Что становится космическим мусором на околоземной орбите. Что такое космический мусор и чем он опасен

Ракета-носитель Falcon 9 несколько дней назад космический грузовик Dragon, на борту которого находится экспериментальный космический мусорщик, аппарат RemoveDebris. Он позволит проверить на практике технологию уборки отработавших свое космических аппаратов и их фрагментов с помощью гарпуна и сети. Насколько замусорено околоземное пространство? Хватит ли в нем места для новых спутников? Мы решили разобраться в этом вопросе с помощью научного сотрудника Института прикладной математики имени М.В. Келдыша Михаила Захваткина.

Таким аппаратам, как RemoveDebris, будет чем заняться. Согласно данным программы NASA по изучению космического мусора, количество мусорных объектов размером больше 10 сантиметров приближается к 20 тысячам, а их суммарная масса - к 8 тысячам тонн, при этом большая их часть - обломки космических аппаратов.

По расчетам Европейского космического агентства, число объектов размером больше одного сантиметра достигает 750 тысяч, а фрагментов меньшего размера может быть в тысячи раз больше. Огромное количество мелких фрагментов микронного размера порождает работа двигателей, среди них очень много мелких частичек краски, и эта рукотворная пыль уже сегодня наносит реальный ущерб, оставляя дыры и микрократеры в корпусах и на солнечных батареях космических аппаратов.

Откуда берется мусор

Микрократер от удара частички космического мусора на стекле иллюминатора шаттла «Индевор» (миссия STS-126)

При этом запасы мусора на орбите постоянно пополняются - каждый год в околоземном пространстве появляется около сотни новых космических аппаратов, причем это не только спутники, это еще и третьи ступени ракет, разгонные блоки.


Рост числа объектов космического мусора размером больше 10 сантиметров. Линии обозначают (сверху вниз): 1. Общее количество объектов на орбите; 2. Мелкие обломки, возникшие в результате разрушения спутников; 3. Космические аппараты; 4. Фрагменты, отделившиеся от космических аппаратов в результате штатной работы; 5. Верхние ступени ракет.

Рано или поздно интенсивное заселение орбиты должно было привести к «коммунальным проблемам», и в 1978 году сотрудники NASA Дональд Кесслер и Бертон Кур-Палэ пришли к выводу , что в скором будущем столкновения между вышедшими из строя спутниками начнут происходить так часто, что количество обломков будет расти экспоненциально (даже если в этот момент космические запуски прекратятся вообще) и в конечном счете вокруг Земли сформируется кольцо из обломков космических аппаратов, похожее на кольцо Сатурна. Они предсказывали, что первое столкновение космических аппаратов произойдет еще до 2000 года. В реальности столкновение спутников «Космос-2251» и Iridium 33 произошло 19 февраля 2009 года, причем их «встреча» породила сразу 1150 настолько крупных обломков, что их могли заметить радары системы контроля космического пространства.

Хотя синдром Кесслера - неконтролируемую цепную реакцию разрушения аппаратов на орбите и превращение околоземного пространства в запретную зону - мы пока можем наблюдать только в фильмах, таких как «Гравитация» или «Валли-И», космический мусор уже сейчас становится ощутимой помехой. Достаточно вспомнить, что Международной космической станции (МКС) регулярно приходится корректировать орбиту, чтобы избежать столкновений, а еще чаще космонавтам приходится бросать все дела и забираться в корабль «Союз», чтобы переждать момент опасного сближения станции c фрагментом космического мусора. Детали, доставленные на Землю с МКС, часто несут микроповреждения - следы ударов мелких мусорных обломков.


След удара микроскопического фрагмента космического мусора

Некоторое самоочищение околоземного пространства все же происходит, объясняет N + 1 научный сотрудник Института прикладной математики имени М.В. Келдыша Михаил Захваткин. По его словам, в пределах 11-летнего цикла солнечной активности около 250–300 мусорных объектов в год приходится исключать из каталогов - они попросту входят в атмосферу и сгорают. Но скорость этого очищения очень сильно меняется в зависимости от фазы цикла солнечной активности (в периоды активного Солнца атмосфера Земли «разбухает» и начинает сильнее тормозить объекты) и от высоты орбиты.

«Хотя влияние атмосферы ощущается на высотах до 1500 километров, действительно эффективно атмосферный тормоз работает только на низкой околоземной орбите, то есть на орбитах высотой до 500–600 километров. В этой зоне спутники без постоянного подъема орбиты с помощью двигателей могут просуществовать максимум пару десятков лет, затем они войдут в атмосферу и сгорят. Но уже на высотах 700-1000 километров космические аппараты могут находиться 50-100 лет, то есть в масштабах человеческой жизни - практически вечно. Причем эти орбиты наиболее популярны, там очень много солнечно-синхронных спутников, потому что им не нужно тратить много топлива, чтобы поддерживать эту орбиту. На эти высоты запускают много аппаратов, потому что они могут выжить там достаточно долго», - говорит ученый.


