атомной энергетики предполагает переход к прогрессивной технологии замкнутого топливного цикла, основанной на использовании так называемых быстрых ядерных реакторов и переработке топлива, выгруженного из реакторов атомных станций, для последующего возврата в энергетический цикл невыгоревших и вновь образовавшихся делящихся изотопов.

В "быстром" реакторе бoльшую часть актов деления ядерного топлива вызывают быстрые нейтроны с энергией более 0,1 МэВ (отсюда и название "быстрый" реактор). При этом в реакторе происходит деление не только очень редкого изотопа U-235, но и U-238 - основной составляющей природного урана (~99,3%), вероятность деления которого в спектре нейтронов "теплового реактора" очень низка. Принципиально важно, что в "быстром" реакторе при каждом акте деления ядер образуется большее количество нейтронов, которые могут быть использованы для интенсивного превращения U-238 в делящийся изотоп плутония Pu-239. Это превращение происходит в результате ядерной реакции:

Нейтронно-физические особенности быстрого реактора таковы, что процесс образования в нем плутония может иметь характер расширенного воспроизводства, когда в реакторе образуется вторичного плутония больше, чем выгорает первоначально загруженного. Процесс образования избыточного количества делящихся изотопов в ядерном реакторе получил название "бридинг" (от англ. breed - размножать). С этим термином связано принятое в мире название быстрых реакторов с плутониевым топливом - реакторы-бридеры, или размножители.

Практическая реализация процесса бридинга имеет принципиальное значение для будущего атомной энергетики. Дело в том, что такой процесс дает возможность практически полностью использовать природный уран и тем самым почти в сто раз увеличить "выход" энергии из каждой тонны добытого природного урана. Это открывает путь к практически неисчерпаемым топливным ресурсам атомной энергетики на длительную историческую перспективу. Поэтому общепризнано, что использование бридеров - необходимое условие создания и функционирования атомной энергетики большого масштаба.

После того как в конце 1940-х годов была осознана принципиальная возможность создания быстрых реакторов-размножителей, в мире начались интенсивные исследования их нейтронно-физических характеристик и поиски соответствующих инженерных решений. В нашей стране инициатором исследований и разработок по быстрым реакторам стал академик Украинской академии наук Александр Ильич Лейпунский, который до своей кончины в 1972 году был научным руководителем обнинского Физико-энергетического института (ФЭИ).

Инженерные сложности создания быстрых реакторов связаны с целым рядом присущих им особенностей. К их числу относятся: большая энергонапряженность топлива; необходимость обеспечить его интенсивное охлаждение; высокие рабочие температуры теплоносителя, элементов конструкции реактора и оборудования; радиационные повреждения конструкционных материалов, вызванные интенсивным облучением быстрыми нейтронами. Для решения этих новых научно-технических задач и отработки технологии быстрых реакторов потребовалось развитие крупномасштабной научно-исследовательской и опытно-экспериментальной базы с уникальными стендами, а также создание в 1960-1980-е годы целого ряда экспериментальных и демонстрационных энергетических реакторов этого типа в России, США, во Франции, в Великобритании и Германии. Примечательно, что во всех странах в качестве охлаждающей среды - теплоносителя - для быстрых реакторов был выбран натрий, несмотря на то, что он активно реагирует с водой и водяным паром. Решающими достоинствами натрия как теплоносителя стали его исключительно хорошие теплофизические свойства (высокая теплопроводность, большая теплоемкость, высокая температура кипения), низкие затраты энергии на циркуляцию, пониженное коррозионное воздействие на конструкционные материалы реактора, относительная простота его очистки в процессе эксплуатации.

Первый отечественный демонстрационный энергетический реактор на быстрых нейтронах БН-350 тепловой мощностью 1000 МВт был введен в строй в 1973 году на восточном побережье Каспийского моря (см. "Наука и жизнь" № 11, 1976 г. - Прим. ред. ). Он имел традиционную для атомной энергетики петлевую схему передачи теплоты и паротурбинный комплекс для преобразования тепловой энергии. Часть тепловой мощности реактора использовалась для выработки электроэнергии, остальная шла на опреснение морской воды. Одна из отличительных особенностей схемы этой и последующих реакторных установок с натриевым теплоносителем - наличие промежуточного контура передачи теплоты между реактором и пароводяным контуром, продиктованное соображениями безопасности.

