Четыре уравнения максвелла. Уравнения Максвелла в среде

Значение уравнений Максвелла

Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.

Замечание

Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.

Замечание 1

Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду . С помощью этих уравнений можно описать все электромагнитные явления.

Система уравнений Максвелла

Определение 1

Систему уравнений Максвелла составляют:

\ \ \ \

Выражения (1)-(4) называют полевыми уравнениями , они применимы для описания всех макроскопических электромагнитных явлений. Иногда уравнения системы Максвелла группируют в пары, первую пару составляют из второго и третьего уравнения, вторую пару -- из первого и четвертого уравнений. При этом говорят, что в первую пару уравнений входят только основные характеристики поля ($\overrightarrow{E}\ и\ \overrightarrow{B}$), а во вторую пару - вспомогательные ($\overrightarrow{D}\ и\ \overrightarrow{H}$).

Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:

В скалярном виде уравнение (2) запишем как:

Третье уравнение из системы Максвелла в скалярном виде:

Четвертое уравнение в скалярной форме примет следующий вид:

Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:

Замечание 2

Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.

Физический смысл уравнений Максвелла

Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($\overrightarrow{j}$) и токи смещения ($\frac{\partial \overrightarrow{D}}{\partial t}$).

Уравнение (2) является законом электромагнитной индукции и отображает тот факт, что переменное магнитное поле -- один из источников возникновения электрического поля.

Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.

Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.

Материальные уравнения (5) -- это соотношения между векторами поля и токами. Диэлектрические свойства среды заключены в диэлектрической проницаемости ($\varepsilon $). Магнитные свойства, которые описывает намагниченность, учтены в магнитной проницаемости ($\mu $). Проводящие свойства среды сосредоточены в удельной проводимости ($\sigma $).

Уравнения поля линейны и учитывают принцип суперпозиции.

Границы применимости уравнений Максвелла

Система уравнений Максвелла ограничена следующими условиями:

    Материальные тела должны быть неподвижны в поле.

    Постоянные $\varepsilon ,\ \mu ,\sigma $ могут зависеть от координат, но не должны зависеть от времени и векторов поля.

    В поле не должно находиться постоянных магнитов и ферромагнитных тел.

Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.

Замечание 3

Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.

Пример 1

Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.

Решение:

В качестве основания для решения задачи используем из системы Максвелла уравнение:

Проведем операцию дивергирования в обеих частях выражения (1.1):

Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Следовательно, получаем:

Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:

В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:

Что позволяет нам записать уравнение (1.4) в виде:

Что дает нам закон сохранения заряда, который записан в виде:

Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:

\[\oint\limits_S{\overrightarrow{j}}d\overrightarrow{S}=-\frac{\partial }{\partial t}\int{\rho dV}(1.9).\]

тогда если области замкнуты и изолированы получаем:

\[\oint\limits_S{\overrightarrow{j}}d\overrightarrow{S}=0\to \int{\rho dV}=const.\]

Что требовалось доказать.

Пример 2

Задание: Покажите, что уравнения $rot\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ и $div\overrightarrow{B}=0$ , входящие в систему Максвелла не противоречат друг другу.

Решение:

За основу решения примем уравнение:

Возьмём дивергенцию от обеих частей уравнения:

В соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Соответственно, получаем, что

Выражение $div\overrightarrow{B}=const$ не противоречит тому, что $div\overrightarrow{B}=0$.

Мы получили, что уравнения $rot\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ и $div\overrightarrow{B}=0$ совместны, что требовалось показать.

Система уравнений Максвелла включает в себя четыре основных уравнения

, (3.2)

, (3.3)

. (3.4)

Эта система дополняется тремя материальными уравнениями, определяющими связь между физическими величинами, входящими в уравнения Максвелла:

(3.5)

Вспомним физический смысл этих математических фраз.

В первом уравнении (3.1) утверждается, что электростатическое поле может быть создано только электрическими зарядами.В этом уравнении- вектор электрического смещения, ρ - объемная плотность электрического заряда.

Поток вектора электрического смещения через любую замкнутую поверхность равен заряду, заключенному внутри этой поверхности.

Как свидетельствует эксперимент, поток вектора магнитной индукции через замкнутую поверхность всегда равен нулю (3.2)

Сопоставление уравнений (3.2) и (3.1) позволяет сделать вывод о том, что магнитные заряды в природе отсутствуют.