Распределение количества спутников в зависимости от высоты орбиты

Этаж от 700 до 1000 километров - самый популярный и заселяется быстрее всего, однако даже на этих высотах реализация катастрофического сценария, описанного Кесслером, - дело далекого будущего.

«На низких орбитах вращается 13 тысяч спутников, за 200 лет при самом негативном сценарии их число возрастет до 100 тысяч, а значит, вероятность столкновений вырастет примерно в 100 раз. Сегодня вероятность катастрофического столкновения - примерно один раз в пять лет, с ростом вероятности столкновений мы получаем значение примерно 20 инцидентов в год на популяцию в 100 тысяч аппаратов. Это не настолько высокий риск, чтобы сделать запуск спутников в эту зону коммерчески бессмысленной», - объясняет Захваткин.

Однако, полагает ученый, не следует усугублять проблему, оставляя ее решение будущим поколениям, поэтому меры для борьбы с загрязнением околоземного пространства нужно прорабатывать уже сейчас.


Чисто там, где не сорят

Для начала неплохо бы сделать так, чтобы космического мусора не становилось больше, а для этого необходимо, чтобы космические аппараты не взрывались. Главным источником мелких фрагментов на орбите сегодня являются не столкновения спутников друг с другом (пока нам известно только одно такое событие - столкновение «Иридиума» с «Космосом», о котором шла речь выше), а так называемые «события фрагментации», разрушение аппаратов по различным внутренним причинам.

Согласно подсчетам NASA , по состоянию на август 2007 года было зафиксировано 194 случая взрывного разрушения спутников, верхних ступеней ракет и разгонных блоков, и еще 51 аномальное событие - отделение каких-либо фрагментов (солнечных панелей, кусков теплоизоляции, деталей конструкций) от оставшегося целым аппарата. При этом взрывы аппаратов на орбите являются источником около 47 процентов общего количества объектов космического мусора.

Космические аппараты взрываются в основном из-за перегрева остатков топлива в баках - по этой причине взрывные разрушения происходят более чем в 45 процентах случаев. Один такой инцидент, широко освещавшийся в прессе, произошел 19 октября 2012 года, когда на орбите взорвался разгонный блок «Бриз-М», образовав облако из более чем 100 обломков. Совсем недавно, полтора месяца назад, дополнительный топливный бак разгонного блока «Фрегат», который использовался для вывода спутника «Ангосат-1», - после этого в каталоге космических объектов появилось еще 25 обломков.

«Эту проблему решить достаточно просто - нужно обеспечить пассивацию отработавших аппаратов, то есть встраивать в баки клапаны, которые стравливали бы пары топлива, либо обеспечивать работу двигателей до его полной выработки, желательно при этом понижая орбиту аппаратов», - говорит Михаил Захваткин.

Однако, отмечает он, при сохранении текущей частоты запусков новых космических аппаратов на низкие орбиты и принятии существенных мер по уводу отработавших спутников и пассивации общее число объектов размером больше 10 сантиметров все равно возрастет на 30 процентов за следующие 200 лет. «При этом основную роль в росте этого числа будут играть столкновения спутников в той самой перенаселенной области высот 700-1000 километров, наиболее крупные из которых будут происходить раз в 5-9 лет», - объясняет ученый.

Как убрать за собой

Правила, позволяющие предотвратить увеличение мусорной нагрузки на орбите, давно разработаны - существуют рекомендации ООН, соответствующий стандарт утвержден ISO. Однако пока юридически обязывающего международного договора в этой области нет, и каждая страна руководствуется собственными правилами, порой действуя в ущерб общих интересам, Так, Китай в 2007 году сбил ракетой собственный метеоспутник, в результате чего на орбите появилось более 2 тысяч новых фрагментов космического мусора.

Общие рекомендации, в целом, довольно просты - следует уводить отработавший аппарат туда, где он не будет мешать новым спутникам, и, если возможно, направлять его на низкие орбиты, чтобы он сгорел в атмосфере. Пока это правило в целом выполняется только применительно к аппаратам, находящимся на геостационарной орбите высотой 36 тысяч километров. Место на геостационаре - ресурс дефицитный, поэтому отслужившие свое геостационарные спутники выводятся на «орбиту захоронения» на 100-200 километров выше, объясняет Захваткин. Однако на других орбитах это правило выполняется далеко не всегда.


Различные варианты устройств для свода спутников с орбиты путем торможения (сверху вниз слева направо): 1. С помощью надувного баллона с газом - за счет сопротивления воздуха; 2. С помощью пленки, натянутой на телескопических штангах, - за счет сопротивления воздуха; 3. Лента с противовесом - за счет градиента гравитации; 4. Проводящий трос - за счет магнитных полей.