Реакторная установка БН-350, несмотря на сложность ее технологической схемы, успешно работала с 1973 по 1988 год (на пять лет дольше проектного времени) в составе Мангышлакского энергетического комбината и завода опреснения морской воды в г. Шевченко (ныне - Актау, Казахстан).

Большая разветвленность натриевых контуров в реакторе БН-350 вызывала беспокойство, поскольку в случае их аварийной разгерметизации мог возникнуть пожар. Поэтому, не дожидаясь пуска реактора БН-350, в СССР началось проектирование более мощного быстрого реактора БН-600 интегральной конструкции, в котором натриевые трубопроводы большого диаметра отсутствовали и почти весь радиоактивный натрий первого контура был сосредоточен в корпусе реактора. Это позволило практически полностью исключить опасность разгерметизации первого натриевого контура, снизить пожарную опасность установки, повысить уровень радиационной безопасности и надежности реактора.

Реакторная установка БН-600 надежно работает с 1980 года в составе третьего энергоблока Белоярской АЭС. Сегодня это самый мощный из действующих в мире реакторов на быстрых нейтронах, который служит источником уникального эксплуатационного опыта и базой для натурной отработки усовершенствованных конструкционных материалов и топлива.

Во всех последующих проектах реакторов этого типа в России, так же как и в большинстве проектов коммерческих быстрых реакторов, разработанных за рубежом, используется интегральная конструкция.

Обеспечение безопасности быстрых реакторов

Уже при проектировании первых энергетических реакторов на быстрых нейтронах большое внимание уделялось вопросам обеспечения безопасности как при их нормальной работе, так и при аварийных ситуациях. Направления поиска соответствующих проектных решений определялись требованием исключить недопустимые воздействия на окружающую среду и население за счет внутренней самозащищенности реактора, применения эффективных систем локализации потенциально возможных аварий, ограничивающих их последствия.

Самозащищенность реактора основана в первую очередь на действии отрицательных обратных связей, стабилизирующих процесс деления ядерного топлива при повышении температуры и мощности реактора, а также на свойствах используемых в реакторе материалов. Для иллюстрации внутренне присущей быстрым реакторам безопасности укажем некоторые их особенности, связанные с использованием в них натриевого теплоносителя. Высокая температура кипения натрия (883oС при нормальных физических условиях) позволяет поддерживать в корпусе реактора давление, близкое к атмосферному. Это упрощает конструкцию реактора и повышает его надежность. Корпус реактора не подвергается в процессе работы большим механическим нагрузкам, поэтому его разрыв еще менее вероятен, чем в существующих реакторах с водой под давлением, где он относится к классу гипотетических. Но даже такая авария в быстром реакторе не представляет опасности с точки зрения надежного охлаждения ядерного топлива, поскольку корпус окружен герметичным страховочным кожухом, а объем возможной утечки натрия в него незначителен. Разгерметизация трубопроводов с натриевым теплоносителем в быстром реакторе интегральной конструкции также не приводит к опасной ситуации. Поскольку теплоемкость натрия достаточно велика, даже при полном прекращении отвода тепла в пароводяной контур температура теплоносителя в реакторе будет повышаться со скоростью примерно 30 градусов в час. При нормальной работе температура теплоносителя на выходе из реактора составляет 540oС. Значительный запас температуры до закипания натрия дает резерв времени, достаточный, чтобы принять меры, ограничивающие последствия подобной маловероятной аварии.

В проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, приняты дополнительные меры, обеспечивающие сохранение герметичности реактора и исключающие недопустимые воздействия на окружающую среду, даже при гипотетической крайне маловероятной аварии с расплавлением активной зоны реактора.

Блочный щит управления реактора БН-600.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было ни аварий со сверхнормативными выбросами радиоактивности, ни облучения персонала и тем более местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, ими легко управлять. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует его пожароопасность. Утечки и горение натрия персонал уверенно обнаруживает, а их последствия надежно ликвидирует. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии со стороны.

