Числовая последовательность виды способы задания свойства. Числовая последовательность

Практическая работа № 13

Задание числовых последовательностей различными способами, вычисление членов последовательности. Нахождение пределов последовательностей и функций

Цель: научиться записывать числовые последовательности различными способами, описывать их свойства; находить пределы последовательностей и функций.

Краткая теория

Функция у=f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Существуют следующие способы задания числовой последовательности:

    Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

    Аналитический способ. Последовательность задается формулой n-го члена: у n =f(n). По этой формуле можно найти любой член последовательности.

    Рекуррентный способ. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Числовую последовательность называют возрастающей , если ее члены возрастают (у n+1 у n) и убывающей, если ее члены убывают (у n+1 n).

Возрастающая или убывающая числовые последовательности называются монотонными .

Пусть – точка прямой, а – положительное число. Интервал называется окрестностью точки , а число − радиусом окрестности.

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу b при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число b называют пределом последовательности (у n), если в любой заранее выбранной окрестности точки b содержат все члены последовательности, начиная с некоторого номера

Теорема 1 Если , , то:

    Предел суммы/разности двух последовательностей равен сумме/разности пределов от каждой из них, если последние существуют:

    Предел произведения двух последовательностей равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух последовательностей равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

Для любого натурального показателя m и любого коэффициента k справедливо соотношение:

Теорема 1 Если , , то:

    Предел суммы/разности двух функций равен сумме/разности пределов от каждой из них, если последние существуют:

;

    Предел произведения двух функций равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух функций равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

    Постоянный множитель можно вынести за знак предела:

Функцию у=f(x) называют непрерывной в точке x=a, если предел функции у=f(x) при стремлении x к a равен значению функции в точке х=а.

Первый замечательный предел: .

Практические задания для аудиторной работы

    Задайте последовательность аналитически и найдите пять первых членов этой последовательности:

а) каждому натуральному числу ставится в соответствие противоположное ему число;

б) каждому натуральному числу ставится в соответствие квадратный корень из этого числа;

в) каждому натуральному числу ставится в соответствие число -5;

г) каждому натуральному числу ставится в соответствие половина его квадрата.

2. По заданной формуле n-го члена вычислите пять первых членов последовательности (y n):

3. Является ли последовательность ограниченной?

4. Является ли последовательность убывающей или возрастающей?

5. Запишите окрестность точки a=-3 радиуса r=0,5 в виде интервала.

6. Окрестностью какой точки и какого радиуса является интервал (2,1;2,3).

7. Вычислите предел последовательности:

8. Вычислите:

Самостоятельная работа

Вариант 1

Часть А

Часть В

Часть С

7. Вычислите:

Вариант 2

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 3

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 4

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Контрольные вопросы

    Что называют числовой последовательностью?

    Какими способами можно задавать числовую последовательность?

    Какая последовательность называется ограниченной сверху?

    Какая последовательность называется ограниченной снизу?

    Какая последовательность называется возрастающей?

    Какая последовательность называется убывающей?

    Что называют пределом числовой последовательности?

    Перечислите правила вычисления пределов последовательностей.

    Перечислите правила вычисления пределов функций.

Обучающая цель : дать понятие и определение числовой последовательности, рассмотреть способы задания числовых последовательностей, решать упражнения.

Развивающая цель : развивать логическое мышление, познавательные навыки, техники вычисления, навыки сравнения при выборе формул, навыки учебного труда

Воспитательная цель : воспитание положительных мотивов к учебе, добросовестного отношения к труду, дисциплинированности.

Тип урока : урок закрепления метериала.

Оборудование : интерактивная доска, тестирующее установка ACTIVwote,ACTIVwand,ACTIVslate, раздаточный материал.

План урока

  1. Организация урока.
  2. Повторение теоретического материала. Фронтальный опрос. Историческая справка.
  3. Закрепление: Решение упражнений по теме «Способы задания числовых последовательностей».
  4. Проверка знаний. Тест
  5. Домашнее задание.

