Читинская область. Районы Забайкальского края

Однако предполагается, что во время национальных чрезвычайных ситуаций Министерство обороны США может воспользоваться своим контролем над GPS, т.е. не дать гражданским пользователям доступа к сигналу или уменьшить сигнал так, что навигационная система не сможет обеспечивать гражданскую авиацию.

      Преимущества и недостатки СНС

Спутниковые навигационные системы обладают рядом преимуществ по сравнению с действующими радиотехническими системами (РТС) навигации. К основным преимуществам спутниковой навигации следует отнести обеспечение точной и надежной 4-х мерной навигации во всех районах и на всех высотах полета ВС и, как следствие:

    снижение риска катастроф, связанного с неточностью информации о местоположении ВС, особенно в тех районах (высотах) полета ВС, где использование действующих средств невозможно или экономически нецелесообразно;

    использование единого средства навигации для обеспечения всех этапов полета ВС, включая точные заходы на посадку на необорудованные аэродромы;

    возможность реализации автоматического зависимого наблюдения, обеспечит повышение пропускной способности при сокращении продольных и боковых интервалов разделения ВС в тех районах, где организация наблюдения при использовании радиолокационных станций невозможна или экономически нецелесообразна;

    повышение гибкости и экономичности полетов ВС при высокой точности самолетовождения и использовании зональной навигации за счет сокращения полетного времени и экономии топлива;

    снижение затрат на обслуживание воздушного движения при списании парка действующих средств навигации и посадки и на эксплуатацию ВС путем замены разнотипного бортового оборудования едиными средствами.

Однако длительная эксплуатация GPS и ГЛОНАСС показала, что спутниковым навигационным системам свойственны следующие недостатки :

    чувствительность к непреднамеренным помехам, вызванными атмосферными эффектами;

    блокировка сигнала при затенении антенны элементами конструкции воздушного судна во время выполнения эволюций;

    чувствительность к преднамеренным помехам, которые могут ограничивать область обслуживания;

    недостаточная точность при использовании для целей точного захода на посадку.

Приведенные выше недостатки могут быть устранены при использовании различного рода функциональных дополнений. Существуют три категории функциональных дополнений: бортовые, наземные и спутниковые.

      Стратегия ИКАО в области развития аэронавигации при использовании СНС

В течение последних лет происходит активное внедрение спутниковых навигационных систем для решения задач зональной навигации на различных этапах полёта. В перспективе СНС постепенно заменит все наземные навигационные системы и станет единственным средством, обеспечивающим навигацию на всём протяжении маршрута.

В настоящее время в ИКАО разработаны требуемые навигационные характеристики (RNP), которые определяют требования, предъявляемые к точности выдерживания навигационных параметров в пределах конкретного воздушного пространства. Этот показатель не связан с конкретным видом навигационного оборудования, что придаёт ему общий характер и делает применимым и для спутниковых навигационных систем. Значение RNP определяется величиной удержания, которая характеризует размер области с центром в точке заданного местоположения ВС, в пределах которой оно будет находиться в течение 95% полётного времени (рис. 2.1) .

Рис. 2.1. Область RNP

Величина удержания выражается в морских милях. Для упрощения использования RNP при планировании воздушного пространства, эллиптическая форма этой области заменяется круговой. Поэтому, например, тип RNP 1 означает, что в произвольный момент времени с вероятностью 0.95 воздушное судно должно находиться в радиусе одной морской мили от точки, указанной органом воздушного движения.

Типы RNP определяют минимальную точность выдерживания навигационных характеристик в данной области воздушного пространства. Они устанавливаются с учетом точности бортового навигационного оборудования, а также погрешностей пилотирования.

В целях обеспечения требуемого уровня точности на различных этапах полета разработаны следующие типы RNP: маршрутные и аэродромные.

К примеру, в условиях полёта по маршруту, где плотность движения не столь велика, значение RNP будет находиться в пределах от 20 до 1,а при маневрировании в районе аэродрома в условиях захода на посадку от 0.5 до 0.3.

Маршрутные типы RNP представлены в табл. 2.2. .

