Большая энциклопедия нефти и газа. Производство выварочной соли

Изобретение относится к области производства глинозема, соды, поташа и других солей, конкретно к процессу выпаривания растворов в трубчатых выпарных аппаратах. Способ включает нагрев раствора паром с удалением конденсата и выводом выпаренного раствора с кристаллами солей и вторичного пара из сепаратора трубчатого выпарного аппарата, при этом часть конденсата в виде мелких брызг вводят в паровое пространство сепаратора. Конденсат вводят в паровое пространство сепаратора в объеме 0,3-2% от получаемого конденсата. В результате увеличилось время между остановками на размывку трубок до 40 суток с сокращением числа закупоренных трубок до 10%; получен чистый конденсат с возвратом на ТЭЦ после сепаратора без каплеуловителя; увеличилась кратность использования пара на одну ступень за счет увеличения теплопередачи и исключения сопротивления зарастаемых каплеуловителей; снизился удельный расход пара на тонну упаренной воды с 0,62 до 0,33 т/т. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области производства глинозема, соды, поташа и других солей, конкретно к процессу выпаривания растворов в трубчатых выпарных аппаратах. Известен способ выпаривания растворов в трубчатых выпарных аппаратах с кристаллизацией солей (Перцев Л.П., "Трубчатые выпарные аппараты для кристаллизующихся растворов". М. , Машиностроение, 1982 г., с. 29, рис. 15; с. 66, рис. 42). Этот способ включает нагрев раствора паром с удалением конденсата и выводом выпаренного раствора с кристаллами солей и вторичного пара из сепаратора трубчатого выпарного аппарата. Недостатками способа являются:

Закупоривание греющих трубок отвалившимися от стенок сепароторов солевыми корками до 20-30% и частые остановки аппарата через 3-4 суток для промывки водой каждой отдельной трубки;

Снижение производительности аппарата и кратности использования пара из-за зарастания наиболее эффективных сетчатых или жалюзийных каплеотделителей, а также из-за закупоривания греющих трубок;

Увеличение стоимости сепаратора из-за усложнения установки дорогостоящих каплеуловителей и увеличения объема;

Увеличение расхода пара на выпаривание промывных вод. Причиной зарастания стенок сепараторов и каплеуловителей является осаждение капель пульпы с пересыщением по солям раствором и их высушивание перегретым на величину депрессии паром упариваемого раствора на 12-20 o С. Технической задачей изобретения является исключение зарастания солями стенок сепараторов, каплеуловителей и закупоривание греющих трубок отвалившимися от стенок сепараторов корками. Решение технической задачи достигается тем, что 0,3-2% конденсата в виде мелких брызг вводят в паровое пространство сепаратора. На чертеже представлен выпарной аппарат, использующий предлагаемый способ. Выпарной аппарат состоит из греющей камеры 1, сепаратора 2, трубы подачи части конденсата в сепаратор 3, форсунки 4. Пар поступает в межтрубное пространство греющей камеры 1, а раствор в сепаратор 2, где он смешивается с циркулирующим кристаллизующимся выпаренным раствором. Конденсат удаляется из греющей камеры 1 и часть его по трубопроводу 3 через форсунку 4 вводится в паровое пространство сепаратора 2. Ввод мелких капель в объем пара, загрязненого каплями пульпы, исключает перегрев вторичного пара, перенасыщение раствора капель по солям за счет их слияния с каплями конденсата, что предотвращает образование корок солей и осуществляет промывку вторичного пара от капель пульпы. Для промышленного испытания способа на одной четырехкорпусной выпарной установке 0,4-0,6% конденсата первого корпуса была введена в пустотелые сепараторы (без каплеуловителей) через форсунки. В результате по сравнению с наиболее мощными выпарными аппаратами 800 м 2 , работающими без ввода конденсата, с кристаллизацией безводной соды при содопоташном производстве:

Увеличилось время между остановками на размывку трубок до 40 суток с сокращением числа закупоренных трубок до 10%;

Получен чистый конденсат с возвратом на ТЭЦ после сепаратора без каплеуловителя;

Увеличина кратность использования пара на одну ступень за счет увеличения теплопередачи и исключения сопротивления зарастаемых каплеуловителей;

Снижен удельный расход пара на тонну упаренной воды с 0,62 до 0,33 т/т.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ выпаривания растворов с кристаллизацией солей, включающий нагрев паром в трубчатых выпарных аппаратах с удалением конденсата пара и выводом выпаренного раствора и вторичного пара из сепаратора и подачу конденсата в паровое пространство сепаратора выпарного аппарата над раствором, отличающийся тем, что конденсат, подаваемый в паровое пространство сепаратора, отбирают из межтрубного пространства и полученную пароконденсатную смесь вводят через форсунку в виде мелких брызг. 2. Способ по п. 1 отличающийся тем, что конденсат вводят в паровое пространство сепаратора в объеме 0,3-2% от получаемого конденсата.