Ход урока

I . Организационный момент.

II . Повторение теоретического материала.

1) Фронтальныйопрос.

1. Что называется числовой последовательностью?

Ответ : Множество чисел, элементы которого можно пронумеровать.

2. Приведи пример числовой последовательности.

Ответ :

2,4,6,8,10,…..
1,3,5,7,9,11,…..
3,6,9,12,15,….

3. Что называется членами числовой последовательности?

Ответ : Числа, составляющие числовую последовательность.

а 1 =2,а 2 =4,а 3 =6,а 4 =8,….
а 1 =1,а 2 =3,а 3 =5,а 4 =7,….
а 1 =3,а 2 =6,а 3 =9,а 4 =12,….

4. Что такое общий член числовой последовательности?

Ответ : ап называется общим членом последовательности,а саму последовательность коротко обозначают через {ап}.

5. Как обозначают числовую последовательность?

Ответ : Обычно числовую последовательность обозначают малыми буквами латинского алфавита с индексами, указывающими на номер этого члена в последовательности: а 1 ,а 2 ,а 3 ,а 4 ,….,а п,…

5. Когда числовую последовательность считаются заданной?

Ответ : Если мы можем указать любой член последовательности.

2) Историческая справка.

По словам математика Лейбница «кто хочет ограничиться настоящим без знания прошлого, тот никогда его не поймет».

ФИБОНАЧЧИ (Леонардо из Пизы)

Fibonacci (Leonardo of Pisa), ок . 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи , а сами числа - числа Фибоначчи . Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение . В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха.Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности.

Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Числа Фибоначчи 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Последовательность чисел, каждый член которой равен сумме двух предыдущих, имеет множество любопытных свойств.

III. Закрепление.

Работа по учебнику (цепочкой)

№343 Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

2. х n =3n2+2 n+1

3.

1. Решение:

а n =2 n +1/2 n

Ответ :

2. Решение:

n=1, x 1 =3*1 2 +2*1+1=3+2+1=6

n=2, x 2 =3*2 2 +2*2+1=3*4+4+1=12+5=17

n=3, x 3 =3*3 2 +2*3+1=27+6+1=34

n=4, x 4 =3*4 2 +2-4+1=3*16+8+1=48+9=57

n=5, x 5 =3*5 2 +2*5+1=3*25+10+1=75+11=86

Ответ : 6,17,34,57,86…….

3. Решение:

Ответ :

№344. Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ : 0,3,6,9,12,15,.... 3n, а n =3n

№345. Напишите формулу общего члена последовательности натуральных чисел, кратных 7.

Ответ : 0,7,14,25,28,35,42.... 7n, а n =7n

№346 Напишите формулу общего члена последовательности натуральных чисел,которые при делении на 4 дают в остатке 1.

Ответ :5,9,13,17,21....... 4 n +1 , а n =4n+1

№347 Напишите формулу общего члена последовательности натуральных чисел,которые при делении на 5 дают в остатке 2.

Ответ : а n =5n+2, 7.12,17,22, 27,.... 5 n +2

№348 Напишите формулу общего члена последовательности.

На этом уроке мы начнем изучение прогрессий. Здесь мы познакомимся с числовой последовательностью и способами ее задания.

Вначале напомним определение и свойства функций числовых аргументов и рассмотрим частный случай функции, когда х принадлежит множеству натуральных чисел. Дадим определение числовой последовательности и приведем несколько примеров. Покажем аналитический способ задания последовательности через формулу ее n-го члена и рассмотрим несколько примеров на задание и определение последовательности. Далее рассмотрим словесное и рекуррентное задание последовательности.

Тема: Прогрессии

Урок: Числовая последовательность и способы ее задания

1. Повторение

Числовая последовательность , как мы увидим, это частный случай функции, поэтому вспомним определение функции.