Таблица 2.2

Маршрутные типы RNP

Тип RNP 1 предусматривается для обеспечения наиболее эффективных полетов по маршрутам ОВД в результате использования наиболее точной информации о МВС, а также для применения метода зональной навигации, позволяющего получить наибольшую гибкость при организации маршрутов, изменении маршрутов и осуществлении в реальном времени необходимых корректировок в соответствии с потребностями структуры воздушного пространства. Этот тип RNP предусматривает наиболее эффективное обеспечение полетов, использование правил полетов и организации воздушного пространства при переходе из района аэродрома к полету по маршруту ОВД и в обратном порядке, т.е. при выполнении SID и STAR.

Тип RNP 4 предназначается для маршрутов ОВД основанных на ограниченном расстоянии между навигационными средствами. Этот тип RNP обычно используется в воздушном пространстве, расположенном над континентом. Данный тип RNP предусматривается для сокращения минимума бокового и продольного эшелонирования и повышения эксплуатационной эффективности в океаническом воздушном пространстве и районах, где возможности использования наземных навигационных средств ограничены.

Тип RNP 10 обеспечивает сокращенные минимумы бокового и продольного эшелонирования и повышает эксплуатационную эффективность в океаническом воздушном пространстве и отдельных районах, где возможности аэронавигационных средств ограничены.

Тип RNP 12.6 обеспечивает ограниченную оптимизацию маршрутов в районах с пониженным уровнем обеспечения навигационными средствами.

Тип RNP 20 характеризует минимальные возможности по точности определения МВС, которые считаются приемлемыми для обеспечения полетов по маршрутам ОВД любым ВС в любом контролируемом воздушном пространстве в любое время.

Анализ предложенных ИКАО типов RNP показывает, что для обеспечения возможности продолжения использования имеющегося навигационного оборудования без изменения, существующей структуры маршрутов ОВД в некоторых районах или регионах, может быть установлено значение RNP 5 (9.3 км). Доказательством этого является внедрение метода зональной навигации с типом RNP5 (B-RNAV) в Европейском регионе в 1998 г.

Аэродромные типы RNP представлены в табл. 2.3 .

Таблица 2.3

Типы RNP при маневрировании в районе аэродрома

Типовая операция (и)

Точность в горизонтальной плоскости 95%

Точность

по вертикали 95%

Начальный заход,

Промежуточный заход,

Неточный заход, вылет

220 м (720 фут)

Не назначена

От 0.5 до 0.3

220 м (720 фут)

20 м (66 фут)

Заход на посадку с управлением по вертикали

16.0 м (52 фут)

8.0 м (26 фут)

Точный заход на

От 6.0 м до 4.0 м

(20 -13 фут)

*) По данным .

Примечания:

1) Для осуществления планируемой операции на самой низкой высоте над поро­гом ВПП требуется 95% значения ошибки определения местоположения с помощью GNSS .

2) Требования к точности и задержке срабатывания сигнализации включают номинальные эксплуатационные характеристики безотказного приемника.

Применение СНС на этапе захода на посадку позволит в комплексе с системой функционального дополнения широкой зоны действия (WAAS) повысить свою точность до субметровой и, как следствие, обеспечить выполнение неточного захода на посадку (без наведения по глиссаде).

Использование СНС на этапе захода на посадку в комплексе с системой функционального дополнения с ограниченной зоной действия (LAAS) позволит повысить её точность до сантиметровой и обеспечить выполнение точного захода на посадку (с наведением по глиссаде).

Существующая система организации воздушного движения основана на концепции заранее определенного разведения маршрутов. Такая система гарантирует безопасность полетов за счет снижения пропускной способности. Применение СНС позволит изменить существующую структуру маршрутов путем сокращения норм (минимумов) эшелонирования. Это приведет к увеличению пропускной способности мировой транспортной системы, повышению ее эффективности и рентабельности вследствие оптимизации маршрутов. Первые шаги в этом направлении уже сделаны. Например, во-первых, ширина маршрутов (треков) в районе Тихого Океана для ВС, оснащенных оборудованием СНС, изменена с 60 м. миль (111 км) до 30 м. миль (55.5 км). Во вторых, с 1997 г. введено сокращенное вертикальное эшелонирование в районе Северной Атлантики с 600 м (2000 фут) до 300 м (1000 фут) между эшелонами полета 290 (8840м) и 410 (12500м). В Европейском регионе поэтапное введение норм сокращенного вертикального эшелонирования, между указанными выше эшелонами, началось с 2001г.

