Что называется полным ускорением точки. Ускорение – среднее, мгновенное, тангенциальное, нормальное, полное

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

1. Способы задания движения точки в заданной системе отсчета

Основными задачами кинематики точки являются:

1. Описание способов задания движения точки.

2. Определение кинематических характеристик движения точки (скорости, ускорения) по заданному закону движения.

Механическое движение изменение положения одного тела относительно другого (тела отсчета), с которым связана система координат, называемая системой отсчета .

Геометрическое место последовательных положений движущейся точки в рассматриваемой системе отсчета называется траектория точки.

Задать движение − это дать способ, с помощью которого можно определить положение точки в любой момент времени по отношению к выбранной системе отсчета. К основным способам задания движения точки относятся:

векторный, координатный и естественный .

1.Векторный способ задания движения (рис. 1).

Положение точки определяется радиус-вектором, проведенным из неподвижной точки, связанной с телом отсчета: − векторное уравнение движения точки.

2.Координатный способ задания движения (рис. 2).

В этом случае задаются координаты точки как функции времени:

- уравнения движения точки в координатной форме.

Это и параметрические уравнения траектории движущейся точки, в которых роль параметра играет время . Чтобы записать ее уравнение в явной форме, надо исключить из них . В случае пространственной траектории, исключив , получим:

В случае плоской траектории

исключив , получим:

Или .

3. Естественный способ задания движения (рис. 3).

В этом случае задаются:

1)траектория точки,

2)начало отсчета на траектории,

3) положительное направление отсчета,

4)закон изменения дуговой координаты: .

Этим способом удобно пользоваться, когда траектория точки заранее известна.

2. Скорость и ускорение точки

Рассмотрим перемещение точки за малый промежуток времени (рис. 4):

Тогда − средняя скорость точки за промежуток времени .

Скорость точки в данный момент времени находится как предел средней скорости при :

Скорость точки − это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Среднее ускорениехарактеризует изменение вектора скорости за малый промежуток времени (рис. 5).

Ускорение точки в данный момент времени находится как предел среднего ускорения при :

Ускорение точки − это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени .

Ускорение точки характеризует изменение вектора скорости по величине и направлению. Вектор ускорения направлен в сторону вогнутости траектории.

3. Определение скорости и ускорения точки при координатном способе задания движения

Связь векторного способа задания движения и координатного дается соотношением

(рис. 6).

Из определения скорости:

Проекции скорости на оси координат равны производным соответствующих координат по времени

, , . .

Модуль и направление скорости определяются выражениями:

Точкой сверху здесь и в дальнейшем обозначается дифференцирование по времени

Из определения ускорения:

Проекции ускорения на оси координат равны вторым производным соответствующих координат по времени:

, , .

Модуль и направление ускорения определяются выражениями:

, , .

4 Скорость и ускорение точки при естественном способе задания движения

4.1 Естественные оси.

Определение скорости и ускорения точки при естественном способе задания движения

Естественные оси (касательная, главная нормаль, бинормаль) − это оси подвижной прямоугольной системы координат с началом в движущейся точке. Их положение определяется траекторией движения. Касательная (с единичным вектором ) направлена по касательной в положительном направлении отсчета дуговой координаты и находится как предельное положение секущей, проходящей через данную точку (рис.9). Через касательную проходит соприкасающаяся плоскость (рис. 10), которая находится как предельное положение плоскости p при стремлении точки M1 к точке M. Нормальная плоскость перпендикулярна касательной. Линия пересечения нормальной и соприкасающейся плоскостей − главная нормаль. Единичный вектор главной нормали направлен в сторону вогнутости траектории. Бинормаль (с единичным вектором ) направлена перпендикулярно касательной и главной нормали так, что орты , и образуют правую тройку векторов. Координатные плоскости введенной подвижной системы координат (соприкасающаяся, нормальная и спрямляющая) образуют естественный трехгранник, который перемещается вместе с движущейся точкой, как твердое тело. Его движение в пространстве определяется траекторией и законом изменения дуговой координаты.

Из определения скорости точки

где , − единичный вектор касательной.

Тогда

, .

Алгебраическая скорость − проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.

Из определения ускорения

− переменный по направлению вектор и

Производная определяется только видом траектории в окрестности данной точки, при этом, вводя в рассмотрение угол поворота касательной, имеем , где − единичный вектор главной нормали, − кривизна траектории, − радиус кривизны траектории в данной точке.