Функцией называется закон, по которому каждому допустимому значению аргумента ставится в соответствие единственное значение функции.

Вот примеры известных функций.

Рис. 1. График функции

Допустимы все значения, кроме 0. Графиком этой функции является гипербола (см. Рис.1).

2.. Допустимы все значения, .

Рис. 2. График функции

График квадратичной функции - парабола, характерные точки тоже отмечены (см. Рис.2).

3..

Рис. 3. График функции

Допустимы все значения х. График линейной функции - прямая (см. Рис.3).

2. Определение числовой последовательности

Если х принимает только натуральные значения (), то имеем частный случай, а именно числовую последовательность.

Напомним, что натуральными являются числа 1, 2, 3, …, n, …

Функцию , где , называют функцией натурального аргумента, или числовой последовательностью, и обозначают следующим образом: или , или .

Поясним, что обозначает, например, запись .

Это значение функции, когда n=1, т. е. .

Это значение функции, когда n=2, т. е. и т. д. …

Это значение функции, когда аргумент равен n, т. е. .

3. Примеры последовательностей

1. - это формула общего члена. Задаем различные значения n, получаем различные значения у - членов последовательности.

Когда n=1; , когда n=2 и т. д., .

Числа являются членами заданной последовательности, а точки лежат на гиперболе - графике функции (см. Рис.4).

Рис. 4. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на параболе - графике функции (см. Рис.5).

Рис. 5. График функции

Рис. 6. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на прямой - графике функции (см. Рис.6).

4. Аналитический способ задания последовательности

Существует три способа задания последовательностей: аналитический, словесный и рекуррентный. Рассмотрим каждый из них подробно.

Последовательность задана аналитически, если указана формула ее n-го члена .

Рассмотрим несколько примеров.

1. Найти несколько членов последовательности, которая задана формулой n-го члена: (аналитический способ задания последовательности).

Решение. Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Для заданной последовательности найдем и .

.

.

2. Рассмотрим последовательность, заданную формулой n-го члена: (аналитический способ задания последовательности).

Найдем несколько членов этой последовательности.

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Вообще нетрудно понять, что членами этой последовательности являются те числа, которые при делении на 4 дают в остатке 1.

а. Для заданной последовательности найти .

Решение: . Ответ: .

б. Даны два числа: 821, 1282. Являются ли эти числа членами заданной последовательности?

Для того чтобы число 821 было членом последовательности, необходимо, чтобы выполнялось равенство: или . Последнее равенство является уравнением относительно n. Если решением данного уравнения является натуральное число, то ответ положительный.

В данном случае это так. .

Ответ: да, 821 - член заданной последовательности, .

Переходим ко второму числу. Аналогичные рассуждения приводят нас к решению уравнения: .

Ответ: поскольку n не является натуральным числом, то число 1282 не является членом заданной последовательности.

Формулы, которые аналитически задают последовательность, могут быть самыми разными: простыми, сложными и т. д. Требование к ним одно: каждому значению n должно соответствовать единственное число.

3. Дано: последовательность задана следующей формулой .

Найти три первых члена последовательности.

, , .

Ответ: , , .

4. Являются ли числа членами последовательности ?

а. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: первое заданное число является членом данной последовательности, а именно пятым ее членом.

б. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: второе заданное число тоже является членом данной последовательности, а именно девяносто девятым ее членом.

5. Словесный способ задания последовательности

Мы рассмотрели аналитический способ задания числовой последовательности. Он удобный, распространенный, но не единственный.

Следующий способ - это словесное задание последовательности.

Последовательность, каждый ее член, возможность вычисления каждого ее члена можно задать словами, не обязательно формулами.

Пример 1. Последовательность простых чисел.

Напомним, что простое число - это такое натуральное число, которое имеет ровно два различных делителя: 1 и само это число. Простыми являются числа 2, 3, 5, 7, 11, 13, 17, 19, 23 и т. д.