СНС и новые возможности технологий в области систем связи, навигации и наблюдения позволят в будущем осуществить идею свободного полета. Идея свободного полета означает оптимизацию маршрута в динамике полета в любой данный момент времени на основе знания точного местоположения ВС и вектора скорости в данном регионе. В этом случае план полета становится простым предварительным заявлением о намерениях.

Эта идея является конечной целью будущей системы воздушной навигации.

В свободном полете бортовые системы ВС рассчитывают и передают диспетчерским службам организации воздушного движения информацию о местоположении и краткосрочных намерениях. Диспетчерские службы выполняют мониторинг удовлетворительного разделения воздушных судов и вмешиваются кратковременно в процесс полета при наличии угрозы опасного сближения или столкновения.

Таким образом, спутниковые навигационные системы рассматриваются как необходимый инструмент для полетов по маршруту, выполнения неточных заходов на посадку, разведения воздушных судов в воздушном пространстве, оптимизации маршрутов и осуществлении идеи свободного полета.

Контрольные вопросы

    Какие СНС входят в состав GNSS?

    Какая конфигурация расположения спутников в системах GPS и ГЛОНАСС?

    Из каких основных сегментов состоит спутниковая навигационная система?

    Каким величинам соответствуют точностные характеристики GPS и ГЛОНАСС?

    В каком случае Министерство обороны США может воспользоваться своим контролем над GPS?

    Как расшифровывается аббревиатура RNP?

    Каким величинам соответствуют маршрутные и аэродромные типы RNP?

    Какая система функционального дополнения, совместно с СНС, позволит обеспечить выполнение точного захода на посадку?

    Каким образом применение СНС позволит изменить существующую структуру маршрутов?

    Что означает идея свободного полета?

    СИСТЕМЫ КООРДИНАТ

      Системы координат, используемые в геодезии

В геодезии используется три системы координат:

  • геоцентрическая (привязанная к Земле);

    эллипсоидальная.

В отдельных странах применяются при обработке геодезических измерений эллипсоиды, выведенные по результатам геодезических работ охватывающих территорию данной страны или нескольких стран. Такие “рабочие” эллипсоиды называются референц-эллипсоидами . Система координат, определяемая на таком эллипсоиде, называется местной.

Референц-эллипсоид отличается от общего земного эллипсоида размерами, и центр его не совпадает с центром Земли. Вследствие несовпадения центров референц-эллипсоидов и реальной Земли малая ось референц-эллипсоида не совпадает с осью вращения Земли (рис. 3.1).

эллипсоид

Глобальный

эллипсоид

Рис.3.1. Различия между общеземным эллипсоидом

и референц-эллипсоидом

В качестве основной земной системы координат принята геоцентрическая, привязанная к Земле, пространственная прямоугольная система (X, Y, Z), началом которой является центр массы Земли S (геоцентр, т.е. центр массы, включая массу атмосферы) (рис. 3.2). Ось Z совпадет с осью вращения Земли.

Рис. 3.2. Геоцентрическая прямоугольная система координат (X, Y, Z)

Геоцентрическая система координат используется при определении места воздушного судна при решении соответствующей системы уравнений. Поверхность Земли можно достаточно точно аппроксимировать эллипсоидом вращения со сплюснутыми полюсами. При этом величина отклонений поверхности эллипсоида по высоте от геоида не превышает 100 м.

Эллипсоид вращения получается при вращении меридианного эллипса вокруг его малой оси. Поэтому форма эллипсоида описывается двумя геометрическими параметрами: большой полуосью a и малой полуосью b . Обычно b заменяют параметром сжатия (сплюснутости) эллипсоида:

Для пространственного определения положения точки на физической поверхности Земли (или в пространстве) по отношению к эллипсоиду вращения используют геодезические координаты: φ - широта и λ – долгота, h - высота от поверхности эллипсоида. Высота h над эллипсоидом измеряется вдоль нормали (перпендикуляра) к его поверхности (рис. 3.3).

Рис. 3.3. Система геодезических координат и высота

Можно отметить тот факт,что в навигации обычно вместо геодезических координат используется понятие географические координаты. Причиной этого является то, что до появления СНС точность определения МВС была такой, что между названными системами координат не было необходимости делать различия.

      Системы координат WGS -84 и ПЗ-90

Осуществление навигации невозможно без применения систем координат. При использовании СНС для целей аэронавигации используется геоцентрическая система координат.