GLOBAL AEROSPACE CORPORATION

С одной стороны, коммерчески невыгодно везти на борту спутника запас топлива, предназначенного только для того, чтобы свести аппарат с орбиты в конце срока его существования. С другой, многие спутники, в особенности микроаппараты стандарта CubeSat, вовсе не имеют собственных двигателей. Инженеры предлагают множество вариантов дополнительных устройств, которые могут ускорить сход аппарата с орбиты. Это, например, надувные баллоны, которые увеличивают площадь аппарата и, соответственно, сопротивление воздуха, которые тормозят аппарат за счет воздействия электромагнитных полей. Но пока ни одно из таких устройств не стало стандартом.

Специализированные аппараты для уборки космического мусора, несмотря на высокую стоимость таких проектов, могут быть полезны для предотвращения случаев фрагментации больших аппаратов. «Крупный спутник - это потенциально тысячи мелких фрагментов, которые могут возникнуть при столкновении с другим аппаратом или самопроизвольном разрушении. Специализированный «уборщик» может убирать эти большие объекты, потенциально спосбные фрагментироваться, и тогда они не будут находиться на этих орбитах бесконечно. Если мы будем убирать в год около 4-5 объектов с высоких орбит, это может нивелировать потенциальный рост количества мелких фрагментов в долгосрочной перспективе», - говорит Захваткин.

Много опасений вызывают планы Илона Маска около 12 тысяч спутников системы Starlink, которые должны обеспечить глобальный доступ в интернет. Однако Михаил Захваткин полагает, что серьезно ситуацию с космическим мусором этот проект не ухудшит.

«Для группировок системы Starlink и Oneweb предполагается использовать орбиты высотой более 1,1 тысячи километров. Сейчас концентрация потенциально опасных фрагментов в этой области на порядок ниже значений на высотах 800-900 километров. Поэтому добавление такого большого числа аппаратов не сделает ситуацию на этих орбитах критической», - говорит ученый.


Сергей Кузнецов

    Среди этих объектов отработанные верхние ступени ракет, списанные или сломанные спутники, пусковые адаптеры, крышки от объективов и даже тонкие медные провода - все, что сопровождает запуск ракеты. Объекты отслеживаются US Space Surveillance Network, которая составляет каталог космического мусора от 5 до 10 сантиметров на низкой околоземной орбите и до 1 метра на геостационарной орбите.

    И все-таки оно вертится

    Опасность, которую представляют эти объекты для астронавтов, спутников и космических станций, далеко не шуточная. Как было прекрасно показано в «Гравитации», Первый закон движения Ньютона ведет себя как редкостный чудак на букву «м» на орбите. Весь этот мусор вращается вокруг Земли с огромной скоростью, и нет никакой атмосферы, об которую он мог замедлиться или сточиться.

    10-сантиметровый кусок космического мусора может полностью разбить спутник, а сантиметровый кусочек полностью выведет из строя космический аппарат и пробьет щиты Международной космической станции. Даже миллиметровый объект может вывести из строя деликатные подсистемы.

    И столкновения происходят. Первое непреднамеренное столкновение двух спутников произошло 10 февраля 2009 года в 776 километрах над Сибирью. Частный американский спутник связи Iridium 33 и российский военный спутник «Космос-2251» столкнулись со скоростью 11,7 км/с. Оба спутника были полностью разрушены и произвели более 2200 отслеживаемых фрагментов. Для сравнения: пассажирский авиалайнер летит в 80 раз медленнее.

    Синдром Кесслера

    В фильме «Гравитация» также был использован некий вымышленный сценарий. Русские использовали ракету для уничтожения одного из своих спутников. В результате появилось массивное поле обломков, которое вращается вокруг Земли раз в 90 минут, а также вызывает цепную реакцию - синдром Кесслера - сталкивается с другими спутниками и наращивает массу. Такая космическая лавина. И, как показал фильм, лучше не стоять у нее на пути.

    На самом деле, такая ситуация уже происходила, только в значительно меньших масштабах. В 2007 году, в рамках демонстрации силы, китайские военные сбили одну из нерабочих метеорологических станций, случайно выбросив тысячи обломков мусора на орбиту.

    Шансы на то, что начнется синдром Кесслера, растут с каждым годом, по мере увеличения количества барахла на орбите.

    Как же все-таки убрать весь этот мусор? Сможем ли мы когда-нибудь убрать массивное поле обломков вроде того, что показали в «Гравитации»? Ответ да, однако потребуется недюжинная изобретательность и много терпения.

    Немножко профилактики

    Прежде чем мы займемся непосредственной очисткой, стоит поговорить о профилактике и ликвидации последствий. К примеру, мы можем начать делать спутники и космические станции более прочными. Усилить защиту от ударов (как космического мусора, так и метеорных тел). Спутники также должны быть более маневренными.