Их бесчисленное множество. Еще Евклид доказал, что последовательность этих чисел бесконечна, т. е. не существует самого большого простого числа. Последовательность задана, каждый член можно вычислить, утомительно, но можно вычислить. Эта последовательность задана словесно. Формулы, увы, не удается подобрать.

Пример 2. Рассмотрим число =1,41421…

Это иррациональное число, десятичная его запись предусматривает бесконечное число цифр. Рассмотрим последовательность десятичных приближений числа по недостатку: 1; 1,4; 1,41; 1,414; 1,4142; и т. д.

Членов этой последовательности бесконечное множество, каждое из них можно вычислить. Задать эту последовательность формулой нельзя, поэтому описываем ее словесно.

6. Рекуррентный способ задания последовательности

Мы рассмотрели два способа задания числовой последовательности:

1. Аналитический способ, когда задается формула n-го члена.

2. Словесное задание последовательности.

И, наконец, существует рекуррентное задание последовательности, когда задаются правила вычисления n-го члена по предыдущим членам.

Рассмотрим

Пример 1. Последовательность Фибоначчи (13 век).

Историческая справка:

Леона́рдо Пиза́нский (около 1170 года, Пиза — около 1250 года) — первый крупный математик средневековой Европы. Наиболее известен под прозвищем Фибона́ччи (Fibonacci).

Значительную часть усвоенных им знаний он изложил в своей выдающейся «Книге абака» (Liber abaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года). Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. «Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII—XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения. По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления.

Задаются первые два члена и каждый последующий член - это сумма двух предыдущих

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; … - первые несколько членов последовательности Фибоначчи.

Это последовательность задана рекуррентно, n-й член зависит от двух предыдущих.

Пример 2.

В этой последовательности каждый последующий член больше предыдущего на 2. Такая последовательность называется арифметической прогрессией.

Числа 1, 3, 5, 7 …- первые несколько членов этой последовательности.

Приведем еще один пример рекуррентного задания последовательности.

Пример 3.

Последовательность задается следующим образом:

Каждый последующий член этой последовательности получается умножением предыдущего члена на одно и то же число q. Такая последовательность имеет специальное название - геометрическая прогрессия. Арифметическая и геометрическая прогрессии будут объектами нашего изучения на следующих уроках.

Найдем несколько членов указанной последовательности при b=2 и q=3.

Числа 2; 6; 18; 54; 162 … - первые несколько членов этой последовательности.

Интересно, что эту последовательность можно задать и аналитическим способом, т. е. можно подобрать формулу. В данном случае формула будет таковой .

Действительно: если n=1, то ; если n=2, то ; если n=3, то и т. д.

Таким образом, мы констатируем: одна и та же последовательность может быть задана и аналитически и рекуррентно.

7. Итог урока

Итак, мы рассмотрели, что такое числовая последовательность и способы её задания.

На следующем уроке мы познакомимся со свойствами числовых последовательностей.

1. Макарычев Ю. Н. и др. Алгебра 9 класс (учебник для средней школы).-М.: Просвещение, 1992.

2. Макарычев Ю. Н., Миндюк Н. Г., Нешков, К. И. Алгебра для 9 класса с углубл. изуч. математики.-М.: Мнемозина, 2003.

3. Макарычев Ю. Н., Миндюк Н. Г Дополнительные главы к школьному учебнику алгебры 9 класса.-М.: Просвещение, 2002.

4. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов (учебное пособие для учащихся школ и классов с углубл. изуч. математики).-М.: Просвещение, 1996.

5. Мордкович А. Г. Алгебра 9 класс, учебник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

6. Мордкович А. Г. , Мишутина Т. Н., Тульчинская Е. Е. Алгебра 9 класс, задачник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

7. Глейзер Г. И. История математики в школе. 7-8 классы (пособие для учителей).-М.: Просвещение, 1983.

1. Раздел College. ru по математике.

2. Портал Естественных Наук.