В 1994 г. ИКАО в качестве стандарта рекомендовало для всех государств членов ИКАО с 1 января 1998 г. использовать глобальную геодезическую систему координат WGS-84 , т.к. в этой системе координат производится определение местоположения воздушного судна при использовании системы GPS. Причиной этого является то, что применение местных геодезических координат на территории различных государств, а таких систем координат более 200, приводило бы к дополнительной погрешности в определении МВС за счет того, что введенные в приемо-индикатор СНС пункты маршрута принадлежат системе координат, которая отличается от WGS-84.

Центр глобальной системы координат WGS-84 совпадает с центром массы Земли. Ось Z соответствует направлению обычного земного полюса, который перемещается из-за колебательного вращения Земли. Ось X лежит в плоскости экватора на пересечении с плоскостью нулевого (Гринвичского) меридиана. Ось Y лежит в плоскости экватора и отстоит от оси X на 90° (рис. 3.4).

Рис. 3.4. Определение системы координат WGS-84

В Российской Федерации, в целях геодезического обеспечения орбитальных полетов и решения навигационных задач при использовании ГЛОНАСС, применяется геоцентрическая система координат «Параметры Земли 1990 г.» (ПЗ-90) . Для осуществления геодезических и картографических работ, начиная с 1 мая 2002 г., используется система геодезических координат 1995 г. (СК-95). Переход от геодезической системы координат 1942 г. (СК-42) к СК-95 займет определенный промежуток времени, прежде чем все навигационные пункты на территории России будут переведены в новую систему координат.

Основные параметры рассмотренных выше систем координат, представлены в табл. 3.1 .

Таблица 3.1

Системы координат, применяемые в навигации

Параметр

Большая полуось, м

Малая полуось, м

Смещение от

центра массы

Земли по оси, м

Ориентирование

относительно

оси, углов. сек.

ω х

ω у

Примечание. Значения ∆х, ∆у, ∆ z и ω х , ω у , ω z для ПЗ-90 даны относительно WGS-84, а для СК-95 и СК-42 относительно ПЗ-90.

Из табл. 3.1 видно, что системы координат WGS-84 и ПЗ-90 практически одинаковы. Из этого вытекает, что при полете по маршруту и в районе аэродрома при существующей точности определения МВС не принципиально, в какой системе координат будут определяться навигационные пункты.

В системе координат ПЗ-90 центр (S’) относительно центра WGS-84 (S) имеет смещение по осям X, Y, Z :

ΔX = 2 м, ΔY = 6 м, ΔZ = - 4,5 м,

а, кроме того, смещены и оси Y’ и Z’ относительно осей WGS-84 (Y, Z) на угловые величины:

ω Y = - 0,35’’, ω Z = - 0,11’’.

Ось X в WGS-84 и ось X’ в ПЗ-90 совпадают.

Угловое смещение оси Y’ ПЗ-90 относительно оси Y WGS-84 в 0,35’’ приводит к линейному смещению на поверхности эллипсоида на экваторе в 10,8 м , а смещение оси Z’ по отношению к оси Z в 0,11’’ - 3,4 м . Указанные смещения могут привести к общему (радиальному) смещению точки, расположенной на поверхности ПЗ-90 относительно WGS-84 на 11,3 м.

Контрольные вопросы

    Дайте определение референц-эллипсоида?

    Для каких целей используется геоцентрическая система координат при использовании СНС?

    Какими геометрическими параметрами описывается эллипсоид вращения?

    Какая система координат принята в ИКАО в качестве стандарта?

    Какая система координат применяется в ГЛОНАСС?

    Какие основные параметры характеризуют WGS-84 и ПЗ-90?

    Принципиально ли в какой системе координат WGS-84 или ПЗ-90, будут измеряться навигационные пункты при полете по маршруту?

    Чему равно радиальное смещение точки на поверхности эллипсоида в системе координат ПЗ-90 относительно WGS-84?

    ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ ВОЗДУШНОГО СУДНА В СНС

      Общие принципы функционирования СНС

Принципы функционирования GNSS сравнительно просты, однако для их реализации используются передовые достижения науки и техники.