    При этом мы должны сделать все возможное, чтобы предотвратить появление космического мусора. Во избежание столкновений, например, орбиты всех обломков мусора и возможных целей должны быть известны заранее. К счастью, эта информация предоставляется каталогом U.S. Strategic Command (USSSTRATCOM). Офис Европейского космического агентства, ответственный за , предоставляет прогнозы событий и оценку риска столкновений в качестве сервиса для миссий ESA и третьих лиц.

    Перспективные способы очистки орбиты Земли

    Итак, пришло время очистить орбиту Земли от космического мусора. Ученые и инженеры предлагали массу разнообразных стратегий по активной уборке космического мусора, хорошие и не очень. Давайте пробежимся по списку наилучших кандидатов.

    Старые добрые невод и гарпун

    Более известная как ElectroDynamic Debris Eliminator (EDDE), эта идея заключается в том, чтобы отправить в космос спутник, вооруженный сетью и гарпуном. И действительно, захватывать спутники и другие объекты, сбившиеся с пути, можно обычной сетью. Этот план недорого стоит, удобен и может выехать с любой миссией на низкую околоземную орбиту.

    Такие спутники могли бы маневрировать по всей НОО и убирать буквально любую цель. Более того, их можно было бы использовать многократно, а значит и убирать больше целей. Разработчики полагают, что EDDE мог бы убирать 136 объектов в три года - а 12 EDDE могли бы убрать 2465 объектов на НОО весом более 2 килограммов за семь лет.

    Однако сработает такой план только с крупными объектами.

    Космические воздушные шары

    Зачем использовать сети, если есть воздушные шары? Эта идея называется Gossamer Orbit Lowering Device, или GOLD System, и были предложена Кристин Гейтс. Концепция использует очень большой и тонкий воздушный шар, который будет оборачивать объект и увеличивать его аэродинамическое сопротивление в несколько сотен раз, тем самым приводя к его падению в атмосферу Земли. GOLD System могла бы ускорить процесс естественного схода с орбиты у некоторых объектов с нескольких столетий до нескольких месяцев. Надувная система проста и эффективна, по крайней мере на бумаге.

    Реактивный буксир

    Для более крупных объектов можно было бы использовать отдельных суицидальных роботов, которые будут двигать спутники к повторному входу в атмосферу. Проект CleanSpaceOne от EPFL, например, включает спутниковый куб, который будет преследовать, захватывать и уничтожать космический мусор. Правда, стоимость будет непомерно высока - порядка 200 миллионов долларов для каждой миссии.

    Surrey Space Centre работает над HybridSail - системой, объединяющей большой развертываемый отражающий парус с тросами для буксировки объектов с орбиты. Система будет сводить объекты с орбиты за счет аэродинамического сопротивления и обмена импульсом с заряженными тросами и ионосферной плазмой.

    В этой схеме небольшой спутниковый куб должен состыковаться с куском космического мусора. Затем, используя магнитную систему ориентации, он бы стабилизировал крен, тангаж и рыскание объекта. Затем развернул бы тросы и парус 5 на 5 метров, положив начало фазе схода с орбиты.

    Мы могли бы выпустить облако вольфрамовой пыли на орбиту для создания атмосферного сопротивления на орбитальных высотах. С уменьшением скорости целостность орбит тысяч обломков космического мусора была бы нарушена. Небольшие кусочки мусора постепенно сходили бы со своих орбит в течение нескольких десятилетий (решение не мгновенное).

    Чтобы это сделать, нужно выпустить облако вольфрамовой пыли - крошечные частицы не более 30 мкм в поперечнике - на высоте порядка 1000 километров, создав относительно толстый слой мелких частиц материи, которые будут полностью окутывать планету. Вольфрам, который почти в два раза плотнее свинца, прибавит существенный вес любому объекту, за который зацепится.

    Идея прекрасная - идеально подойдет для синдрома Кесслера - но в случае с крупными объектами работать не будет.

    Более того, она может иметь потенциально катастрофические последствия на другие орбитальные объекты вроде функционирующих спутников. Также она может повредить чувствительное оборудование вроде солнечных панелей. Следовательно, ее можно рассматривать только как модель «перезагрузки» - полное очищение земной орбиты.

    Стена замерзшей воды в космосе

    Этот вариант немножко странный: Ballistic Orbital Removal System. По мнению Джеймса Холлопетера из GIT Satellite, в космос можно отправить ракеты, заполненные водой. После того как они выгрузят свой груз на орбите, появится поле кристаллизовавшейся воды, в которое будет попадать орбитальный мусор, замедляться и сходить с орбиты. Звучит странно - но идея похожа на вариант с вольфрамовой пылью. Вода у нас водится в огромном изобилии, тогда как роботизированные спутники сложные, хрупкие и дорогие.