Огромный интерес и важность представляют уравнения (3.3) и (3.4). Здесь рассматриваются циркуляции векторов напряженности электрического () и магнитного () полей по замкнутому контуру.

В уравнении (3.3) утверждается, что переменное магнитное поле () является источником вихревого электрического поля ().Это не что иное, как математическая запись явления электромагнитной индукции Фарадея.

В уравнении (3.4) устанавливается связь магнитного поля и переменного электрического. Согласно этому уравнению магнитное поле может быть создано не только током проводимости (), но и переменным электрическим полем.

В этих уравнениях:

- вектор электрического смещения,

H - напряженность магнитного поля,

E - напряженность электрического поля,

j - плотность тока проводимости,

μ - магнитная проницаемость среды,

ε -диэлектрическая проницаемость среды.

    1. Электромагнитные волны. Свойства электромагнитных волн

В прошлом семестре, завершая рассмотрение системы уравнений классической электродинамики Максвелла, мы установили, что совместное решение двух последних уравнений (о циркуляции векторов и) приводит к дифференциальному волновому уравнению.

Так мы получили волновое уравнение «Y» волны:

. (3.6)

Электрическая компонента y – волны распространяется в положительном направлении оси X с фазовой скоростью

(3.7)

Аналогичное уравнение описывает изменение в пространстве и во времени магнитного поля y – волны:

. (3.8)

Анализируя полученные результаты, можно сформулировать ряд свойств, присущих электромагнитным волнам.

1. Плоская «y» - волна является линейно поляризованной поперечной волной. Векторы напряженности электрического (), магнитного () поля и фазовой скорости волны () взаимно перпендикулярны и образуют «правовинтовую» систему (рис.3.1).

2. В каждой точке пространства компонента волны H z пропорциональна напряженности электрического поляE y:

Здесь знаку «+» соответствует волна, распространяющаяся в положительном направлении оси X. Знак «-» - в отрицательном.

3. Электромагнитная волна движется вдоль оси X с фазовой скоростью

Здесь
.

При распространении электромагнитной волны в вакууме (ε = 1, μ = 1) фазовая скорость

Здесь электрическая постоянная ε 0 = 8.85 · 10 -12

магнитная постоянная μ 0 = 4π · 10 -7

.

.

Совпадение скорости электромагнитной волны в вакууме со скоростью света стало первым доказательством электромагнитной природы света.

В вакууме упрощается связь напряженности магнитного и электрического полей в волне.

.

При распространении электромагнитной волны в диэлектрической среде (μ = 1)
и
.

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т.е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

Первое уравнение Максвелла определяет источники электрического поля. Электрические заряды создают вокруг себя электрические поля. Физический смысл этого уравнения состоит в том, что электрическое поле в некоторой области пространства связано с электрическим зарядом внутри этой поверхности.

Исходным для этого уравнения является уравнение Гаусса, которое говорит о том, что поток вектора через замкнутую поверхность S равен заряду q , заключенному в данной поверхности:

где ρ – объемная плотность заряда.

Для того чтобы получить дифференциальную форму, воспользуемся теоремой Гаусса-Остроградского, которая устанавливает связь между объемным и поверхностным интегралом:

Дивергенция (расходимость) векторного поля – величина мощности источника поля.

Дивергенция является скалярной величиной:

Второе уравнение Максвелла устанавливает для любых магнитных полей отсутствие свободных магнитных зарядов и то, что магнитные силовые линии всегда замкнуты. В интегральном виде этот факт записывается в виде уравнения:

Поток вектора магнитной индукции через замкнутую поверхность равен нулю, поскольку магнитных зарядов одного знака в природе не обнаружено.

Применяя теорему Гаусса – Остроградского:

Третье уравнение Максвелла - это обобщение закона индукции Фарадея для диэлектрической среды в свободном пространстве

где Ф – поток магнитной индукции, пронизывающий проводящий контур и создающий в нем ЭДС.

ЭДС создается не только в проводящем контуре, но и в некотором диэлектрическом контуре в виде электрического тока смещения.

