Четырёхмерное пространство. Четырехмерное пространство и время

Сегодня каждому школьнику известно, что пространство, в котором существует человек, трехмерно, то есть у него имеется три измерения: длина, ширина и высота. Но что такоечетырехмерное пространство? Если мы будем исследовать не только пространственное положение тела, но и то, как оно изменяется во времени, то есть процессы, которые происходят в появляется ещё одна координата - время. Четырёхмерное пространство и состоит из трех пространственных и одной временной координаты. В этом случае физики и философы говорят о едином пространственно-временном континууме. Время и пространство взаимосвязаны между собой. По существу, они проявляются как различные стороны четырехмерного пространства-времени.

Четырехмерное пространство как единство пространства и времени имеет интересное свойство, являющееся следствием А. Эйнштейна. Оно заключается в том, что с приближением скорости тела к световой на нем медленнее течет время, а само тело уменьшается в размерах.

Представить себе такое четырехмерное пространстводостаточно непросто. Когда мы в школе рисовали плоские то не испытывали никаких особых затруднений - они были двумерны (имели ширину и длину). Сложнее было рисовать и представлять трехмерные фигуры - конусы, пирамиды, цилиндры и другие. А вообразить четырехмерные фигуры довольно трудно даже математикам и физикам.

Конечно, к понятию «четырехмерное пространство» необходимо привыкнуть. Физики-теоретики применяют понятие о четырехмерном пространстве-времени как инструмент в расчетах, развивают в этом мире четырехмерную геометрию.

Теория А. Эйнштейна говорит о том, что гравитационные тела способствуют искривлению вокруг себя четырехмерного пространства-времени. Непросто наглядно представить «обычное» пространство-время, а искривленное - ещё труднее. Но физику-теоретику или математику и не нужно ничего представлять. Искривление для них обозначает изменение геометрических свойств тел или фигур. Так, например, относится к её диаметру на плоскости как 3,14, а на искривленной поверхности это не совсем так. Возможность искривления четырехмерного пространства теоретически предположил в начале девятнадцатого века русский математик Н. Лобачевский. В середине девятнадцатого века германский математик Б. Риман начал исследовать «искривленные» пространства не только трёх измерений, но и четырех, и далее с любым числом измерений. С тех пор геометрию искривленного пространства называют неевклидовой. Основатели неевклидовой геометрии не знали точно, в каких условиях может пригодиться их геометрия. Математический аппарат, который они создали, впоследствии был использован при формулировании ОТО

А. Эйнштейн указал на интересный эффект, касающийся времени: в мощном поле тяготения время будет течь медленнее, чем вне его. Это значит, что время на Солнце будет идти медленнее, чем на Земле, так как сила тяготения Солнца существенно больше, чем сила тяготения Земли. По этой же причине часы на определённой высоте над Землёй идут немного быстрее, чем на поверхности нашей планеты.

Большое значение для всей науки имеют такие открытые учёными свойства времени, как замедление его рядом с нейтронными звездами, остановка времени в «черных дырах», гипотетическая возможность «перехода» времени в пространство и обратного процесса.

Вне поля тяготенияпоявляетсятакназываемоесвободное пространство - среда, в которой на тела или совсем не действует, или действует очень слабо по сравнению с земной тяжестью. Звезды находятся в космическом пространстве, и большая его часть есть пространство свободное.

Запускает проект «Вопрос учёному», в рамках которого специалисты будут отвечать на интересные, наивные или практичные вопросы. В этом выпуске кандидат физико-математических наук Илья Щуров рассказывает о 4D и о том, можно ли выйти в четвёртое измерение.

Что такое четырёхмерное пространство («4D»)?

Илья Щуров

Кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ

Начнём с самого простого геометрического объекта - точки. Точка - нульмерна. У неё нет ни длины, ни ширины, ни высоты.

Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка - остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений - он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.

Возьмём теперь отрезок и попробуем его сдвинуть, как раньше точку. (Можно представить себе, что наш отрезок - это основание широкой и очень тонкой кисти.) Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения - ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость - это двумерное пространство (2D), на ней можно ввести двумерную систему координат - каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.)

Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) - трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве - в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве - на плоскости - нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.

Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство - это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.

На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом - например, количеством секунд, прошедших с определённой даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени - от момента создания до момента разрушения.

Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.

Задачи:

Привести какой-нибудь другой пример реализации четырёхмерного пространства в реальной жизни.

Определить, что такое пятимерное пространство (5D). Как должен выглядеть 5D-фильм?

Ответы просьба присылать на e-mail: [email protected]

Если сравнить плоский лист бумаги и коробку, то мы увидим, что лист бумаги имеет длину и ширину, но не имеет глубины. Коробка же имеет длину, ширину и глубину.

Привычный для нас мир состоит из трёх измерений, однако давайте представим себе существование в двухмерном пространстве. В таком случае всё будет иметь вид рисунков на листе бумаги. Объекты смогут двигаться в любом направлении по поверхности этой бумаги, но подняться или опуститься на поверхность этой самой бумаги будет невозможно.

Представим себе квадрат, нарисованный в двухмерном пространстве - никакой объект не сможет выбраться за пределы квадрата, если только в нём нет отверстия, либо дырки. Перемещение под и над квадратом будет невозможным.

Что такое четвертое измерение

Другое дело в мире трёхмерном - нарисовав вокруг любого объекта квадрат, ничего не стоит затем этому самому объекту перешагнуть через него или подлезть. А теперь представим, что объект помещён внутрь куба или, к примеру, в комнату с потолком, полом и четырьмя плотными стенами. Никакой объект не сможет выбраться из комнаты, при условии, что в ней нет никаких отверстий.

Конечно же, всё это достаточно ясно и понятно. Также понятно и то, что практически все явления можно объяснить с позиции трёхмерного мира. Например, просто и понятно, почему жидкость может быть помещена в кувшин или почему собака может жить в будке.

Стоит теперь рассмотреть паранормальные явления - материализацию и дематериализацию. Известный экстрасенс, Чарльз Бейли мог материализовать сотни предметов в железной клетке в присутствии многочисленных, скептически настроенных свидетелей. Вполне возможно, предметы проходили между прутьями железной клетки, и это абсолютно необъяснимо с точки зрения трёхмерного мира.

Чтобы объяснить подобные явления, была выдвинута гипотеза, что существует четвёртое измерение пространства, недоступное при обычных обстоятельствах. Однако время от времени объекты получают возможность входить и выходить из четвёртого измерения.

Трансцендентная физика

Существует особая работа под названием “Трансцендентная физика”, посвящённая исследованию концепции четвёртого измерения и написанная Иоганном Карлом Фридрихом Зеллнером. В своём труде автор взял в качестве примера явления, создаваемые экстрасенсом Генри Слейдом. Тому удавалось заставлять некоторый объект совсем исчезнуть, а затем сделать так, чтобы этот самый объект появился где-нибудь в другом месте. Вдобавок, он мог материализовать два сплошных кольца вокруг ножки стола.

Через некоторое время Слейд был посажен в тюрьму за мошенничество, и это нанесло непоправимый урон репутации доктора Зеллнера. Тем не менее, сегодня это кажется несущественным, поскольку Зеллнер смог предложить миру тщательно оформленную теорию. К тому же под вопросом остаётся мошенничество Слейда.

Выдержка из “Трансцендентной физики”:

“Среди доказательств нет ничего более убедительного и существенного, чем перенос материальных тел из замкнутого пространства. Хотя наша трёхмерная интуиция не может допустить, чтобы в замкнутом пространстве открылся нематериальный выход, четырёхмерное пространство предоставляет такую возможность. Таким образом, перенос тела в этом направлении может быть осуществлён без воздействия на трёхмерные материальные стены. Так как у нас, трёхмерных существ, отсутствует так называемая интуиция четырёхмерного пространства, мы можем лишь сформировать его концепцию путём аналогии из низшей области пространства. Представьте на поверхности двухмерную фигуру: с каждой стороны начерчена линия, а внутри помещающийся объект. Движением только по поверхности объект не сможет выбраться за пределы этого двумерного замкнутого пространства, если только в линии не будет обрыва”.

