Числовая окружность четверти. Внеклассный урок - числовая окружность

Урок и презентация на тему: "Числовая окружность на координатной плоскости"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов

Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.

Определение числовой окружности на координатной плоскости

Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).

Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при $x > 0$, $у > 0$ - в первой четверти;
2) при $х 0$ - во второй четверти;
3) при $х 4) при $х > 0$, $у
Для любой точки $М(х; у)$ числовой окружности выполняются неравенства: $-1
Запомните уравнение числовой окружности: $x^2 + y^2 = 1$.

Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.

Найдем координату точки $\frac{π}{4}$

Точка $М(\frac{π}{4})$ - середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то $∠MOP=45°$.
Значит, треугольник OMP - равнобедренный прямоугольный треугольник и $OP=MP$, т.е. у точки M абсцисса и ордината равны: $x = y$.
Так как координаты точки $M(х;y)$ удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
$\begin {cases} x^2 + y^2 = 1, \\ x = y. \end {cases}$
Решив данную систему, получаем: $y = x =\frac{\sqrt{2}}{2}$.
Значит, координаты точки M, соответствующей числу $\frac{π}{4}$, будут $M(\frac{π}{4})=M(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2})$.
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.

Координаты точек числовой окружности



Рассмотрим примеры

Пример 1.
Найти координату точки числовой окружности: $Р(45\frac{π}{4})$.

Решение:
$45\frac{π}{4} = (10 + \frac{5}{4}) * π = 10π +5\frac{π}{4} = 5\frac{π}{4} + 2π*5$.
Значит, числу $45\frac{π}{4}$ соответствует та же точка числовой окружности, что и числу $\frac{5π}{4}$. Посмотрев значение точки $\frac{5π}{4}$ в таблице, получаем: $P(\frac{45π}{4})=P(-\frac{\sqrt{2}}{2};-\frac{\sqrt{2}}{2})$.

Пример 2.
Найти координату точки числовой окружности: $Р(-\frac{37π}{3})$.

Решение:

Т.к. числам $t$ и $t+2π*k$, где k-целое число, соответствует одна и та же точка числовой окружности то:
$-\frac{37π}{3} = -(12 + \frac{1}{3})*π = -12π –\frac{π}{3} = -\frac{π}{3} + 2π*(-6)$.
Значит, числу $-\frac{37π}{3}$ соответствует та же точка числовой окружности, что и числу $–\frac{π}{3}$, а числу –$\frac{π}{3}$ соответствует та же точка, что и $\frac{5π}{3}$. Посмотрев значение точки $\frac{5π}{3}$ в таблице, получаем:
$P(-\frac{37π}{3})=P(\frac{{1}}{2};-\frac{\sqrt{3}}{2})$.

Пример 3.
Найти на числовой окружности точки с ординатой $у =\frac{1}{2}$ и записать, каким числам $t$ они соответствуют?

Решение:
Прямая $у =\frac{1}{2}$ пересекает числовую окружность в точках М и Р. Точка М соответствует числу $\frac{π}{6}$ (из данных таблицы). Значит, и любому числу вида: $\frac{π}{6}+2π*k$. Точка Р соответствует числу $\frac{5π}{6}$, а значит, и любому числу вида $\frac{5π}{6} +2 π*k$.
Получили, как часто говорят в таких случаях, две серии значений:
$\frac{π}{6} +2 π*k$ и $\frac{5π}{6} +2π*k$.
Ответ: $t=\frac{π}{6} +2 π*k$ и $t=\frac{5π}{6} +2π*k$.

Пример 4.
Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{2}}{2}$ и записать, каким числам $t$ они соответствуют.

Решение:

Прямая $x =-\frac{\sqrt{2}}{2}$ пересекает числовую окружность в точках М и Р. Неравенству $x≥-\frac{\sqrt{2}}{2}$ соответствуют точки дуги РМ. Точка М соответствует числу $3\frac{π}{4}$ (из данных таблицы). Значит, и любому числу вида $-\frac{3π}{4} +2π*k$. Точка Р соответствует числу $-\frac{3π}{4}$, а значит, и любому числу вида $-\frac{3π}{4} +2π*k$.

Тогда получим $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Ответ: $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Задачи для самостоятельного решения

1) Найти координату точки числовой окружности: $Р(\frac{61π}{6})$.
2) Найти координату точки числовой окружности: $Р(-\frac{52π}{3})$.
3) Найти на числовой окружности точки с ординатой $у = -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
4) Найти на числовой окружности точки с ординатой $у ≥ -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
5) Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{3}}{2}$ и записать, каким числам $t$ они соответствуют.