3. Exponenta. ru Образовательный математический сайт.

1. № 331, 335, 338 (Макарычев Ю. Н. и др. Алгебра 9 класс).

2. № 12.4 (Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов).

Урок № 32 АЛГЕБРА

Учитель математики, первой категории Гаун Ольга Викторовна. Восточно-Казахстанская область Глубоковский район КГУ «Черемшанская средняя школа»

Тема: Числовая последовательность и способы ее задания

Основные цели и задачи урока

Образовательная: разъяснить учащимся смысл понятий «последовательность», «n-ый член последовательности»; познакомить со способами задания последовательности.

Развивающа я: развитие навыков логического мышления; развитие вычислительных навыков; развитие культуры устной речи, развитие коммуникативности и сотрудничества. Воспитательная : воспитание наблюдательности, привитие любви и интереса к предмету.

Ожидаемые результаты освоения темы

В ходе урока приобретут новые знания о числовых последовательностях и способах ее задания. Научатся находить верное решение, составлять алгоритм решения и пользоваться им при решении заданий. Путем исследования обнаружат их некоторые свойства. Вся работа сопровождается слайдами. Применение ИКТ даст возможность провести урок оживленно, выполнить большой объем работы, со стороны ребят будет искренний интерес и эмоциональное восприятие. Одарённые ученики выступят с сообщением о числах Фибоначчи и о золотом сечении. Универсальные учебные действия, на формирование которых направлен образовательный процесс: умение работать в паре, развивать логическое мышление, умение анализировать, исследовать, делать выводы, отстаивать свою точку зрения. Обучить навыкам общения и сотрудничества. Использование данных технологий способствует развитию у обучающихся универсальных способов деятельности, опыта творческой деятельности, компетентности, коммуникабельности.

Ключевые идеи урока

Новые подходы в преподавании и обучении

Диалоговое обучение

Обучение тому, как обучаться

Обучение критическому мышлению

Обучение талантливых и одарённых детей

Тип урока

Изучение новой темы

Методы обучения

Наглядный (презентация), словесный (беседа, объяснение, диалог), практический.

Формы организации учебной деятельности уч-ся

фронтальная; парная; индивидуальная.

ХОД УРОКА

    Организационный момент

(Приветствие учащихся, определение отсутствующих, проверка готовности учащихся к уроку, организация внимания).

    Мотивация урока.

«Числа управляют миром»,- говорили древнегреческие ученые. «Все есть число». Согласно их философскому мировоззрению, числа управляют не только мерой и весом, но также явлениями, происходящими в природе, и являются сущностью гармонии, царствующей в мире. Сегодня на уроке мы продолжим работать с числами.

    Введение в тему, изучение нового материала.

Давайте проверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:

понедельник, вторник,…..

январь, февраль, март…;

Алиев, Гордеева, Грибачева… (список класса);

10,11,12,…99;

Вывод: Это последовательности, то есть некоторый упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте. Итак, тема урока – последовательность.

Сегодня мы будем говорить о видах и составляющих числовых последовательностей, а также о способах их задания. Последовательности будем обозначать так: (аn), (bn), (сn) и т.д.

А сейчас я предлагаю вам первое задание: перед вами некоторые числовые последовательности и словестное описание этих последовательностей. Вам необходимо найти закономерность каждого ряда и соотнести с описанием. (показать с помощью стрелки) (Взаимопроверка)

Рассмотренные нами ряды и есть примеры числовых последовательностей .

Элементы, образующие последовательность, называются членами последовательности и называются соответственно первым, вторым, третьим,… n - ным членами последовательности. Обозначают члены последовательности так а 1 ; а 2 ; а 3 ; а 4 ; … а n ; где n – номер , под которым данное число находится в последовательности.
На экране записаны последовательности:
(
На перечисленных последовательностях отрабатываются форма записи члена последовательности a n , и понятия предыдущего и последующего членов ) .
3; 6; 9; 12; 15; 18;…
5, 3, 1, -1.
1, 4, 9, 16 ,…
–1; 2; –3; 4; –5; 6; …
3; 3; 3; 3; …; 3; … .