    Перенаправление с помощью лазера

    А вот работка наземным лазерам. Laser Orbital Debris Removal, или LODR, будет использовать мощные импульсные лазеры, которые будут стрелять с поверхности и создавать плазменные джеты на космическом мусоре. Это приведет к тому, что мусор будет замедляться и повторно входить в атмосферу, падая в океан. Технологии у нас уже есть, причем лет 15 уже, только вот по плану на один объект будет уходить до миллиона долларов.

    Другая похожая идея - спутник, который может выстреливать электрически заряженные атомы или ионы, постепенно замедляя и стаскивая объект на Землю.

    Самосвал мусора на геостационарном кладбище

    Вместо того чтобы захватывать объекты когтями, гарпунами и сетями, мы могли бы перемещать крупные объекты, не прикасаясь к ним. Кроме того, нам не обязательно сталкивать их в атмосферу - мы могли бы выводить их на геосинхронную орбиту.

    Для этого спутники-уборщики должны быть оснащены электростатическим управлением и двигателями малой тяги, чтобы избегать каких-либо контактов. Как вариант приводится система GliDeR, которая будет использовать активные выбросы заряда и прямые потоки заряженных частиц в отношении мусора.

    Космический мусоровоз

    Представьте себе орбитальный мусоровоз, а вместе с ним и перерабатывающий завод. Дизайнер Вон Линг представил его так:

    «Мой фантастический концепт - это система, состоящая из коллектора, распылителя сети и пункта утилизации на околоземной орбите. Учитывая то, что стоимость запуска может варьироваться от 4 до 5 тысяч долларов за фунт (8-10 тысяч за килограмм), не говоря уж о ценных металлах, используемых в производстве спутников, переработка может стать прибыльным делом однажды. Такой сборщик может работать на ядерной энергии и эффективных ракетах VASIMR для движения и сбора мусора».

    Телескоп с лазером

    Международная группа ученых гигантский лазер к космическому телескопу и взрывать с его помощью мусор на орбите.

    «Возможно, мы, наконец, нашли способ убрать головную боль быстро растущего объема космического мусора, опасного для космической деятельности, - говорит Тошиказу Ебисузаки из Калифорнийского университета в Ирвайне. - Мы считаем, что эта отдельная система может устранить большую часть сантиметрового мусора уже за пять лет эксплуатации».

    Для устранения орбитального минного поля, в рамках предложения Acta Astronautica, за основу будет взят Extreme Universe Space Observatory (EUSO), новый японский космический телескоп, который присоединится к МКС в 2017 году. EUSO не был предназначен для утилизации мусора - по факту, его основная задача - регистрировать ультрафиолетовое излучение высокоэнергетических космических лучей, которые входят в атмосферу Земли в ночное время. Но мощная оптика телескопа и широкое поля зрения делают его идеальным инструментом для определения небольших скоростных обломков мусора, которые носятся вокруг МКС.

    В сочетании с высокоэнергетическим лазером, EUSO становится отличным стрелком. Ебисузаки и его коллеги предлагают оснастить телескоп CAN лазерной системой, которая была спроектирована для нового поколения ускорителей частиц. Лазеры CAN используют массив из тысяч оптоволокон, которые действуют сообща и производят мощный плазменный импульс. Ебисузаки считает, что такой импульс способен замедлять кусок мусора, пока тот не упадет на орбиту и не сгорит в атмосфере Земли.

    С глазами EUSO и силой CAN, Ебисузаки говорит, что мы сможем останавливать опасные частицы в полете и сталкивать их в атмосферу Земли. Ученые сейчас занимаются проведением небольшого эксперимента на МКС, используя 20-сантиметровую версию EUSO и мини-лазер CAN с 100 оптических волокон.

    «Если все пойдет хорошо, - говорит Ебисузаки, - мы планируем установить полномасштабную версию на МКС, включив трехметровый телескоп и лазер с 10 000 волокон, которые будут способны сбивать мусор с орбиты на расстоянии до 100 километров. Заглядывая дальше в будущее, мы могли бы создать отдельную миссию и вывести ее на полярную орбиту на высоте 800 километров, где сосредоточено больше всего мусора».

    Глядя на такие усилия по очистке замусоренного нами же космоса, можно понадеяться, что небо в ближайшее время станет гораздо чище. А после этого направим определенные усилия на уборку мусора на Земле.

За годы освоения космоса там скопилось много бесполезных предметов. Выпускница МГТУ им. Баумана по специальности «моделирование космических комплексов» Анна Ложкина объясняет происхождение этого мусора, откуда он берется и почему не падает нам на голову, рассказывает, что можно сделать для поддержания чистоты космического пространства.