Технико-экономические показатели быстрых реакторов

Особенности натриевой технологии, повышенные меры безопасности, консервативный выбор проектных решений первых реакторов - БН-350 и БН-600 стали причинами более высокой их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако их создавали главным образом для проверки работоспособности, безопасности и надежности быстрых реакторов. Эта задача и была решена их успешной эксплуатацией. При создании следующей реакторной установки - БН-800, предназначенной для массового использования в атомной энергетике, больше внимания уделили технико-экономическим характеристикам, и в результате по удельным капитальным затратам удалось существенно приблизиться к ВВЭР-1000 - основному типу отечественных энергетических реакторов на медленных нейтронах.

К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал дальнейшего технико-экономического совершенствования. К основным направлениям улучшения их экономических характеристик при одновременном повышении уровня безопасности относятся: повышение единичной мощности реактора и основных компонентов энергоблока, совершенствование конструкции основного оборудования, переход на закритические параметры пара с целью увеличения термодинамического кпд цикла преобразования тепловой энергии, оптимизация системы обращения со свежим и отработавшим топливом, увеличение глубины выгорания ядерного топлива, создание активной зоны с высоким внутренним коэффициентом воспроизводства (КВ) - до 1, увеличение срока службы до 60 лет и более.

Совершенствование отдельных видов оборудования, как показали конструкторские проработки, выполненные в ОКБМ, может оказать весьма существенное влияние на улучшение технико-экономических показателей и реакторной установки, и энергоблока в целом. Например, проработки по совершенствованию системы перегрузки перспективного реактора БН-1800 показали возможность значительного уменьшения металлоемкости этой системы. Замена модульных парогенераторов на корпусные оригинальной конструкции позволяет значительно уменьшить их стоимость, а также площадь, объем и материалоемкость парогенераторного отделения энергоблока.

Как влияет мощность реактора и технологическое совершенствование оборудования на металлоемкость и уровень капитальных затрат, можно видеть из таблицы.

Совершенствование быстрых реакторов, естественно, потребует определенных усилий со стороны промышленных предприятий, научных и проектных организаций. Так, для увеличения глубины выгорания ядерного топлива предстоит разработать и освоить производство конструкционных материалов активной зоны реактора, более стойких к нейтронному облучению. Работы в этом направлении в настоящее время ведутся.

Быстрые реакторы могут служить не только для получения энергии. Потоки нейтронов высокой энергии способны эффективно "сжигать" наиболее опасные долгоживущие радионуклиды, образующиеся в отработавшем ядерном топливе. Это имеет принципиальное значение для решения проблемы обращения с радиоактивными отходами атомной энергетики. Дело в том, что период полураспада некоторых радионуклидов (актиноидов) намного превышает научно обоснованные сроки стабильности геологических формаций, которые рассматриваются в качестве мест окончательного захоронения радиоактивных отходов. Поэтому, применив замкнутый топливный цикл с выжиганием актиноидов и трансмутацией долгоживущих продуктов деления в короткоживущие, можно радикально решить проблему обезвреживания отходов атомной энергетики и многократно уменьшить объем радиоактивных отходов, подлежащих захоронению.

Перевод атомной энергетики, наряду с "тепловыми" реакторами, на быстрые реакторы-бридеры, а также на замкнутый топливный цикл позволит создать безопасную энергетическую технологию, в полной мере отвечающую требованиям устойчивого развития человеческого общества.

Многие специалисты сегодня считают, что будущим ядерной энергетики являются реакторы на быстрых нейтронах. Одним из пионеров в освоении этой технологии является Россия, где уже 30 лет без серьезных происшествий работает реактор на быстрых нейтронах БН-600 на Белоярской АЭС, там же строится реактор БН-800 и планируется создание коммерческого реактора БН-1200. Опыт эксплуатации АЭС на быстрых нейтронах имеется у Франции и Японии, рассматриваются планы строительства АЭС на быстрых нейтронах в Индии и Китае. Спрашивается, почему же в стране с очень высокоразвитой ядерной энергетикой – в США – практических программ по развитию энергетики на быстрых нейтронах не наблюдается?