Все спутники GPS или ГЛОНАСС являются равноправными в своей системе. Каждый спутник через передающую антенну излучает кодированный сигнал на двух несущих частотах (L1; L2), который может быть принят соответствующим приемником пользователя, находящегося в зоне действия спутника. Передаваемый сигнал содержит следующую информацию:

    эфемериды спутников;

    коэффициенты моделирования ионосферы;

    информация о состоянии спутника;

    системное время и уход часов спутника;

    информация о дрейфе спутника.

В приемнике бортового оборудования ВС генерируется код, идентичный принимаемому со спутника. При сравнении двух кодов определяется временной сдвиг, который пропорционален дальности до спутника. Принимая одновременно сигналы от нескольких спутников, можно определить местоположение приемника с высокой точностью. Очевидно, что для функционирования системы необходима точная синхронизация кодов, генерируемых на спутниках и в приемниках.

Ключевым фактором, определяющим точность системы, является то, что все составляющие спутникового сигнала точно контролируются атомными часами. Каждый спутник имеет по четыре квантовых генератора, являющихся высокоточными стандартами частоты со стабильностью 10 -13 . Часы приемника менее точны, но их код постоянно сравнивается со спутниковыми часами и вырабатывается поправка, компенсирующая уход.

Наземный сегмент осуществляет контроль за спутниками, выполняет управляющие функции и определяет навигационные параметры спутников. Данные о результатах измерений, выполненных каждой контрольной станцией, обрабатываются на главной станции управления и используются для прогнозирования эфемерид спутников. Там же, на главной станции управления, формируются сигналы для коррекции спутниковых часов.

Местоположение воздушного судна с использованием GPS и ГЛОНАСС определяется в геодезических системах координат, которые могут отличаться от геодезических координат, используемых в бортовых навигационных комплексах.

      Физико-технические принципы функционирования СНС.

Комментариев — 2

Как неоднократно упоминалось в других статьях, одна и та же точка земной поверхности имеет разные координаты в разных системах координат. Так как для территории России наиболее актуальными на текущий момент являются системы координат WGS 1984 и СК42 остановимся на сравнение координат в этих двух системах. В предыдущих статьях было показано, что эта разница может составлять порядка 140м в Калиниградской области или 100м на Урале. Логично ожидать, что разница зависит от региона где производится сравнение.

Цель данной статьи - провести масштабную оценку разницы между измерениями в двух системах координат и определить характер распределения этого параметра. В качестве параметра сравнения выбрано расстояние между точкой в системе координат WGS84 и этой же точкой в системе координат СК42. Для того, что бы избежать проекционных искажений расстояние расчитывается как длина дуги большого круга.

Данная статья НЕ ставит целью выяснение какая система координат точнее или какой набор параметров перехода следует использовать для пересчета. Ответы на эти вопросы следует искать в других статьях.

Результаты

Все преобразования 3-х параметрические. Все результаты вычислений можно скачать в виде shapefile .

Тест 1

Параметры трансформации: dx = 28, dy = -130, dz = -95 World Geodetic System 1984. NIMA, 2000 >>>

Минимальное расстояние: 1.05506, Максимальное расстояние: 165.88456

Результат сохранен в поле pulnima3 в результирующем shapefile.

Сравнение двух расчетов

Интересным является также пространственное распределение разницы между этими двумя расчетами. Часто возникает вопрос, на сколько мои расчеты будут различаться, если я сделаю их с двумя разными наборами параметров (например набором NIMA и набором по ГОСТу).

Результаты вычисления разницы содержатся в поле Diff результирующего shape-файла, присоединенного по универсальному идентификатору с рассчета расстояния между точками в Pulkovo-NIMA и Pulkovo-GOST. Приведем иллюстрацию расстояния между ними:


Таким образом, если мы пересчитаем наш набор данных с одним и другим набором параметров, то его отличие от другого может составить до 18.5 метров, разница, как следовало ожидать, зависит от региона, но практически для всей территории России она превышает 15 метров.

Дополнительные источники ошибок

Результаты данного эксперимента могут быть улучшены за счёт учета следующих факторов:

  1. Расчет расстояния между точками как длины дуги эллипсоида, а не сферы.
  2. Использования других наборов параметров трансформации (например 7-параметрических).

Несмотря на перечисленные выше факторы вряд ли стоит ожидать значительного изменения результатов расчетов при их учете. Мы планируем включить эти параметры в наши расчеты и опубликовать их в будущих версиях этой статьи.