Занятие 9. Числовая окружность. Синус и косинус. Тангенс и котангенс.

Единичной окружностью называют окружность радиуса 1.

Числовая окружность - это единичная окружность, точки которой соответствуют определенным действительным числам.

Общий вид числовой окружности.


1) Ее радиус принимается за единицу измерения.
2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти. Их соответственно называют первой, второй, третьей и четвертой четвертью.
3) Горизонтальный диаметр обозначают AC, причем А - это крайняя правая точка. Вертикальный диаметр обозначают BD, причем B - это крайняя верхняя точка.

Соответственно:
первая четверть - это дуга AB
вторая четверть - дуга BC
третья четверть - дуга CD
четвертая четверть - дуга DA
4) Начальная точка числовой окружности - точка А.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки. Отсчет от точки А против часовой стрелки называется положительным направлением . Отсчет от точки А по часовой стрелке называется отрицательным направлением .

Числовая окружность на координатной плоскости.

Центр радиуса числовой окружности соответствует началу координат (числу 0). Горизонтальный диаметр соответствует оси x , вертикальный - оси y . Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).

Значения x и y в четвертях числовой окружности:

Значение любой точки числовой окружности:

Любая точка числовой окружности с координатами (x; y ) не может быть меньше -1, но не может быть больше 1:  ; 

Основные величины числовой окружности:

Имена и местонахождение основных точек числовой окружности:

Как запомнить имена числовой окружности.

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности. Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2П ) против часовой стрелки.

1) Начнем с крайних точек на осях координат. Начальная точка - это 2П (крайняя правая точка на оси х , равная 1). Как вы знаете, 2П - это длина окружности. Значит, половина окружности - это 1П или П . Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х, равная -1, называется П . Крайняя верхняя точка на оси у, равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность - это П , то половина полуокружности - это П /2. Одновременно П /2 - это и четверть окружности. Отсчитаем три таких четверти от первой до третьей - и мы придем в крайнюю нижнюю точку на оси у , равной -1. Но если она включает три четверти - значит имя ей 3П /2.

2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый числитель - причем это противоположные точки и относительно оси у , и относительно центра осей, и относительно оси х . Это нам и поможет знать их значения точек без зубрежки. Надо запомнить лишь значение точек первой четверти: П /6, П /4 и П /3. И тогда мы "увидим" некоторые закономерности:

Определение . Если точка М числовой окружности соответствует числу t, то абсциссу точки М называют косинусом числа t и обозначают соs t , а ординату точки М называют синусом числа t и обозначают sin t .
Если М(t) = М(х;у), то х = cost, у = sint.

Определение . Отношение синуса числа t к косинусу того же числа называют тангенсом числа t. Отношение косинуса числа t к синусу того же числа называют котангенсом числа t.

Таблица знаков синуса, косинуса, тангенса и котангенса по четвертям числовой окружности:

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Уравнение окружности на координатной плоскости

Определение 1 . Числовой осью (числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

O x

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины .

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат , не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты абсциссу и ординату , которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA 1 и AA 2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A 1 на числовой оси Ox , ординатой точки A называют координату точки A 2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y ) или A = (x ; y ).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти (квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Утверждение 1 . Расстояние между двумя точками координатной плоскости

A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2)

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A 1 A 2 | 2 =
= ( x 2 - x 1) 2 + ( y 2 - y 1) 2 .
(1)

Следовательно,

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Рассмотрим на координатной плоскости Oxy (рис. 7) окружность радиуса R с центром в точке A 0 (x 0 ; y 0) .

Дата: Урок 1
тема: Числовая окружность на координатной прямой

Цели: ввести понятие модели числовой окружности в декартовой и криволинейной системе координат; формировать умение находить декартовы координаты точек числовой окружности и выполнять обратное действие: зная декартовы координаты точки, определять её числовое значение на числовой окружности.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

1. Разместив числовую окружность в декартовой системе координат, подробно разбираем свойства точек числовой окружности, находящихся в различных координатных четвертях.

Для точки М числовой окружности используют запись М (t ), если речь идет о криволинейной координате точки М , или запись М (х ; у ), если речь идет о декартовых координатах точки.