Какие объекты вращаются вокруг нашей планеты?

В первую очередь это техника, запущенная людьми.

По низкой околоземной орбите, высотой от 160 до 2000 километров, двигаются аппараты дистанционного зондирования, межпланетная космическая станция (МКС).

На более удаленной, геостационарной орбите, ее высота примерно 36 тысяч километров над поверхностью планеты, “зависают” спутники прямого вещания телевизионных программ и различных систем связи.

На самом деле спутники двигаются с очень большой линейной и угловой скоростью, успевая за вращением Земли, поэтому каждый находится над своей точкой планеты - как бы висят над ней.

Помимо этого на орбитах находится различный “космический мусор”.

Откуда берется в космосе мусор, если там никто не живет?

Как и на Земле, в космосе мусор - дело рук человеческих. Это отработанные ступени ракет-носителей, обломки столкнувшихся или взорвавшихся спутников.

Количество аппаратов, отправленных в космическое пространство с 1957 года по настоящее время, перевалило за 15 тысяч. На низких орбитах уже становится тесно.

Часть техники устаревает - у некоторых аппаратов заканчивается топливо, у других выходит из строя оборудование. Такие спутники уже не поддаются управлению, а только отслеживанию.

Скоро вокруг Земли будет столько спутников и космического мусора, что нельзя будет запустить новый спутник или улететь с Земли на ракете

Столкновение даже небольших объектов, движущихся с орбитальными скоростями под углом друг к другу, приводит к их значительному разрушению. Так жвачка, залетевшая на орбиту МКС, может пробить оболочку станции и погубить весь экипаж.

Подобный эффект - рост количества мусора на низкой околоземной орбите в результате столкновения объектов, называется синдромом Кесслера и потенциально может привести в будущем к полной невозможности использования космического пространства при запусках с Земли.

А как дела высоко-высоко, там, на геостационарной орбите? Она тоже густо заселена, места там стоят дорого и на них даже есть лист ожидания. Поэтому, как только подходит к концу срок эксплуатации аппарата, его выводят с геостационара, а на освободившуюся позицию летит следующий спутник.

Куда девается космический мусор?

С низкой околоземной орбиты любой крупный объект спускается в атмосферу, где сгорает быстро и полностью - нам на голову даже пепел не падает.

А вот с маленькими кусочками дело обстоит сложнее. Несколько организаций США и России надежно отслеживают лишь космические аппараты и фрагменты мусора крупнее 10 см. Объекты с размерами от 1 до 10 см практически не поддаются счету.

С геостационарной орбиты устаревшие или прекратившие нормально функционировать спутники задвигают подальше, на высоту около 40 тысяч километров, чтобы освободить место для новых претендентов.

Так, за геостационаром, появилась орбита захоронения, где «умершие» спутники будут по инерции летать еще сотни лет.

А что происходит с космическими кораблями?

Корабли, на которых люди отправлялись в космос, возвращаются на Землю, где доживают свой век в музеях или научных центрах.

Мусор, образующийся в процессе жизнедеятельности обитателей международной космической станции, точно в космос не попадет. Он тщательно собирается, грузится на транспортный корабль - тот, что привозит им все необходимое, и отправляется по направлению к Земле. Этот корабль на обратном пути почти полностью сгорает в атмосфере или затапливается в Тихом океане.

Мусор, как издержки запуска космических аппаратов

Сообщение по радио или с экранов телевидения о том, что “отделение первой ступени прошло в штатном режиме» звучит привычно для современного человека. По дороге к запланированной орбите ракета-носитель теряет и другие, ставшие ненужными, детали.

На 1 кг запущенной массы приходится минимум 5 кг вспомогательной. Что с ними происходит?

Баки первой ступени сразу “отлавливают” на Земле специально обученные люди. Вторая ступень и обтекатели тоже падают на Землю, но разлетаются намного дальше и найти их сложнее.

А вот разгонные блоки, которые используются при переходе с опорной орбиты на конечную, там наверху и остаются. Со временем они потихоньку сползают вниз, входят в атмосферу, где и сгорают.

В общем, все превращается в пыль и рассеивается в атмосфере. Разве что очень-очень большие и прочные куски долетают до нас. В 2001 году долетел кусок от станции МИР и упал в океан.

Утилизация космических аппаратов

Получается, что способы утилизации космических аппаратов - это топить в океане, запустить подальше, сжечь в атмосфере … Такой полностью безотходный метод.

Детали, найденные на Земле спасателями, перерабатывают или повторно используют.

К сожалению, переработать пока можно не все. Вытекший из упавшего двигателя гидразин отравит почву и воду далеко и надолго.

Как вся эта пыль и гарь влияет на воздух, которым дышим?