Выводы

Как и следовало ожидать, разница между координатами в двух системах неодинакова и меняется в пределах от 0 до 170 метров (в зависимости от того как расчитывается эта разница). Области максимального соответствия двух систем координат находятся в Центральном Китае и Чили, в этих областях разница между точками в разных системах координат минимальна.

Обсудить в форуме

Читинская область. I. Агинский Бурятский автономный округ. Цифрами обозначены заповедники: 1. Даурский 2. Сохондинский Сокращения: Н. — Новокручининский П. — Первомайский Читинская область, расположена в Забайкалье. Входит в Восточно… … Словарь "География России"

ЧИТИНСКАЯ ОБЛАСТЬ, субъект Российской Федерации; расположена в Забайкалье. Входит в Восточно Сибирский экономический район. В составе Читинской обл. субъект РФ Агинский Бурятский автономный округ. Пл. 431,5 тыс. км2. Население 1276,8 тыс. чел.… … Русская история

В Российской Федерации. В составе Читинской обл. Агинский Бурятский а. о. 431,5 тыс. км². Население 1376 тыс. человек (1993), городское 65%. 10 городов, 41 поселок городского типа (1993). Центр Чита. Расположена в Забайкалье. Средние… … Большой Энциклопедический словарь

В составе РСФСР. Образована 26 сентября 1937. Расположена в Забайкалье. Площадь 431,5 тыс. км2. Население 1227 тыс. чел. (на 1 января 1977). Включает Агинский Бурятский автономный округ. Разделена на 30 районов, имеет 10 городов и 42… …

В Вост. Сибирском экон. районе, включает Агинский Бурятский авт. округ. Пл. 431,5 тыс. км², адм. центр – Чита; образована в 1937 г. Рельеф преим. горный. На С. поднимаются ср. высотные хребты Кодар (до 3072 м) и Каларский, на остальной территории … Географическая энциклопедия

В Российской Федерации, образована 26 сентября 1937. В составе Читинской области субъект РФ Агинский Бурятский автономный округ. 431,5 тыс. км2. Население 1276,8 тыс. человек (1998), городское 62,8%. 10 городов, 45 посёлков городского типа.… … Энциклопедический словарь

ТСН 23-331-2002: Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите. Читинская область - Терминология ТСН 23 331 2002: Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите. Читинская область: 1.5 Градусо сутки Dd °С сут Определения термина из разных документов: Градусо сутки 1.6… … Словарь-справочник терминов нормативно-технической документации

Политика Портал:Политика Россия … Википедия

Политика Портал:Политика Россия Эта статья часть серии: Политика и правительство России Государственный строй Конституция России Поправки Президент России Дмитрий Медведев Администрация Президента … Википедия

Область (от старослав. облада ‒ владение), местность, земля, край; часть какой либо территории (страны, государства, материка, земной суши и т.п.), выделяемая при районировании по определённому существенному признаку (природным условиям,… … Большая советская энциклопедия

Город Чита находится на территории государства (страны) Россия , которая в свою очередь расположена на территории континента Европа .

К какому федеральному округу относится город Чита?

г.Чита входит в федеральный округ: Сибирский.

Федеральный округ - укрупнённая территория, состоящая из нескольких субъектов Российской Федерации.

В каком регионе находится город Чита?

Город Чита является частью региона Забайкальский край.

Характеристикой региона или субъекта страны является обладание целостностью и взаимосвязью её составных элементов, в том числе городов и других населённых пунктов, входящих в состав региона.

Регион Забайкальский край является административной единицей государства Россия.

Численность населения города Чита.

Численность населения в городе Чита составляет 347 088 человек.

Год основания г.Чита.

Год основания города Чита: 1653 год.

В какому часовом поясе расположен город Чита?

Город Чита расположен в административном часовом поясе: UTC+10. Таким образом, можно определить разницу во времени в городе Чита, относительно часового пояса в вашем городе.

Телефонный код города Чита

Телефонный код города Чита: +7 3022. Для того, что позвонить в город Чита с мобильного телефона, необходимо набирать код: +7 3022 и затем непосредственно номер абонента.

Официальный сайт города Чита.

Сайт города Чита, официальный сайт города Чита или как его ещё называют "Официальный сайт администрации города Чита": http://www.admin.chita.ru .