При кипении растворов нелетучих веществ (например, растворов солей, щелочей, органических веществ с очень низким давлением паров при температуре кипения и т.п.) в пары переходит практически только растворитель. По мере его испарения и удаления в виде паров концентрация раствора повышается.

Парообразование – это Переход вещества из жидкого или твердого состояния в газообразное называется парообразованием. Различают следующие виды парообразования: испарение и кипение.

Парообразование со свободной поверхности жидкости называется испарением, с поверхности твердого тела - сублимацией или возгонкой.

Вследствие теплового движения молекул испарение возможно при любой температуре, но с возрастанием температуры скорость испарения увеличивается.

Испарение – Парообразование со свободной поверхности жидкости.

Выпаривание – Процесс концентрирования растворов, заключающийся в частичном удалении растворителя путем его перевода в парообразное состояние испарения при нагревании кипении (иногда при понижении давления), называется выпариванием.

Концентрирование Процесс выпаривания, применяемый для частичного разделения (концентрирования) растворов.

Кристаллизацией сопровождается процесс выпаривания, применяемый для полного выделения твердых веществ из раствора.

Кипение

Упругостью насыщенных паров капельной жидкости называется такое их парциальное давление, при котором наступает термодинамическое равновесие между паровой и жидкой фазами(или давление насыщенных паров жидкости р [Па]).

Парциальное давление паров- это

Испарение – переход жидкости в парообразное состояние при такой температуре, когда упругость паров жидкости равна давлению окружающего пространства.

Испарение при температурах ниже температуры кипения данного раствора происходит с его поверхности, в то время как при кипении растворитель испаряется во всем объеме кипящего растворителя из раствора.

Обычно из раствора удаляют лишь часть растворителя, так как в применяемых для выпаривания аппаратах вещество должно оставаться в текучем состоянии. В ряде случаев при выпаривании растворов твердых веществ достигается насыщение раствора. При дальнейшем удалении растворителя из такого раствора происходит кристаллизация, т.е. выделение из него твердого вещества.

Процесс выпаривания широко применяется для повышения концентрации разбавленных растворов, выделения из них растворенных веществ путем кристаллизации, а иногда – для выделения растворителя (например, при получении питьевой или технической воды в выпарных опреснительных установках).



Для осуществления процесса выпаривания необходимо теплоту от теплоносителя передать кипящему раствору, что возможно лишь при наличии разности температур между ними. При анализе и расчете процесса выпаривания эту разность температур между теплоносителем и кипящим раствором принято называть полезной разностью температур . В качестве теплоносителя в выпарных аппаратах чаще всего используют насыщенный водяной пар, который называют греющим или первичным , хотя, конечно, для этой цели могут быть применены и другие виды нагрева, и другие теплоносители.

Таким образом, выпаривание является типичным процессом переноса теплоты от более нагретого теплоносителя - греющего пара – к кипящему раствору. Основные отличия процесса выпаривания, вследствие которых выпаривание в ряду тепловых процессов выделяют в самостоятельный раздел, заключаются в особенностях его аппаратурного оформления и методе расчета выпарных установок.

Выпаривание проводят при атмосферном давлении, под вакуумом или под давлением, большим атмосферного. Образующийся при выпаривании растворов пар называется вторичным , или соковым . (экстра-пар – это вторичный пар, который отбирается от выпарной установки и предназначен для использования в нагревательных установках вне данной выпарной установки).

Выпаривание под вакуумом имеет ряд преимуществ по сравнению с атмосферной выпаркой: снижается температура кипения раствора, что дает возможность использовать этот способ для выпаривания растворов термически нестойких веществ; повышается полезная разность температур, что ведет к снижению требуемой поверхности теплопередачи выпарного аппарата; несколько снижаются потери теплоты в окружающую среду (так как снижается температура стенки аппарата); появляется возможность использования теплоносителя низкого потенциала. К недостаткам выпаривания под вакуумом относятся удорожание установки (так как требуется дополнительное оборудование – конденсатор, вакуум–насос и др.), а также несколько больший расход греющего пара на 1 кг выпариваемой жидкости (вследствие снижения давления над раствором происходит увеличение теплоты испарения растворителя – «скрытой теплоты испарения»).

При выпаривании под повышенным давлением (выше атмосферного) вторичный пар может быть использован в качестве греющего агента для различных технологических нужд.

В случае, если в выпарной установке имеется один выпарной аппарат (рис.1.1), такую установку называют однокорпусной . Если же в установке имеются два и более последовательно соединенных корпусов, то такую установку называют многокорпусной . В этом случае вторичный пар одного корпуса используют для нагревания в других выпарных аппаратах той же установки, что приводит к существенной экономии свежего греющего пара. Вторичный пар, отбираемый из выпарной установки для других нужд, называют экстра-паром . В многокорпусной выпарной установке свежий пар подают только в первый корпус. Из первого корпуса образовавшийся вторичный пар поступает во второй корпус этой же установки в качестве греющего, в свою очередь вторичный пар второго корпуса поступает в третий корпус в качестве греющего и т.д.