Да, наш с вами воздух загрязняется и захламляется маленькими частицами пепла, пыли, другими продуктами горения космических аппаратов. Но не так сильно, как от выбросов земных машин и заводов.

Вот только один пример. Суммарная масса воздуха в атмосфере - 5Х10¹⁵ тонн. Масса орбитальной станции “ Мир”, самого крупного из космических аппаратов когда-либо вошедших в атмосферу, и сгоревших в ней (2001 год) - 105 тонн. То есть все капельки и пылинки, оставшиеся от орбитальной станции, ничто по сравнению с величиной атмосферы.

Теперь посмотрим на выбросы промышленности. По данным Росстата, наименьший суммарный выброс за период наблюдений с 1992 года пришелся на 1999 год. И он составил 18,5 млн тонн.

То есть только над нашей страной за один год в воздух попало в 176190 раз больше грязи, чем разнесло над всем земным шаром, пока «Мир» горел в атмосфере.

Что можно сделать для уменьшения количества мусора в космосе

В последние годы перед человечеством остро встали проблемы поддержания чистоты космического пространства.

Есть несколько направлений, по которым ведутся исследования:

  • Развитие микроспутниковой отрасли. Уже созданы спутники-коробочки - кубсаты и таблетсаты. При их запуске достигается существенная экономия на выводе, требуется меньше топлива, меньше лишнего попадает на орбиту. Правда, как догнать такой комочек, если что-то пойдет не так, пока неясно.
  • Увеличение продолжительности жизни аппаратов. Первые спутники были рассчитаны на 5 лет, современные аппараты - на 15 лет.
  • Повторное использование деталей. Самый большой прорыв в этом направление - возвратные ракеты-носители, над которыми уже работает Илон Маск.

Еще очень важно разобраться с тем, какие спутники действительно необходимы, более ответственно относиться к выбору запускаемых аппаратов.

В отдаленном будущем, надеемся, появятся пылесосы или другие приспособления, которые позволят делать косметическую и даже генеральную уборку космического пространства.

Мало ли что можно придумать, если поразмыслить, если задаться целью, сохранить чистый космос для будущих поколений.

Каждому из нас известно, что человечество невероятно загадило свою планету и ежедневно продолжает генерировать невероятное количество мусора. Но немногим известно, что за недолгий период освоения космоса мы успели превратить околоземное пространство в небольшую свалку отработанных спутников. Здесь представлены две интерактивные визуализации, отражающие сложившуюсь ситуацию.

Первая визуализация (автор Alex Rasmussen) отражает все известные и отслеживаемые спутники и обломки:

  • Зелёными точками обозначены действующие спутники.
  • Серыми - неактивные, но работоспособные.
  • Красными - вышедшие из строя спутники и их обломки.
Европейское Космическое Агентство установило , что вокруг Земли сейчас вращается:
  • около 29 000 обломков размером более 10 см,
  • около 670 000 обломков от 1 до 10 см,
  • более 170 млн обломков от 1 мм до 1 см.
Общая масса обломков в околоземном пространстве оценивается в 6300 тонн, скорость полёта может достигать 56 000 км/час.

За последние 50 лет было запущено около 6600 спутников , из них 3600 по прежнему вращаются вокруг Земли, а 1000 находится в активном режиме.

Насколько опасен весь этот мусор?

Представленные визуализации могут ввести наш разум в заблуждение, поскольку точки обозначают лишь расположение обломков, но не размер, то есть масштаб не соблюдён. В реальности околоземное пространство вовсе не представляет собой свалку, как это выглядит на картинках. Однако космические агентства разных стран всё-равно начеку, потому что стоимость запускаемых объектов очень высока, а потенциальный ущерб от потери 1000 действующих сейчас спутников в результате столкновений с мусором оценивается в 130 млрд долларов.

Каждый год в атмосферу земли входит 100-150 тонн обломков. Самым примечательным случаем за последние годы стало столкновение германского и американского спутников , чьи обломки упали в Бенгальский залив в 2011 году. Астронавтам на орбите также не стоит расслабляться (привет «Гравитации»). В 2012 году МКС была переведена на более высокую орбиту для предотвращения столкновения с обломками от японского спутника.

Что делать?

К счастью, повторение в жизни сценария по образу «Гравитации» маловероятно. Более того, инженеры предусмотрели немало средств защиты (МКС считается "наиболее защищённым космическим аппаратом в истории "). Однако скорость полёта и растущее количество обломков представляют всё большую угрозу. Учёные предупреждают о возможности синдрома Кесслера , когда на орбите окажется так много обломков, что риск уничтожения любого запускаемого аппарата станет очень высок. Подобная цепная реакция может, фактически, закрыть человечеству доступ в космос.

Сегодня учёные ищут способы отслеживания обломков и очистки космического пространства. Одна из многих идей состоит в использовании специальных спутников, которые будут захватывать обломки и направлять к поверхности планеты. Также рассматривается вариант сбора ещё пригодных для использования обломков ради вторичного использования.