Физический смысл второго уравнения Максвелла состоит в том, что электрическое поле в некоторой области пространства связано с изменением магнитного поля во времени в этой области. Т.е. переменное магнитное поле порождает вихревое электрическое поле.

Воспользуемся уравнением Стокса, которое преобразует контурный интеграл в поверхностный:

Данное равенство справедливо, если равны подынтегральные функции:

Четвертое уравнение Максвелла - это обобщение закона Ампера и Био-Саварра для токов смещения: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна полному току, пронизывающему этот контур.

Физический смысл первого уравнения Максвелла состоит в том, что магнитное поле в некоторой области пространства связано не только с токами проводимости, протекающими в этой области, но и с изменением электрического поля во времени в этой области (токами смещения).

Циркуляция вектора по контуру L равна сумме токов проводимости и смещения.

Получим дифференциальную форму уравнения Максвелла. Для этого воспользуемся уравнением Стокса, которое преобразует контурный интеграл в поверхностный:

Данное равенство справедливо, если равны подынтегральные функции:

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):

где и – соответственно электрическая и магнитная постоянная,

ε и μ – соответственно диэлектрическая и магнитная проницаемость,

– удельная проводимость вещества.

Уравнение плоской электромагнитной волны (ЭМВ). Поперечный характер ЭМВ. Амплитудные и фазовые соотношения. Скорость распространения электромагнитных волн в средах. Энергия электромагнитной волны. Вектор Пойнтинга.

Процесс распространения электромагнитных колебаний в пространстве называется электромагнитной волной . На электромагнитной волне колеблются векторы напряжённости во взаимно перпендикулярных плоскостях в одной фазе – они одновременно обращаются в нуль и одновременно достигают максимальных значений.

Различают плоские, сферические, цилиндрические и другие волны. Простейшими из них являются плоские волны. Плоской называется волна, у которой поверхности равных фаз – параллельные плоскости. Если поверхности равных амплитуд совпадают с поверхностями равных фаз, то такая волна называется однородной .

В однородной волне векторы изменяются в пространстве только вдоль одного направления, перпендикулярно фазовому фронту этой волны и совпадающего с направлением ее распространения.

ЭМВ - это поперечные волны, т.е. векторы перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны.

Исследуем плоскую ЭМВ, распространяющуюся в однородной нейтральной непроводящей среде с постоянными проницаемостями .

Система уравнений Максвелла является обобщением основных законов об электрических и электромагнитных явлениях. Она описывает абсолютно все электромагнитные явления. Являясь основой теории электромагнитного поля, эта система уравнений позволяет решать задачи, связанные с отысканием электрических и магнитных полей, создаваемых заданным распределением электрических зарядов и токов. были отправной точкой для создания общей теории относительности Эйнштейна. В теории Максвелла раскрывается электромагнитная природа света. Уравнения сформулированы Дж. Максвеллом в шестидесятых годах 19 века на основе обобщения эмпирических законов и развития идей ученых, исследовавших электромагнитные явления до него (Законы Кулона, Био – Савара, Ампера и, в особенности, исследования Фарадея). Сам Максвелл записал 20 уравнений с 20 неизвестными в дифференциальной форме, которые позднее были преобразованы. Современная форма Максвелла дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом. Запишем уравнения используя систему единиц Гаусса.

Система уравнений Максвелла

В состав системы уравнений Максвелла входят четыре уравнения.

Первое уравнение:

Это Закон Фарадея (Закон электромагнитной индукции).

где -напряженность электрического поля, -вектор магнитной индукции, c – скорость света в вакууме.

Это уравнение говорит, о том, что ротор напряженности электрического поля равен потоку (т.е. скорости изменения во времени) вектора магнитной индукции сквозь этот контур.

Уравнение (1.1) представляет собой первое уравнение Максвелла в дифференциальной форме.

Это же уравнение можно записать в интегральной форме, тогда оно примет следующий вид:

где – проекция на нормаль к площадке dS вектора магнитной индукции,

– магнитный поток.


Циркуляция вектора напряженности электрического поля вдоль замкнутого контура L (ЭДС индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак минус по правилу Ленца означает направление индукционного тока.

Согласно Максвеллу закон электромагнитной индукции (а это именно он), справедлив для любого замкнутого контура, произвольно выбранного в переменном магнитном поле.