Назовите а 1 для каждой последовательности, а 3 и т.д. А смогли бы вы продолжить каждый из этих рядов? Что для этого необходимо знать?

Давайте разберем с вами еще такие понятия как последующий и предыдущий .

(например, для а 5…, а для а n ?) - запись на слайде a n +1, a n -1

Виды последовательностей
(
на перечисленных выше последовательностях отрабатывается навык определять виды последовательностей )
1) Возрастающая – если каждый член меньше следующего за ним, т.е.
a n < a n +1.
2) Убывающая – если каждый член больше следующего за ним, т.е.
a n > a n +1 .
3) Бесконечная
4) Конечная
5) Знакочередующаяся
6) Постоянная (стационарная)

Попробуйте дать определение каждому виду и охарактеризуйте каждую из предложенных последовательностей.

Задания для устной работы

    Назовите в последовательности 1; 1/2; 1/3; 1/4; 1/5; … 1/n; 1/(n+1) члены а 1 ; а 4 ; а 10 ; а n ;

    Является ли последовательность четырёхзначных чисел конечной? (да)

    Назовите её первый и последний члены. (Ответ: 1000; 9999)

    Является ли последовательностью запись чисел 2; 4; 7; 1; -21; -15; …? (нет, так как нельзя по первым шести членам обнаружить какую-нибудь закономерность)

Физпауза (тоже связана с темой сегодняшнего урока: звездное небо, планеты солнечной системы…в чем связь?)

Способы задания последовательностей
1) словесный – задание последовательности описанием;
2) аналитический – формулой
n -го члена;
3) графический – с помощью графика;
4) рекуррентный – любой член последовательности, начиная с некоторого, выражается через предыдущие
Сегодня на уроке мы разберем первых два способа. Итак,
словестный способ. Может быть кто-нибудь из вас попробует задать какую-либо последовательность?

(Например: Составьте последовательность нечетных натуральных чисел . Охарактеризуйте эту последовательность: возрастающая, бесконечная)
Аналитический способ: с помощью формулы n-ого члена последовательности.

Формула общего члена позволяет вычислить член последовательности с любым заданным номером. Например, если х n =3n+2, то

х 1 =3*1+2=5;

х 2 =3*2+2=8

х 5 =3 . 5+2=17;

х 45 =3 . 45+2=137 и т.д. Так каково преимущество аналитического способа перед словестным ?

А я вам предлагаю следующее задание: даны формулы задания некоторых последовательностей и сами последовательности, образованных по этим формулам. В этих последовательностях пропущены некоторые члены. Ваша задача, работая в парах , заполнить пропуски.

Самопроверка (на слайде появляется правильный ответ)

Представление творческого проекта «Числа Фибоначчи» (опережающее задание )

Сегодня мы познакомимся со знаменитой последовательностью:

1, 1, 2, 3, 5, 8, 13, 21, …, (Слайд) Каждое число, начиная с третьего, равно сумме двух предшествующих. Этому ряду натуральных чисел, имеющему своё историческое название – ряд Фибоначчи, присуща своя логика и красота. Леонардо Фибоначчи (1180-1240). Крупный итальянский математик, автор «Книги абака». Эта книга несколько веков оставалась основным хранилищем сведений по арифметике и алгебре. Именно по трудам Л. Фибоначчи вся Европа осваивала арабские цифры, систему счета, а также практическую геометрию. Они оставались настольными учебниками, чуть ли не до эпохи Декарта (а это уже 17 век!).

Просмотр видеофильма.

Наверное, вы не совсем поняли какова связь между спиралью и рядом Фибоначчи. Поэтому я покажу, как она получается .

Если мы построим рядом два квадрата со стороной 1,затем набольшей стороне равной 2 другой, затем на большей стороне, равной 3 еще квадрат так до бесконечности…Потом в каждом квадрате, начиная с меньшего, построим четверть дуги, то получим спираль, о которой идет речь в фильме.