При больших производительностях (от нескольких кубических метров выпариваемого раствора в час и выше), что характерно для промышленности, выпаривание проводят по непрерывному принципу. В аппаратах непрерывного действия обычно создают условия для интенсивной циркуляции раствора, т.е. в таких аппаратах гидродинамическая структура потоков близка к модели идеального смешения. Поэтому концентрация раствора в таких аппаратах ближе к конечной, что приводит к ухудшению условий теплопередачи (так, с повышением концентрации раствора увеличивается его вязкость и, следовательно, снижается коэффициент теплоотдачи от стенки к раствору).

Рис. 1.1. Схема однокорпусной выпарной установки:

1 – сепаратор; 2 – греющая камера; 3 – циркуляционная труба; 4 – барометрический конденсатор; 5 – барометрическая труба; 6 – вакуум-насос

Периодическое выпаривание проводят при малых производительностях и необходимости упаривания раствора до существенно высоких концентраций.

1.1. Свойства растворов

Под концентрацией раствора b понимается отношение массы сухого вещества G c , , кг, содержащегося в растворе, к общей массе раствора. Она может выражаться в процентах или относительных величинах.

b=, (1.1)

где W – количество растворителя в растворе, кг.

Растворителями могут быть вода, спирты, органические жидкости и т.д. В технике чаще всего имеют дело с водными растворами солей.

Для большинства растворов в определенном количестве воды или другого растворителя нельзя растворить неограниченное количество твердого вещества. Раствор, содержащий при данных условиях предельное количество растворенного вещества, называется насыщенным .

Количество растворенного вещества в насыщенном растворе, отнесенное к определенному количеству раствора или растворителя, называется растворимостью (табл. 1.1). Растворимость твердых веществ в воде не является постоянной величиной, а изменяется в значительных пределах в зависимости от температуры. Для большинства солей растворимость в воде с повышением температуры растет; для некоторых солей она понижается (CaCrO 4 , MnSO 4 , NaSO 4 и др.), и избыток соли выпадает в виде кристаллов. У поваренной соли NaCI растворимость от температуры практически не зависит .

Присутствие кристаллов в растворе при выпаривании нежелательно, так как они осаждаются на стенках аппарата и поверхностях нагрева кипятильников и образуют слой накипи или осадка, которые снижают теплопередачу и ухудшают работу выпарных аппаратов.

Таблица 1.1. Растворимость некоторых веществ в воде при температуре 20 о С

Вещество Вещество Растворимость в воде г/100 г H 2 О Концентрации насыщенного раствора, %
NaCI 35,8 26,4 BaSO 4 0,00023 0,00023
КCI 34,2 25,5 Mg(OH) 2 0,001 0,001
Na 2 СO 3 21,2 17,6 CaCO 3 0,0014 0,0014
NaOН 107,0 51,7 Ca(OH) 2 0,16 0,16
ВаCI 35,6 26,3 NaSO 4 32,8 24,7
СаSO 4 0,2 0,2 MgCI 2 35,3 26,1

Процесс выпаривания характерен значительным изменением физико-химических свойств растворов, связанных с изменением его концентрации.

С повышением концентрации увеличиваются плотность и вязкость, понижаются удельная теплоемкость, теплопроводность и интенсивность теплоотдачи, изменяется теплота растворения .

Плотность раствора можно легко определить по правилу аддитивности, зная его концентрацию и плотности чистых компонентов при данной температуре:

, (1.2)

где - плотность безводного нелетучего вещества, кг/м 3 ; - плотность растворителя (воды), кг/ м 3 .

Все жидкие растворы обладают вязкостью, характерной для данного раствора. Вязкость всех растворов существенно зависит от температуры, уменьшаясь с ее повышением.

Численные значения динамической и кинематической вязкости растворов даются в справочной и специальной литературе. Изменение вязкости в зависимости от концентрации для некоторых растворов приведено


на рис. 1.2.

Рис.1.2. Изменение массовой удельной теплоемкости водных растворов в зависимости от концентрации раствора при 20 о С:

1 – NaOH; 2 – KOH; 3 – (NH 4) 2 SO 4 ; 4 – NaNO 2 ; 5 – NH 4 NO 3 ; 6 – K 2 CO 3 ; 7 – CACI 2

Удельную теплоемкость раствора с р , кДж/(кг·К), приближенно можно определить также по правилу аддитивности:

с р =с с b + с в (1-b ), (1.3)

где с с – удельная теплоемкость безводного нелетучего вещества в растворе (табл. 1.2); с в – удельная теплоемкость воды при 20 о С.

Таблица 1.2. Удельная теплоемкость сухих (безводных) веществ

Удельную теплоемкость химического соединения при отсутствии данных можно ориентировочно рассчитать по уравнению :

где - молекулярная масса химического соединения; с – его массовая удельная теплоемкость, Дж/(кг ·К); п 1 , п 2 , п 3 … - число атомов элементов, входящих в соединение; с 1 , с 2 , с 3 , … - атомные теплоемкости, Дж/(кг·атом·К), приведенные в табл.1.3.