Смысл этого уравнения: Переменное магнитное поле в любой точке пространства создает вихревое электрическое поле.

Второе уравнение Максвелла:

где -вектор магнитной напряженности, — плотность электрического тока, — вектор электрического смещения.

Данное уравнение Максвелла является обобщение эмпирического закона Био- Савара о том, что магнитные поля возбуждаются электрическими токами. Смысл второго уравнения в том, что источником возникновения вихревого магнитного поля является также переменное электрическое поле, магнитное действие которого характеризуется током смещения. (-плотность тока смещения).

В интегральном виде второе уравнение Максвелла (Теорема о циркуляции магнитного поля) представлено следующим образом:

Циркуляция вектора напряжённости магнитного поля по произвольному контуру равна алгебраической сумме токов проводимости и тока смещения, сцепленных с контуром.

Когда Максвелл вводил уравнения (более ста лет тому назад!), природа электромагнитного поля была не понятна. В настоящее время природа поля выяснена, и стало ясно, что может быть названo «током» лишь формально. По pяду расчетных соображений такое название, не придавая ему прямого физического смысла, целесообразно сохранить, что в электротехнике и делается. По этой же причине вектор D, входящий в выражение для тока смещения, называют вектором электрического смещения.

Помимо первых двух уравнений в систему уравнений Максвелла входит теорема Гаусса-Остроградского для электрического и магнитного полей:

где — электрического заряда.

Что в интегральном виде представляет собой следующее:

где -поток электрического смещения — поток магнитной индукции сквозь замкнутую поверхность, охватывающую свободный заряд q.

Смысл уравнения 3.2. Электрический заряд – источник электрической индукции.

Уравнение 4.2 выражает факт отсутствия свободных магнитных зарядов.

Полная система уравнений Максвелла в дифференциальном виде (характеризует поле в каждой точке пространства):

Полная система уравнений Максвелла в интегральном виде

Полная система уравнений Максвелла в интегральном виде (интегральная форма записи уравнений облегчает их физическую интерпретацию так ка делает их визуально ближе к известным эмпирическим законам):

Систему уравнений Максвелла дополняют «материальными уравнениями», связывающими векторы c величинами, описывающими электрические и магнитные свойства среды.

где – относительная диэлектрическая проницаемость, – относительная магнитная проницаемость, -удельная электропроводность, – электрическая постоянная, – магнитная постоянная. Среда предполагается изотропной, неферрромагнитной, несегнетоэлектрической.

На границе раздела двух сред выполняются граничные условия:

где — поверхностная плотность свободных зарядов, n- единичный вектор нормали к границе раздела, проведенный из среды 2 в 1, единичный вектор, касательный к границе, — проекция вектора плотности поверхностных токов проводимости на единичный вектор.

Данные уравнения выражают непрерывность нормальных составляющих вектора магнитной индукции и скачок нормальных составляющих вектора смещения. Непрерывность касательных составляющих вектора напряженностей электрического поля на границе раздела и скачок этих составляющих для напряженности магнитного поля.

Примеры решения задач

ПРИМЕР 1

Задание Из системы уравнений Максвелла получить уравнения непрерывности токов и закон сохранения заряда.
Решение Используем уравнение:

Проведем для него операцию дивергенции ( или ). Получим:

из системы уравнений Максвелла знаем, что , (c)

Подставим (с) в (b) получим:

отсюда следует

или в интегральной форме:

Соответственно для замкнутых изолированных областей получим:

Это уравнение непрерывности для тока, содержащее в себе закон сохранения заряда – один из фундаментальных принципов, который подтверждается экспериментом.

ПРИМЕР 2

Задание Доказать, что сумма токов проводимости и тока смещения, сцепленных с контуром, действительно непрерывна и, следовательно, полный ток, сцепленный с любым контуром, не зависит от выбора поверхности, натянутой на этот контур.
Доказательство Допустим, что в произвольном магнитном поле на некоторый контур натянуты две произвольные поверхности и . (рис. 3)

В электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм .

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Современный вид первого уравнения Максвелла таков:

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро » – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса .

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса , только уже не для электрического поля, но для магнитного.

Оно имеет вид:

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея . Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения .

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис . Подробное объяснение любого задания и отличная оценка гарантированы.