На самом деле практическое применение знаний, полученных на этом уроке в реальной жизни достаточно велико. Перед вами несколько задач из разных научных областей.

(Индивидуальная работа)

Задача 1.

16, 15, 18, … (17, 20, 19)

1, 2, 2, 4, 8, … (32, 256, 8192)

33, 31, 32, … (30, 31, 29)

Задача 2.

(Ответы учащихся записываются на доске: 500, 530, 560, 590, 620).

Задача 3.

Задача 4. Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих. Через сколько дней заболеют все ученики нашей школы (300 человек)? (Через 4 дня).

Задача 5 . Сколько появится бактерий куриной холеры за 10 часов, если одна бактерия делится пополам каждый час?
Задача 6 . Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 мин. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин? ( 10)

Задача 7 . При свободном падении тело проходит в первую секунду 4,8 м, а в каждую следующую на 9,8 м больше. Найдите глубину шахты, если свободно падающее тело достигло ее дна через 5 с после начала падения.

Задача 8 . Гражданина К. осталось завещание. Он в первый месяц истратил 1000$, а каждый последующий месяц истратил на 500$ больше. Сколько денег было завещано гражданину К., если их хватит на 1 год безбедной жизни? (45000)

Быстро и без ошибок решать такие задачи нам позволит изучение следующих тем этой главы «Прогрессии».

Домашнее задание: стр.66 №151, 156, 157

Творческое задание: сообщение о треугольнике Паскаля

Подведение итого. Рефлексия. (оценка «приращения» знаний и достижения целей)

    Какова была цель сегодняшнего урока?

    Цель достигнута?

    Продолжи высказывание

Я не знал….

Теперь я знаю…

Задачи на практическое применение свойств последовательностей (прогрессий)

Задача 1. Продолжи последовательности чисел:

16, 15, 18, …

1, 2, 2, 4, 8, …

33, 31, 32, …

Задача 2. На складе имеется 500 т угля, каждый день подвозят по 30 т. Сколько угля будет на складе в 1 день? 2 день? 3 день? 4 день? 5 день?

Задача 3. Автомобиль, двигаясь со скоростью 1 м/с за каждую последующую секунду изменял свою скорость на 0,6 м/с. Какую скорость он будет иметь спустя 10 секунд?

Задача 4 . Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих. Через сколько дней заболеют все ученики нашей школы (300 человек)?

Задача 5. Сколько появится бактерий куриной холеры за 10 часов, если одна бактерия делится пополам каждый час?

Задача 6. Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 мин. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин?

Задача 7. При свободном падении тело проходит в первую секунду 4,8 м, а в каждую следующую на 9,8 м больше. Найдите глубину шахты, если свободно падающее тело достигло ее дна через 5 с после начала падения.

Задача 8. Гражданина К. осталось завещание. Он в первый месяц истратил 1000$, а каждый последующий месяц истратил на 500$ больше. Сколько денег было завещано гражданину К., если их хватит на 1 год безбедной жизни?

Бесконечной числовой последовательностью называется числовая функция, определенная на множестве всех натуральных чисел. Общий вид: а 1 ; а 2 ; а 3 ; … а n ; … (или (а n)).

Способы задания последовательностей:

1. Последовательность может быть задана при помощи формулы, указывающей, как по номеру n члена последовательности вычислить его значение а.

Последовательность, у которой все члены принимают равные между собой значения, называется постоянной последовательностью.

2. Реккурентный (индуктивный) способ: он состоит в том, что указывается правило (обычно это формула), позволяющая вычислить общий член последовательности через предыдущие, и задается несколько начальных членов последовательности. Эта формула называется реккурентным соотношением.

3. Последовательность может быть задана словесно, т.е. описанием ее членов.