На самом деле такой проект в США был. Речь идет о проекте реактора-бридера Клинч Ривер (по английски - The Clinch River Breeder Reactor, сокращенно CRBRP). Целью этого проекта были разработка и создание натриевого реактора на быстрых нейтронах, который должен был быть демонстрационным прототипом для следующего класса аналогичных американских реакторов под названием LMFBR (сокращение от фразы Liquid Metal Fast Breeder Reactors – жидкометаллический быстрый реактор). При этом реактор Клинч-Ривер задумывался как существенный шаг на пути к освоению технологии жидкометаллических быстрых реакторов с целью их коммерческого использования в электроэнергетике. Местом размещения реактора Клинч-Ривер должен был стать участок площадью 6 км 2 , административно входящий в состав города Оук-Ридж в штате Теннесси.

Реактор должен был иметь тепловую мощность 1000 Мвт и электрическую мощность в интервале 350-380 МВт. Топливом для него должны были быть 198 шестигранных сборок, собранных в форме цилиндра с двумя зонами обогащения топлива. Внутренняя часть реактора должна была состоять из 108 сборок, содержащих плутоний, обогащенный до 18%. Их должна была окружать внешняя зона, состоящая из 90 сборок с плутонием, обогащенным до 24%. Такая конфигурация должна была обеспечить наилучшие условия для тепловыделения.

Впервые проект был представлен в 1970 году. В 1971 году президент США Ричард Никсон установил эту технологию как один из высших приоритетов для научно-исследовательских работ страны.

Что же помешало его реализации?

Одной из причин такого решения была продолжающаяся эскалация стоимости проекта. В 1971 году Комиссия по атомной энергии США установила, что стоимость проекта составит порядка 400 млн долларов. Частный сектор обещал профинансировать большую часть проекта, выделив 257 млн долларов. В последующие годы, однако, стоимость проекта подпрыгнула до 700 млн. По состоянию на 1981 год был потрачен уже миллиард долларов бюджетных средств, при том, что стоимость проекта оценивалась в тот момент в 3 – 3,2 млрд долларов, не считая еще одного миллиарда, который был необходим для строительства завода по производству гененерированного топлива. В 1981 году комитет Конгресса вскрыл случаи различных злоупотреблений, что еще более утяжелило стоимость проекта.

Перед тем, как принять решение о закрытии, стоимость проекта оценивалась уже в 8 млрд долларов.

Другой причиной стала высокая стоимость строительства и эксплуатации самого реактора-бридера для производства электричества. В 1981 году было оценено, что стоимость строительства быстрого реактора будет вдвое больше строительства стандартного легководного реактора такой же мощности. Было также подсчитано, что для того, чтобы бридер мог экономически конкурировать с обычными легководными реакторами, цена урана должна составлять 165 долларов за фунт, в то время как в действительности эта цена находилась тогда на уровне 25 долларов за фунт. Частные генерирующие компании не пожелали вкладывать деньги в такую рискованную технологию.

Еще одной серьезной причиной для сворачивания программы бридеров стала угроза возможного нарушения режима нераспространения, поскольку в этой технологии происходит наработка плутония, который также может быть использован для производства ядерного оружия. Из-за международной озабоченности по поводу вопросов распространения ядерных материалов, в апреле 1977 году президент США Джимми Картер призвал отложить на неопределенный срок строительство коммерческих быстрых реакторов.

Президент Картер вообще был последовательным оппонентом проекта Клинч Ривер. В ноябре 1977 года, наложив вето на законопроект о продолжении финансирования, Картер сказал, что это будет «неоправданно дорого» и «после завершения строительства станет технически устаревшим и экономически необоснованным». Кроме этого он заявил о бесперспективности технологии быстрых реакторов вообще. Вместо того, чтобы вкладывать ресурсы в демонстрационный проект на быстрых нейтронах, Картер предлагал взамен «потратиться на увеличение безопасности существующих ядерных технологий».

Проект Клинч Ривер был возобновлен после прихода к власти Рональда Рейгана в 1981 году. Несмотря на растущую оппозицию со стороны Конгресса, он отменил запрет своего предшественника, и строительство возобновилось. Однако, 26 октября 1983 года, несмотря на успешный ход строительных работ, Сенат США большинством (56 против 40) призвал отказаться от дальнейшего финансирования строительства и объект был заброшен.

В очередной раз о нем вспомнили совсем недавно, когда в США стал разрабатываться проект маломощного реактора mPower. В качестве места его строительства как раз и рассматривается площадка планировавшегося строительства АЭС Клинч-Ривер.