2. Отыскание декартовых координат «хороших» точек числовой окружности. Речь идет о переходе от записи М (t ) к М (х ; у ).

3. Отыскание знаков координат «плохих» точек числовой окружности. Если, например, М (2) = М (х ; у ), то х  0; у  0. (школьники учатся определять знаки тригонометрических функций по четвертям числовой окружности.)

1. № 5.1 (а; б), № 5.2 (а; б), № 5.3 (а; б).

Данная группа заданий направлена на формирование умения отыскивать декартовы координаты «хороших» точек на числовой окружности.

Решение:

5.1 (а).

2. № 5.4 (а; б), № 5.5 (а; б).

Эта группа заданий направлена на формирование умений находить криволинейные координаты точки по её декартовым координатам.

Решение:

5.5 (б).

3. № 5.10 (а; б).

Данное упражнение направлено на формирование умения находить декартовы координаты «плохих» точек.

V. Итоги урока.

Вопросы учащимся:

– Что собой представляет модель – числовая окружность на координатной плоскости?

– Как, зная криволинейные координаты точки на числовой окружности, найти её декартовы координаты и наоборот?

Домашнее задание: № 5.1 (в; г) – 5.5 (в; г), № 5.10 (в; г).

Дата: Урок 2
ТЕМА: Решение задач на модели «числовая окружность на координатной плоскости»

Цели: продолжить формирование умения переходить от криволинейных координат точки на числовой окружности к декартовым координатам; формировать умение отыскивать на числовой окружности точки, координаты которых удовлетворяют заданному уравнению или неравенству.

Ход урока

I. Организационный момент.

II. Устная работа.

1. Назовите криволинейные и декартовы координаты точек на числовой окружности.

2. Сопоставьте дугу на окружности и её аналитическую запись.

III. Объяснение нового материала.

2. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному уравнению.

Рассматриваем примеры 2 и 3 со с. 41–42 учебника.

Важность этой «игры» очевидна: учащиеся готовятся к решению простейших тригонометрических уравнений вида Для понимания сути дела следует прежде всего научить школьников решать эти уравнения с помощью числовой окружности, не переходя к готовым формулам.

При рассмотрении примера на нахождение точки с абсциссой обращаем внимание учащихся на возможность объединения ддвух серий ответов в одну формулу:

3. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному неравенству.

Рассматриваем примеры 4–7 со с. 43–44 учебника. Решая подобные задачи, мы готовим учащихся к решению тригонометрических неравенств вида

После рассмотрения примеров учащиеся могут самостоятельно сформулировать алгоритм решения неравенств указанного типа:

1) от аналитической модели переходим к геометрической модели – дуга МР числовой окружности;

2) составляем ядро аналитической записи МР ; для дуги получаем

3) составляем общую запись:

IV. Формирование умений и навыков.

1-я группа. Нахождение точки на числовой окружности с координатой, удовлетворяющей заданному уравнению.

№ 5.6 (а; б) – № 5.9 (а; б).

В процессе работы над этими упражнениями отрабатываем пошаговость выполнения: запись ядра точки, аналитической записи.

2-я группа. Нахождение точек на числовой окружности с координатой, удовлетворяющей заданному неравенству.

№ 5.11 (а; б) – 5.14 (а;б).

Главное умение, которое должны приобрести школьники при выполнении данных упражнений, – это составление ядра аналитической записи дуги.

V. Самостоятельная работа.

Вариант 1

1. Обозначьте на числовой окружности точку, которая соответствует заданному числу, и найдите её декартовы координаты:

2. Найдите на числовой окружности точки с данной абсциссой и запишите, каким числам t они соответствуют.

3. Обозначьте на числовой окружности точки с ординатой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.

Вариант 2

1. Обозначьте на числовой окружности точку, которая соответствует данному числу, и найдите её декартовы координаты:

2. Найдите на числовой окружности точки с данной ординатой у = 0,5 и запишите, каким числам t они соответствуют.

3. Обозначьте на числовой окружности точки с абсциссой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.

VI. Итоги урока.

Вопросы учащимся:

– Как найти на окружности точку, абсцисса которой удовлетворяет заданному уравнению?

– Как найти на окружности точку, ордината которой удовлетворяет заданному уравнению?

– Назовите алгоритм решения неравенств с помощью числовой окружности.

Домашнее задание: № 5.6 (в; г) – № 5.9 (в; г),

№ 5.11 (в; г) – № 5.14 (в; г).