Таблица 1.3. Атомная теплоемкость

Удельные теплоемкости некоторых веществ приведены в табл.1.2. Удельная теплоемкость раствора зависит не только от концентрации растворенного вещества, но и от температуры. Для многих растворов удельная теплоемкость не подчиняется правилу аддитивности и не может быть достаточно точно вычислена по формуле (1.3). Отклонение от правила аддитивности тем больше, чем больше концентрация растворенного вещества (рис.1.2). Поэтому в точных расчетах целесообразно использовать опытные значения удельной теплоемкости растворов, приводимые в виде таблиц или номограмм.

Теплопроводность растворов за редким исключением с ростом концентрации растворенного вещества уменьшается (рис. 1.3).

Теплопроводность воды и водных растворов электролитов в интервале от 20 до 100 о С различаются незначительно. Поэтому зависимость теплопроводности водных растворов солей и щелочей от температуры может быть принята такой же, как и для воды:

(1.5)

Для воды

При растворении твердых веществ в воде наблюдается охлаждение раствора, так как разрушается кристаллическая решетка, а на это требуется затрата энергии. Теплота растворения зависит от природы вещества и растворителя, а также от концентрации раствора.

Рис.1.3. Изменение теплопроводности водных растворов солей в зависимости от концентрации раствора при 20 о С:

1 – КОН; 2 – КСI; 3 – КNО 3 ; 4 – К 2 СО 3 ; 5 – MgCI 2 ; 6 – MgSO 4 ; 7 – NaCI; 8 – NaNO 3 ; 9 – NaSO 4 ; 10 – Na 2 CO 3 ; 11 – NaOH; 12 – CaCI 2

Выварочная соль получается в результате выпаривания искус­ственных или естественных рассолов, добываемых из недр земли. Такие рассолы отличаются сравнительно высокой концентрацией NaCl и малым содержанием примесей. Для получения выварочной соли непригодны рассолы любых поверхностных озер вследствие высокого содержания в них кальциевых солей и других примесей. Растворимость CaS04 в растворах поваренной соли больше, чем в воде. Максимум растворимости CaS04 и СаС03 в растворах NaCl соответствует концентрации приблизительно 2 моль NaCl в 1000 г воды80"81. Обычно рассол содержит (в г на 1 л):

NaCl.............................. 280-310 MgCl2 и MgS04 . . 0,2-4

CaS04............................ 5-6 СаС12............................ 0,2-0,8

Плотность рассола при 15° равна 1,19-1,20 г/см3. Высокое со­держание MgCl:2 в рапе не препятствует выварке из нее поварен­ной соли, так как последующая промывка соли позволяет снизить концентрацию MgCl2 в межкристальной жидкости и получить соль высокого качества (стр. 113).

При выпарке рассолов морского типа (являющихся концентра­тами морской воды) при температуре кипения под атмосферным давлением после достижения насыщения кристаллизуется NaCl. На рис. 8 доказана равновесная диаграмма растворимости при 100° в водной взаимной бйстеме

2NaCl + MgS04 - Na 2SQ4 + MgCl 2

Состоящей из главных компонентов морской воды. Фигуративная точка солевой массы жидкой фазы по мере кристаллизации NaCl движется из начального положения 1. В стабильной области кри­сталлизации выделяется около 70% NaCl, когда точка состава жидкой фазы достигает границы полей кристаллизации NaCl и левеита Na2S04 MgS04 2,5Н20 в точке 2. Однако при дальней­шем выпаривании вместо смеси галита и левеита продолжает кри­сталлизоваться один галит в метастабильной области (подобно тому, как это происходит и при солнечном испарении рассолов, ко­гда NaCl кристаллизуется в мета­стабильной области без астрахани - та Na2S04-MgS04-4H20 - см. рис. 83 на стр. 272). Примерный ход кристаллизации показан пунк­тирной линией. Задержка выделе­ния сульфатов вследствие достаточ­но большой стойкости метастабиль - ного состояния повышает общую степень извлечения NaCl при кипе - нии раствора до 91%. При выпари­вании же обессульфаченного кон­центрата морской можно вы­кристаллизовать до 96% поварен­ной соли82-85. Стабильные фазы выделяются лишь при добавке боль­шого количества затравки.

Выпаривание рассолов в заводских условиях осуществляют "либо в чренах, обогреваемых топочными газами, либо в вакуум - выпарных аппаратах, обогреваемых паром. На чренных установ­ках очистку рассола от примесей производят в процессе его упа­ривания. Соль получается в виде более крупных кристаллов, чем при вакуумной выпарке. Для выварки соли в вакуум-выпарных аппаратах в ряде случаев необходима предварительная очистка рассола от кальциевых и магниевых солей.

Температуры кипения рассолов морского типа различного со­става могут быть определены расчетным путем. О методе расчета см.75.