Какой бы способ ни был выбран в будущем, одно несомненно: замусоривание ближайшего космического пространства обойдётся нам очень дорого. Если мы хотим по-прежнему иметь доступ за пределы своей планеты, иметь современные спутниковые средства связи, наблюдения и исследования, то нам необходимо уже начать изучать возможные способы избавления от орбитального мусора.

Пройдя по на оригинальную статью, можно оценить интерактивность визуализаций. К сожалению, встроить их в пост Хабр не позволяет, пришлось делать скриншоты.

давно не сходят с уст. Каждый раз, включая телевизор, мы видим новую фантастику, снятую в космосе. Однако освоение человеком космоса в реальности не такое быстрое. Несмотря на это, орбита вокруг земли стала настоящей свалкой для мусора различного происхождения. С каждым годом он представляет всё большую и большую опасность, так как его число растёт.

  1. Первый мусор в космосе – американский спутник . В 1958 году в космос был запущен спутник «Авангард-1». Американский спутник стал четвёртым по счету объектом, запущенным людьми. Он работал на солнечной энергии. «Авангард-1» – это не только один из старейших аппаратов, но также первый космический мусор, который появился на орбите Земли. После того как он завершил миссию, его так и не утилизировали. На протяжении 60 лет он движется вокруг Земли и подаёт признаки жизни. Специалисты НАСА определили, что после того, как пройдёт ещё 240 лет, он войдёт в слои атмосферы и сгорит.
  2. Женщина пострадала от ракетного обломка . В 1997 году в Оклахоме произошёл забавный, но не менее опасный случай. Местную жительницу «атаковал» небольшой металлический предмет. Обломок ракеты упал ей на плечо. Испугавшись, женщина не сразу поняла, что случилось. Через несколько дней после инцидента она стала знаменитостью.

  3. Движение мусора по орбите может причинить непоправимый вред тому, что они встречают на своём пути . Специалисты определили среднюю скорость движения отходов в космосе. Она составляет 10 км/с.

  4. Ученые не могли разгадать, что за неизвестный объект находится на Луне . В 1969 году были сделаны фотографии поверхности Луны. На них отчётливо виден объект белого цвета. Долгое время астронавты считали этот предмет загадочным, так как не могли установить причину происхождения. Со временем они сумели определить, что это отходы, которые астронавты выбросили из корабля.

  5. На данный момент на орбите планеты насчитывается около 7 тыс. ед. космического мусора . Это очень большое количество мусора.

  6. Масса космического мусора может колебаться от нескольких граммов до килограммов и даже тонн . Объекты, движущиеся по орбите, могут иметь любой вес. Имеются объекты массой более 20 кг и огромное количество мелких.

  7. Тихий океан имеет свой Титаник из космоса . Самый крупный мусор из космоса, который упал на Землю – орбитальная станция «Мир». Она была затоплена в Тихом океане в 2001 году. На дне океана покоится машина, вес которой больше 100 000 тонн.

  8. Огромное количество отходов успело сформировать вокруг Земли орбитальную свалку . Останки космических аппаратов и обломки метеоритов сталкиваются друг с другом, тем самым порождая ещё больше мусора. Мелкие останки несут опасность для любого объекта.

  9. Виды космического мусора . Принято делить на две группы, в зависимости от происхождения: искусственный и естественный.

  10. В создании мусора виновны люди . США и СССР проводили ряд некоторых испытаний. Происходило это с 1968 по 1985. В 1990 году было отслежено 7% от всего мусора, который был создан от 12 испытаний.

  11. Космические археологи теперь будут вести «раскопки» в космосе . Историки утверждают, что не нужно избавлять орбиту от уламков. В ближайшем будущем это может стать хорошей находкой для археологов.

  12. Наибольший вклад в создание космического мусора внесли 3 разных города . По данным 2014 года, первое место занимает Россия, затем идёт США, а последнее досталось Китаю.

  13. Мелкие куски несут наибольшую опасность . В космосе много мусора, размер которого не превышает даже 1 см. Самое неприятное то, что на сегодняшний день так и не удалось разработать эффективных мер защиты от него.

  14. Всего лишь две страны имеют возможность отслеживать пространство вокруг планеты . С помощью созданных систем, они контролируют космическое пространство. Это позволяет разрабатывать методы уничтожения мусора в космосе.

  15. Космический мусор время от времени падает на Землю . Объекты больших размеров, которые движутся по низким околоземным орбитам, со временем могут входить в атмосферу. Их скорость замедляется, и отдельные фрагменты достигают поверхности Земли. Практически каждый день в плотные слои атмосферы попадают мелкие частицы, крупные – несколько раз в месяц.