Механическим движением называют изменение с течением вре­мени положения в пространстве точек и тел относительно какого-либо основного тела, с которым скреплена система отсчета. Кинема­тика изучает механическое движение точек и тел независимо от сил, вызывающих эти движения. Всякое движение, как и покой, относи­тельно и зависит от выбора системы отсчета.

Траекторией точки называют непрерывную линию, описывае мую движущейся точкой. Если траектория - прямая линия, то движе­ние точки называют прямолинейным, а если - кривая, то - криволиней­ным. Если траектория - плоская, то движение точки называют плоским.

Движение точки или тела, считается заданным или известным, если для каждого момента времени (t) можно указать положение точ­ки или тела относительно выбранной системы координат.

Положение точки в пространстве определяется заданием:

а) траектории точки;

б) начала О 1 отсчета расстояния по траектории (Рису­нок 11): s = О 1 М - криволиней­ная координата точки М;

в) направления положи­ тельного отсчета расстояний s;

г) уравнения или закона движения точки по траектории: S = s(t)

Скорость точки. Если точ­ка за равные промежутки време­ни проходит равные отрезки пути, то ее движение называют равномерным. Скорость равно­мерного движения измеряется отношением пути з, пройденно­го точкой за некоторый проме­жуток времени, к величине это­го промежутка времени: v = s/1. Если точка за равные промежут­ки времени проходит неравные пути, то ее движение называют неравномерным. Скорость в этом случае также переменна и являет­ся функцией времени: v = v(t). Рассмотрим точку А, которая перемещается по заданной тра­ектории по некоторому закону s = s(t) (Рисунок 12):

За промежуток времени t т. А переместилась в положение А 1 по дуге АА. Если промежуток времени Δt мал, то дугу АА 1 можно заменить хордой и найти в первом приближении величину средней скорости движения точки v cp = Ds/Dt. Средняя скорость направлена по хорде от т. А к т. А 1 .

Истинная скорость точки направлена по касательной к траекто­рии, а ее алгебраическая величина определяется первой производной пути по времени:

v = limΔs/Δt = ds/dt

Размерность скорости точки: (v) = длима/время, например, м/с. Если точка движется в сторону увеличения криволинейной координаты s, то ds > 0, и следовательно, v > 0, а в противном случае ds < 0 и v < 0.

Ускорение точки. Изменение скорости в единицу времени опреде­ляется ускорением. Рассмотрим движение точки А по криволинейной траектории за время Δt из положения A в положение A 1 . В положении A точка имела скорость v , а в положении A 1 - скорость v 1 (Рисунок 13). т.е. скорость точки изменилась по величине и направлению. Геометрическую разность, скоростей Δv найдем, построив из точки A вектор v 1.


Ускорением точки называют вектора ", равный первой производной от вектора скорости точки по времени:

Найденный вектор ускорения а может быть разложен на две взаимно-перпендикулярные составляющие но касательной и нормали к траек­тории движения . Касательное ускорение а 1 совпадает по на­правлению со скоростью при ускоренном движении или противополож­но ей при замененном движении. Оно характеризует изменение величи-ны скорости и равно производной от величины скорости по времени

Вектор нормального ускорения а направлен по нормали (пер­пендикуляру) к кривой в сторону вогнутости траектории, а модуль его равен отношению квадрата величины скорости точки к радиусу кри­визны траектории в рассматриваемой точке.

Нормальное ускорение характеризует изменение скорости по
направлению.

Величина полного ускорения: , м/с 2

Виды движения точки в зависимости от ускорения.

Равномерное прямолинейное движение (движение по инерции) характеризуется тем, что скорость движения постоянна, а радиус кри­визны траектории равен бесконечности.

То есть, r = ¥, v = const, тогда ; и поэтому . Итак, при движении точки по инерции ее ускорение равно нулю.

Прямолинейное неравномерное движение. Радиус кривизны траектории r = ¥, а n = 0, поэтому и а = а t и а = а t = dv/dt.

СПОСОБе ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ

Определение скорости точки

Скорость - это векторная величина, характеризующая быстроту и направление движения точки в данной системеотсчета.