90

Это старый метод, который сохранился и до настоящего вре­мени. Имеются чренные солеварни (варницы), действующие с XVI в. (солеварни в районе Соликамска и др.)69. В США чрен - ную выварку соли осуществляют, например, на заводе в Манисти (штат Мичиган) производительностью более 1000 т! сутки 86>87. Рас­сол, подогретый с 10-15° до 60-70°, поступает в выпарной чрен,
представляющий собой открытый прямоугольный резервуар (ско­вороду), изготовленный из котельной стали толщиной 6-8 мм. Размеры его: длина 15-20 м, ширина 8-10 м, глубина 0,4-0,5 м.

В процессе выпарки в чрене поддерживают постоянный уро­вень рассола 18-20 см. При нагревании рассола в чрене до 80° из него выделяются сероводород и другие растворенные газы, а также выпадает сульфат кальция (рис. 9). По достижении температуры кипения (108°) происходит разложение бикарбоната кальция и

Образующийся СаС03 выделяется в Осадок; продолжается выпадение твер­дого CaS04. Твердые примеси уда­ляются специальными гребками через борт чрена. По достижении насыще­ния (через 6-8 ч) начинает кристал­лизоваться NaCl. Магнезиальные соли остаются в растворе, попадают в го­товую поваренную соль с маточным раствором, понижая ее качество. Для получения мелкокристаллической соли температуру рассола в процессе кри­сталлизации поддерживают в преде-

„---------- - 4 5 лах 90-100°. Для получения крупно-

МольС^о^атомольНА кристаллической соли температуру по­нижают (50-60°) и выгребают соль Рис. 9. Растворимость CaS04 1-2 раза в сутки.

В насыщенном растворе NaCl. Соль> кристаллизующаяся в про­цессе выпарки, механизированными гребками выгребается через наклонный борт чрена и отжи­мается на центрифугах (до влажности 3-5%) или высушивается в .

Температуру в топке под чреном поддерживают на уровне 1000-1200°; температура газов, уходящих из последнего газохода, 350-400°. При содержании в рассоле 24-25 % NaCl расходуется 0,45-0,5 т условного топлива на 1 т готовой соли; при понижении концентрации рассола до 15-16% NaCl расход топлива возрас­тает до 1,1 -1,2 т/т. Среднесуточный съем соли с 1 м 2 поверхности нагрева чрена составляет 80-100 кг при исходной концентрации рассола 300 г/л NaCl; при этом интенсивность испарения воды со­ставляет 11 -12 кг в 1 ч на 1 м2 поверхности нагрева чрена.

175

<50

100

75

50

Г5

При интенсивном выпаривании раствора в чренах получается соль с размерами зерен 0,1-0,2 мм. При снижении температуры до 60° (для получения крупнозернистой соли) производительность чренов уменьшается почти в 10 раз по сравнению с производитель­ностью при интенсивном кипении. Однако более важным считают не интенсивность выпарки, а получение крупнозернистой соли, по­этому до сих пор пользуются чренным способом вываривания
соли, несмотря на его Примитивность. Крупнозернистую соль можно получить и при высокой температуре выпаривания рассола (90-95е), для этого необходимо добавить к нему поверхностно - активное вещество - мыла, жиры, спирты и др.88"89 (0,0002% ог веса получаемой соли). В качестве добавок предложены также такие, как бромистый цетилпиридин90 или 0,002% Мп в виде MnS04 и 0,001% смеси сексвиолеата сорбитана и монолаурата

Полиоксиэтилен-сорбитана91. Более экономичным является брике­тирование мелкокристаллической соли, полученной интенсивными методами выварки, с последующим дроблением брикетов до зерен требуемых размеров (стр. 91).

В зависимости от качества выпариваемых рассолов чрен оста­навливают на чистку через 7-12 дней. За это время в маточном растворе накапливается много примесей, а полотно чрена покры­вается накипью - плотной коркой солей (называемой в Сибири чренным камнем или ширеем, а в Украине омокой) толщиной 7-10 см, производительность чрена сильно понижается (иногда до 50%), и создается опасность его прогара, а расход топлива зна­чительно возрастает.

Накипь состоит из смеси кристаллов NaCl (86-90%), неболь­шого количества других растворимых солей и 5-8% нераствори­мых осадков, главным образом сульфата кальция. Коэффициент теплопроводности соляной накипи равен 2-2,5 ккал/ (м ■ ч град), Т. е. в 25-30 раз меньше, чем стали. Очистку от накипи можно производить механическими способами и размыванием ее струями

На рис. 10 показана схема осуществляемой на Усольском за­воде выварки соли в круглых чренах с механизированным удале­нием соли 88. Выгрузка соли со дна чрена в солесборники произво­дится при помощи скребков и проволочных щеток, укрепленных на мешалке, вращающейся со скоростью 2-3 об/мин. Отфугованную соль с 5-6% влаги направляют по транспортеру на склад или во вращающуюся барабанную сушилку. Выпарной чрен изготовляют из стальных листов толщиной 6-7 мм. Он имеет диаметр 10 м и высоту борта 0,5 м, сверху покрыт деревянным колпаком, снаб­женным двумя вытяжными трубами высотой 10 м для отвода пара и люками, служащими для наблюдения за работой мешалки и для ремонта чрена. Благодаря непрерывному удалению солей со дна чрена образование чренного камня происходит значительно мед­леннее, и длительность работы чрена между остановками для чистки достигает 30 суток, т. е. в 3 раза больше, чем при выварке соли в иемеханизированных чренах.