При изучении последовательностей удобно использовать их геометрическое изображение. Для этого используют в основном 2 способа:

1. Т.к. последовательность (а n) есть функция, заданная на N, то ее можно изобразить как график этой функции с координатами точек (n; а n).

2. Члены последовательности (а n) можно изобразить точками х=а n .

Ограниченные и неограниченные последовательности.

Последовательность (а n) называется ограниченной, если существуют числа M и m, такие, что имеет место неравенство m≤a n ≤M. В противном случае она называется неограниченной.

Существует 3 вида неограниченных последовательностей:

1. Для нее существует m и не существует M – в таком случае она ограниченная снизу и неограниченная сверху.

2. Для нее не существует m и существует M – в таком случае она неограниченная снизу и ограниченная сверху.

3. Для нее не существует ни m, ни М – в таком случае она не ограниченная ни снизу, ни сверху.

Монотонные последовательности.

К монотонным последовательностям относятся убывающие, строго убывающие, возрастающие, строго возрастающие последовательности.

Последовательность (а n) называется убывающей, если каждый предыдущий член не меньше последующего: а n +1 ≤a n .



Последовательность (а n) называется строго убывающей, если каждый предыдущий член строго больше последующего: а n >a 2 >a 3 >…>a n +1 >…

Последовательность (а n) называется возрастающей, если каждый последующий член не меньше предыдущего: а n ≤a n +1 .

Последовательность называется строго возрастающей, если каждый последующий член строго больше предыдущего: а 1

Предел числовой последовательности. Основные теоремы о пределах.

Число а называется пределом последовательности (а n), если для каждого положительного числа ε найдется такое натуральное число N, что для любого n>N выполняется неравенство:

|a n – a| < ε.

В этом случае пишут: lim a n = a , или a n ->a при n->∞.

Последовательность, имеющая предел, называется сходящейся, а не имеющая предела – расходящейся.

Если последовательность имеет предел, то она ограниченная.

Всякая сходящаяся последовательность имеет только один предел.

Последовательность называется бесконечно малой, если ее предел равен нулю.

Для того, чтобы число а было пределом последовательности (а n), необходимо и достаточно, чтобы а n имело представление а n =а+α n , где (α n) - бесконечно малая последовательность.

Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

Теоремы о пределах:

1. О пределе суммы: Если последовательность (а n) и (в n) сходятся, то последовательность (а n + в n) также сходится и: lim (а n + в n) = lim а n + lim в n .

n ->∞ n ->∞ n ->∞

2. О пределе произведения: Если последовательности (а n) и (в n) сходятся, то последовательность (а n ∙ в n) также сходится и:

lim (а n ∙ в n) = lim а n ∙ lim в n .

n ->∞ n ->∞ n ->∞

Следствие 1: Постоянный множитель можно выносить за знак предела:

lim (са n) = с ∙ lim а n

n ->∞ n ->∞

3. Если последовательности (а n) и (в n) сходятся, то последовательность (а n /в n) также сходится и: lim (а n / в n) = (lim а n)/ (lim в n).

n ->∞ n ->∞ n ->∞

Функция. Способы задания функции.

Если каждому элементу х по какому-либо правилу f поставлен в соответствие элемент у, единственный для каждого х, то говорят, что на множестве А задана функция f со значением из множества В, и пишут: f:А->В, или у=f (х).

Пусть задана функция у=f (х). Тогда х назыв. аргументом или независимой переменной, а у – значением функции или зависимой переменной.

Множество А называют областью определения функции, а множество всех у, поставленных в соответствие хотя бы одному х – множеством значений функции. Область определения функции называют также областью значений аргумента, или областью изменения независимой переменной..

Способы задания функции:

1. Табличный способ.

2. Аналитический способ: при таком способе указывается область определения функции (множество А), и формулируется закон (задается формула), по которому каждому х сопоставляется соответствующий у.

3. Способ словесного описания.

4. Геометрический (графический) способ: задать функцию графически – значит изобразить ее график.