При векторном способе задания движения положение движущейся точки в каждый момент времени определяется радиусом-вектором , который является функцией времени . Пусть в момент времени t точка занимает положениеМ , определяемое радиусом-вектором , а в момент - положение M 1 , определяемое радиусом-век­тором (рис. 8.6). Из треугольника ОММ 1 ,

.

Рис. 8.6 Рис. 8.7

При перемещении точки ее радиуc-вектор получает приращение:

Из двух последних равенств следует, что вектор перемещения точки является приращением радиуса-вектора точки за промежу­ток времени t .

Отношение вектора перемещения к промежутку времени t ,втечение которого произошло это перемещение, представляет собой вектор средней скорости воображаемого движения точки по хорде ММ 1:

Направление вектора совпадает с направлением Δ . При умень­шении промежутка времени Δt и приближении его к нулю вектор Δ также стремится к нулю, а вектор - к некоторому пределу. Этот предел является вектором скорости точки в момент t :

.

Так как Δt - приращение скалярного аргумента t , а Δ - прираще­ние вектора-функции , то предел отношения при явля­ется векторной производной от по t :

Таким образом, вектор скорости точки в данный момент равен производной от радиуса-вектора точки по времени.

Вектор направлен по хорде MM 1 в сторону движения точки. Когда Δt стремится к нулю, точка M 1 стремится к точке М , т. е. предельным положением секущейMM 1 является касательная.

Из этого следует, что вектор скорости точки направлен по касательной к траектории в сторону движения точки.

При движении точки по криволинейной траектории направление вектора скорости непрерывно изменяется (рис. 8.8).

Скорость точки при неравномерном криволинейном движении изменяется как по модулю, так и по направлению.

Отметим ряд положений движущейся точки на траектории M 1 , M 2 , M 3 , М 4 и покажем в этих положениях скорости точки (рис. 8.8,а).

Выбрав в пространстве некоторую неподвижную точку О 1 , отло­жим от этой точки векторы, геометрически равные скоростям (рис. 8.8,б). Если от точки О 1 отложить скорости, соответствующие всем поло­жениям точки М на кривой АВ, и соединить концы этих векторов, то получится линия CD, являющаяся годографом скорости.



Таким образом, годограф скорости представляет собой геометри­ческое место концов векторов скорости движущейся точки, отложен­ных от одной и той же произвольной точки пространства.

Изобразим на рис. 8.9, а траекторию точки АВ и ее скорость в произвольный момент времени t , а на рис. 8.9, б - годограф ско­рости CD этой точки.

Проведем через точку О 1 оси координат X, Y,Z, параллельные основным осямх,y,z. Тогда радиусом-вектором любой точки N годографа скорости CD будет скорость , а координаты точек годографа X, У, Z будут равны проекциям скорости на оси координат:

Эти уравнения являются параметрическими уравнениями годографа скорости .

Определение ускорения точки

При неравномерном криволинейном движении точки изменяются модуль и направление ее скорости. Ускорение точки характеризует быстроту изменения модуля и направления скорости точки.

Допустим, что в момент времени t точка занимает положение М и имеет скорость , а в момент времени она занимает положение M 1 и имеет скорость (рис. 8.10, а).

Найдем приращение вектора скорости за промежуток времени Δt . Для этого отложим от точки М скорость и построим при этой точке параллелограмм, одной из сторон которого будет скорость , а диагональю - скорость .

Тогда вторая сторона параллелограмма будет приращением вектора скорости , так как

.

Разделив приращение вектора скорости на промежуток времени Δt , получим вектор среднего ускорения точки за этот промежуток:

Этот вектор имеет направление и, следовательно, направлен в cторону вогнутости кривой. Построив годограф скорости CD (рис. 13,б), отложим там же скорости v и v 1 , приращение вектора скорости , а также вектор среднего ускорения , направленный по хорде NN 1 годографа ско­рости. Предел, к которому стремится вектор среднего ускорения , когда Δt стремится к нулю, является вектором ускорения точки α в данный момент времени t: находится в плоскости, проходящей через касательную к траектории точке М и прямую, параллельную касательной в точке М 1 (рис. 10,а). Предельное положение этой плоскости при стремлении точки M 1 к точке М называется соприкасающейся плоскостью.

Из этого следует, что вектор ускорения точки расположен в соприкасающейся плоскости и направлен в сторону вогнутости кривой.

Если кривая плоская, то соприкасающейся плоскостью является плоскость кривой и вектор ускорения лежит в этой плоскости.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.