Cтраница 1


Выпаривание раствора соли контролируют по удельному весу, кристаллизацию и центрифугирование - по качеству получаемого уксуснокислого натрия, переработку маточных растворов - по их качеству (содержание муравьинокислого натрия и восстанавливающих веществ), по содержанию уксуснокислого натрия в отходах, спускаемых в канализацию, и по их щелочности.  


Выпаривание растворов солей производится в выпарных аппаратах, обогреваемых водяным паром.  

При выпаривании раствора соли магния соляная кислота, образующаяся при гидролизе, постепенно отгоняется, а гидролиз идет все дальше и дальше.  

Так, при выпаривании раствора соли образуются небольшие кубические кристаллы твердой соли. Эти кубические кристаллы ограничены плоскими квадратными гранями.  

Нитраты получаются при выпаривании растворов солей Zr и Hf с HNOS Ока представляют собой бесцветные соединения. Все соли, кроме последних двух, гидролизуются в водных растворах, которые приобретают сильнокислую реакцию.  

На рис. 2 показана современная конструкция аппарата с погружной горелкой для выпаривания растворов солей. Для равномерного распределения дымовых газов, барботирующих в жидкости, погружная горелка оснащена решетчатым барботером и направляющим конусом, расположенным в устье сопла.  

Основными стадиями технологического процесса производства уксуснокислого натрия являются: нейтрализация уксусной кислоты, выпаривание раствора соли, кристаллизация и центрифугирование соли, переработка маточных растворов.  

Аппараты с погружной горелкой, расположенной в центральной части корпуса, применяют для выпаривания растворов солей. Йыкристаллизовавшиеся соли удаляются при помощи специального клапана, установленного в нижней части конусного днища. Парогазовая смесь отводится через установленную на крышке аппарата трубу, внутри которой размещены отбойные щитки для сепарации капель раствора. В качестве барботера в таких аппаратах применяют диски с цилиндрическими или щелевыми отверстиями. Это увеличивает поверхность контакта и интенсифицирует процессы тепло - и массообмена. Недостатком таких аппаратов является неравномерное распределение газа по сечению диска, особенно в аппаратах больших размеров, а также, отсутствие циркуляции жидкости в нижней части аппарата.  

Типовая конструкция аппарата.  

Аппараты с погружной горелкой, расположенной в центральной части сосуда, применяют для выпаривания растворов солей. Необходимый уровень раствора в аппарате / устанавливается при помощи сливной трубы 6 с передвижным патрубком. Выкристаллизовавшиеся соли удаляются через нижний штуцер конусного днища при помощи специального пульсирующего клапана. На крышке 2 аппарата установлена труба 4 для вывода парогазовой смеси. Внутри трубы размещены отбойники 5 для сепарации капель раствора, уносимых парогазовым потоком из аппарата. Погружная горелка 3 проходит через паровое пространство аппарата, поэтому следует применять горелки туннельного типа с удлиненной камерой горения.  

Улетучивания, однако, не происходит при кипячении разбавленных солянокислых растворов, содержащих олово (IV), в покрытых часовым стеклом сосудах или при выпаривании солоно-сернокислых растворов солей этого элемента до появления паров серной кислоты.  

Вынос зоны парообразования из греющих трубок является надежным способом предохранения их от инкрустаций лишь при кристаллизации солей, растворимость которых с повышением температуры увеличивается. Этой меры оказывается недостаточно при выпаривании растворов солей с обратной растворимостью, так как именно возле теплопередающей поверхности образуется пересыщенное состояние. К тому же в подъемной трубе, где раствор интенсивно вскипает и поддерживается его максимальное пересыщение, велика вероятность образования инкрустаций уже независимо от характера растворимости соли.  

Раствор соли, отделенный от механических примесей фильтрованием, подвергался действию различных реактивов. Георги указывает, что при выпаривании раствора соли образовались в нем маленькие кубические кристаллы, излишество щелочной соли в себе содержащие. Для насыщения сей излишней щелочной соли потребно было на 5 унций салярки 2 / 2 драхмы купоросной кислоты.  

При прямоточной схеме нет необходимости устанавливать промежуточные насосы для перекачивания раствора, который самотеком перетекает от первого аппарата к последнему вследствие понижения давления в каждом последующем корпусе. Однако постепенное снижение температуры раствора по мере его концентрирования (что может вызвать преждевременную кристаллизацию и забивку переточных труб при выпаривании растворов солей с прямой растворимостью) является большим недостатком прямоточной схемы и она обычно не применяется для выпаривания кристаллизующихся растворов.  

Выпаривание растворов проводят для повышения концентрации растворенного вещества перед его кристаллизацией или для удаления растворителя с целью получения растворенной твердой фазы в виде сухого остатка. Выпаривание проводят как при атмосферном давлении, так и в вакууме при помощи жидкостных, паровых и воздушных бань, инфракрасных излучателей, колбонагревателей и электрических плиток, токопроводящих пленок и других устройств.