> Четырехмерное пространство и время

Как представить четырехмерное пространство и время в специальной теории относительности: измерения Вселенной, система координат и преобразования Лоренца.

Мы существуем в четырехмерном пространстве-времени, где упорядочение неких событий может зависеть от наблюдателя.

Задача обучения

  • Разобраться в основных выводах специальной теории относительности.

Основные пункты

  • Мы существуем в четырехмерной Вселенной: первые три измерения – пространственные, а четвертое – время.
  • Система координат физических наблюдателей объединена преобразованием Лоренца.
  • Ничто не может превысить световую скорость.

Термины

  • Элемент линии – неизменная величина в специальной теории относительности.
  • Преобразование Лоренца – объединяет координаты пространства-времени систем отсчета.

Функционирование в четырех измерениях

Давайте взглянем на двух наблюдателей, перемещающихся относительно друг друга со стабильной скоростью. Обозначим их как А и А’. Первый создает пространственно-временную систему координат t, x, y, z, а второй – t", x", y", z". Заметно, что оба существуют в четырехмерном мире, где три измерения отводятся пространству и одно – времени.

В обеих конструкция перемещается со скоростью v по отношению к несжимаемой системе

Вас не должна пугать работа с четырьмя измерениями, потому что каждый раз, когда вы видите кого-то, то сталкиваетесь с этим явлением. То есть, вы всю жизнь находились в четырех измерениях, просто скорее всего считали время и пространство полностью раздельными.

Перемещение света

Допустим, что в определенный момент в пространстве-времени появляется световой луч. Оба наблюдателя вычисляют, какую дистанцию он проделал за временной промежуток. У наблюдателя А:

(Δt, Δx, Δy, Δz), где Δt = t - t 0 (t – время, в котором проводилось измерение; t 0 – время, за которое свет включался).

Δt′,Δx′, Δy′, Δz′, где мы устанавливаем систему так, чтобы оба наблюдателя пребывали в согласии (t 0 , x 0 , y 0 , z 0). Из-за неизменности скорости света оба соотносятся:

Здесь T, X, Y, Z относятся к координатам в любой системе. Есть правило, которому должны следовать все световые пути. Для общих событий можно определить величину:

s 2 = -c 2 Δt 2 + Δx 2 + Δy 2 + Δz 2

Это элемент линии, который будет одинаковым для всех наблюдателей. Если мы возьмем множество всех преобразованных координат, составляющих неизменную величину, то получим преобразование Лоренца. В итоге, системы координат всех физических наблюдателей объединяются этим показателем:

Разделение между точками пространства-времени определяется через:

s 2 > 0: подобно пространству.

s 2 < 0: как время.

s 2 = 0: нуль.

Мы разделяем эти события, потому что все они разные. Например, в подобном пространству разделении всегда можно отыскать преобразование координат, отменяющее упорядочение времени событий.

Космические пространственные разрывы

Взглянем на две катастрофы в Нью-Йорке и Лондоне. Они произошли в одно время и в едином кадре. Здесь пространственно-временное разделение выступает подобным пространству. Будут ли они одновременными – относительный вопрос: в некоторых системах – да, а в других – нет.

Подобные времени и нулевые пространственно-временные разрывы

Временные или нулевые события не разделяют это свойство, поэтому между ними возникает причинно-следственный порядок. То есть, два события отделены во времени и способны оказывать воздействие. Дело в том, что они могут посылать световой сигнал от одной точки в другую.

Специальная теория относительности

Энергия объекта, перемещающегося на скорости v, равна:

(m 0 – масса объекта в состоянии покоя, а m = γm 0 – масса, когда объект перемещается). Эта формула сразу показывает, почему невозможно обогнать световую скорость. При v → c, m → ∞, и для ускорения объекта требуется бесконечное количество энергии.