Не рекомендуется выпаривать растворы при их кипении вследствие разбрызгивания жидкой фазы и образования корки солей на холодных частях выпаривающего устройства, проводить выпаривание и в сушильных шкафах, быстро выходящих из строя из-за конденсации пара на стенках и внутренних частях, содержащих электронагревательные элементы и терморегулирующие устройства. Не следует выпаривать Растворы в эксикаторах при комнатной температуре из-за необходимости частой смены осушителей. Такое выпаривание можно применять в особых случаях, например для выращивания монокристаллов.

Скорость испарения растворителя зависит от температуры, давления, поверхности испарения, интенсивности перемешивания и толщины слоя нагреваемого раствора. В тех случаях, когда растворенное вещество разлагается в процессе нагревания при атмосферном давлении, растворитель удаляют либо при помощи вакуума пленочных испарителях, либо вымораживанием, или подвергают лиофильному выпариванию.

Выпаривание жидкостей в открытых сосудах проводят, как правило, с использованием фарфоровых, стеклянных, кварцевых или платиновых чашек разного диаметра, заполненных на 2/3 их высоты. Во всяком случае уровень раствора должен быть на 2 - 3 см ниже краев чашки. Для упаривания применяют также низкие широкие стаканы из стекла пирекс или кварцевого. Выбор материала чашек и стаканов зависит от химической активности упариваемого раствора.

Выпаривание растворов с верхним обогревателем 2 (рис. 191, а и рис. 115, а, б) и продуванием воздуха вдоль поверхности испарения путем отсасывания пара через трубку / нагревателя 1 приводит к быстрому удалению растворителя, хотя и влечет за собой загрязнение раствора аэрозолями воздуха. Одновременно чашка 3 с раствором может подогреваться в жидкостной бане 4 или в колбонагревателе (см. рис. 118) с регулируемой температурой.

Если необходимо регенерировать особо ценный растворитель, то применяют прибор со специальной воронкой 1 (рис 191, б) для сбора конденсата. Нижний край воронки над фарфоровой чашкой 4 следует удалить от поверхности раствора на 1 3 см для образования турбулентного воздушного потока, а верхнюю часть трубки при необходимости присоединить к холодильнику. Если у такой воронки есть боковой штуцер 2 с питателем 3, то прибор может служить для непрерывного упаривания разбавленных растворов до получения в чашке 4 суспензии нужной плотности. Чашка 4 нагревается в водяной бане 5.

При выпаривании некоторых растворов образующиеся мелкие кристаллики "ползут" в виде тонкого слоя по стенкам чашки и даже выходят за ее край из-за более слабого нагрева верхней части чашки. Устранение ползучести твердой фазы достигают применением прибора с верхним нагревателем (см. рис. 191, а) или ИК-излучателя (см. рис. 115, а).


Рис. 191. Устройства для упаривания растворов с верхним нагревателем (д), воронкой (б) и со спаренными чашками (в)

Для предотвращения ползучести применяют также спаренные чашки (рис. 191, в). Наружная чашка 2 находится в жидкостной бане 3, а внутренняя более плоская чашка 1 содержит выпариваемый раствор. Ее вставляют так, чтобы ее край находился на 1- 2 см ниже края наружной чашки 2. Так как края внутренней чашки нагреваются сильнее, чем дно, то выделяющаяся корочка кристаллов начинает просыхать сверху вниз, что препятствует ползучести кристаллов.

Выпаривание при постоянной температуре проводят в чашках 3 с паровой рубашкой 2 (рис. 192, а), соединенной с обратным холодильником 1. Теплоносителем в таком приборе является пар высококипящей жидкости (см. табл. 16). Поэтому особого контроля за процессом выпаривания, кроме доливания в чашку очередной порции выпариваемого раствора, не требуется, Если выпаривание необходимо проводить при кипении раствора, содержащего объемистые рыхлые осадки, то применяют правку Шиффа (рис. 192, б).


Рис. 193. Циркуляционный испаритель Панкрата (а), пеноразрушитель (б) и прибор для выпаривания растворов под вакуумом (в)

Она состоит из широкой воронки имеющей ножки по краям кромки длиной до 5 мм и короткую широкую трубку 3, на которую надета пробирка 2 с отверстиями. Вставку Шиффа погружают на дно стакана 1 с рыхлой суспензией. Внутренний диаметр стакана не должен превышать диаметр воронки более чем на 5 - 10 мм. При нагревании электроплиткой 5 содержимого стакана 1 до кипения пузырьки пара и воздуха поднимаются вверх по воронке 4 и увлекают за собой частицы осадка, выбрасывают их через отверстия пробирки 2. одновременно происходит интенсивное перемешивание и испарение раствора. Циркуляция суспензии вверх и вниз по внешней поверхности воронки препятствует разбрызгиванию кипящей жидкости и образованию плотных придонных осадков и толчков жидкой среды.

Выпаривание концентрированных растворов досуха при помощи ИК-излучателей и верхнего нагрева (см. рис. 191, а) не представляет особых трудностей. Выпаривание же таких растворов с нижними нагревателями должно сопровождаться перемешиванием на конечной стадии и строгим контролем за нагреванием, которое надо немедленно прекратить при образовании сырой массы твердой фазы. Из-за перегрева донной части возможно растрескивание массы с разбросом частичек.

При выпаривании щелочных растворов и растворов, содеращих поверхностно-активные вещества, наблюдается образование пены. Устранение пенообразования достигается с помощью простого циркуляционного испарителя Панкрата (рис. 193, а).


Рис. 194. Вакуумные испарители: простой (а), ротационный (б) и роторный (в)

Раствор в циркуляционной трубе 5 нагревается при помощи трубчатого электронагревателя 4, вскипает; смесь жидкости, пара и пены выбрасывается по трубке 3 в сепаратор 2, в котором пенящаяся жидкость наталкивается на противоположную стенку и отделяется от пены, а пар удаляется через трубку 1. Жидкость стекает обратно в циркуляционную трубу 5 и поднимается снова в обогреваемую часть прибора, испаритель. Сконцентрированный раствор периодически удаляют через нижний спуск 6, не допуская выделения кристаллов в циркуляционной трубе.

Для разрушения пены рекомендуют также простой способ. В колбу 3 (рис. 193, б) над поверхностью выпариваемого раствора помещают раскаленную нихромовую спираль 5. Пар удаляют через трубку 1. Токоподводы 2 готовят из толстой медной проволоки. Спираль нагревают так, чтобы пена, разрушаемая теплом, не достигала ее примерно на 1 см и не оставляла бы на ней пленки, которая может быстро разрушить электросопротивление. Нагревают раствор на водяной бане 4.

Вакуумное выпаривание - это выпаривание в герметично закрытом сосуде под вакуумом 5-30 торр (650 - 4000 Па), посредством которого удаляется пар испаряющейся жидкости. В этом случае можно значительно понизить температуру нагрева сосуда, не снижая интенсивности испарения растворителя.

Применяют вакуумное выпаривание в основном для кон-Центрирования растворов, направляемых после этой операции На кристаллизацию термолабильных веществ. При выпаривании под вакуумом не допускают кипения растворов, так как есть опасность уноса капельножидкой фазы и выделения из нее твердой фазы в трубках, связанных с вакуумной системой.

Наиболее простыми приборами для выпаривания растворов под вакуумом являются приборы, схемы которых приведены на рис. 193, в и 194, а.

В первом приборе использована широкогорлая колба Вальтера 2 (см. рис. 17, е), обогреваемая в жидкостной бане 3 (см. рис. 193, в). Капилляр 6 обеспечивает равномерное кипение жидкости, подсасываемой по мере необходимости из стакана 4 через кран 5. С водоструйным насосом (см. рис. 258) колба соединена через трубку 1.

Выпаривание ведут при непрерывном кипении раствора, В тех случаях, когда кипение сопровождается толчками из-за засорения капилляра, в колбе оставляют небольшое количество рас. твора, к которому непрерывно добавляют свежий раствор из стакана 4. При выпаривании сильно пенящихся растворов отводную трубку 1 заменяют на каплеуловитель (см. рис. 43).

Во втором приборе (см. рис. 194, а) пар испаряющейся жидкости из колбы 3 (см. рис. 194, а) удаляют через трубку 2, соединенную с водоструйным насосом, перед которым ставят предохранительную склянку. Колба 3 снабжена капельной воронкой 1 для периодического добавления в нее новых порций раствора. Нагрев колбы осуществляют при помощи водяной бани 4.

Вакуумное выпаривание можно осуществить и при помощи ранее рассмотренного циркуляционного испарителя (см. рис. 193, а), если его пароотводную трубку 1 присоединить к вакуумной системе. В таком циркуляционном испарителе, работающем под вакуумом, можно упаривать растворы веществ, разлагающихся при нагревании в обычных условиях. Разбавленные растворы таких веществ лучше всего упаривать при температурах не выше 50 °С, что отвечает давлению примерно 80 торр (10600 Па).

Ротационные испарители (рис. 194, б) применяют для концентрирования разбавленных растворов термолабильных и пенящихся веществ, а также для удаления высококипящих растворителей. Такие приборы выпускают многие отечественные и зарубежные фирмы. Они позволяют вести упаривание растворов с остаточным давлением не более 30 торр (4000 Па). Принцип работы испарителя - упаривание раствора в пленке. Благодаря вращению колбы 5 вместимостью не менее 1 л с частотой 20 -150 об/мин на внутренней ее поверхности образуется пленка раствора, что значительно увеличивает площадь испарения и облегчает процесс парообразования. Колба обогревается в жидкостной бане 6 , температура которой поддерживается постоянной в зависимости от состава раствора в интервале от 20 до 90 °С. Конденсат улавливается холодильником 1 и собирается в приемнике 3.