Что такое биохимия кратко. Профессия Биохимик

Этот вид лабораторной диагностики знаком практически каждому, врачи его назначают в первую очередь – как быстрый и информативный метод оценки состояния здоровья. Однако редкий пациент, получая результаты на руки, сможет расшифровать длинный список названий и цифр. И, хотя доскональной оценки всех этих характеристик от нас никто не требует, для этого есть врачи, общее представление о показателях, измеряемых в ходе биохимического анализа крови, все же стоит иметь.

Биохимический анализ крови: зачем и когда он проводится?

Большинство патологий человеческого организма сказывается на составе крови. Выявляя концентрацию тех или иных химических или структурных элементов крови, можно делать выводы о наличии и течении заболеваний. Таким образом, анализ крови «на биохимию» назначают для диагностики и контроля лечения. Важную роль биохимический анализ крови играет при наблюдении беременности. Если женщина чувствует себя нормально, он назначается в первом и третьем триместрах, а при токсикозах, угрозе выкидыша, жалобах на недомогание – чаще.

Подготовка и проведение процедуры

Сдача крови на биохимию предполагает соблюдение ряда условий – в противном случае диагностика будет некорректной.

  • Кровь на биохимический анализ сдается натощак, в утренние часы – обычно в промежутке с 8 до 11, чтобы выдержать требование не меньше 8 часов, но не больше 12–14 часов голода. Накануне и в день процедуры из напитков рекомендуется пить только воду, избегать тяжелой пищи – питаться нейтрально.
  • Необходимо уточнить у вашего врача, следует ли сделать перерыв в приеме медикаментозных препаратов и на какой период. Некоторые лекарства могут исказить данные анализа.
  • Как минимум за час до исследования необходимо прекратить курение. Прием алкоголя прекращают за сутки до исследования.
  • Рекомендуется избегать физических и эмоциональных стрессов накануне процедуры. Придя в медицинское учреждение, постарайтесь спокойно посидеть минут 10–20 перед тем, как будет взята кровь.
  • Если вам назначен курс физиотерапии, проводилось какое-либо инструментальное исследование, процедуру, вероятно, лучше отложить. Проконсультируйтесь со своим врачом.

В случаях, когда необходимо получить лабораторные показатели в динамике, повторные исследования следует проводить в том же медицинском учреждении и при сходных условиях.

Расшифровка результатов биохимического анализа крови: норма и отклонения

Готовые результаты предоставляются пациентам в виде таблицы, в которой отмечено, какие именно анализы проводились, какие показатели получены и как они соотносятся с нормой. Расшифровка результатов биохимического анализа крови может быть произведена достаточно быстро и даже онлайн, вопрос только в загруженности специалистов и в организации самого процесса. В среднем на получение расшифровки уходит 2–3 дня.

Анализ на биохимию крови может проводиться по минимальному или расширенному профилю в зависимости от клинической картины и назначения врача. Минимальный профиль в медицинских учреждениях Москвы стоит 3000–4000 рублей, расширенный – 5000–6000 рублей. Сравнивая цены, обратите внимание: забор крови из вены может оплачиваться отдельно, его стоимость – 150–250 рублей.

Биохимия крови – один из самых распространенных и информативных анализов, которые назначают врачи при диагностике большинства заболеваний. Видя его результаты, можно судить о состоянии работы всех систем организма. Практически каждое заболевание находит отражение в показателях биохимического анализа крови.

Что необходимо знать

Забор крови осуществляется из вены на локтевом изгибе, реже из вен на кисти и
предплечье.

В шприц набирают около 5-10 мл крови.

Позже кровь на биохимию в специальной пробирке помещают в специализированный прибор, который обладает способностью определять необходимые показатели с высокой точностью. Следует иметь в виду, что различные приборы могут иметь несколько отличающиеся границы нормы у определенных показателей. Результаты будут готовы при экспресс-методе в течение дня.

Как готовиться

Биохимическое исследование проводят утром натощак.

Перед сдачей крови необходимо воздержаться от употребления алкоголя в течение суток.
Последний прием пищи должен быть накануне вечером, не позднее 18.00. За два часа до сдачи не курить. Также исключить интенсивные физические нагрузки и, по возможности, стрессы. Подготовка к анализу – ответственный процесс.

Что входит в состав биохимии

Различают базовую и расширенную биохимию. Нецелесообразно определять все показатели, которые только возможно. Само собой разумеется, что возрастает цена и количество необходимой крови для анализа. Есть некий условный список базовых показателей, которые назначаются практически всегда, а есть много дополнительных. Их назначает врач в зависимости от клинической симптоматики и цели исследования.

Анализ делается с помощью биохимического анализатора, в который помещают пробирки с кровью

Базовые показатели:

  1. Общий белок.
  2. Билирубин (прямой и непрямой).
  3. Глюкоза.
  4. АЛТ и АСТ.
  5. Креатинин.
  6. Мочевина.
  7. Электролиты.
  8. Холестерин.

Дополнительные показатели:

  1. Альбумин.
  2. Амилаза.
  3. Щелочная фосфотаза.
  4. ГГТП.
  5. Триглицериды.
  6. С-реактивный белок.
  7. Ревматоидный фактор.
  8. Креатининфосфокиназа.
  9. Миоглобин.
  10. Железо.

Список неполный, существует еще много узконаправленных показателей для диагностики обмена веществ и нарушений функций внутренних органов. Теперь рассмотрим некоторые наиболее распространенные биохимические показатели крови подробнее.

Общий белок (65-85 грамм/литр)

Отображает общее количество белка в плазме крови (как альбумина, так и глобулина).
Может быть повышен при дегидратации, вследствие потери воды при многократной рвоте, при интенсивном потоотделении, кишечной непроходимости и перитоните. Также повышается при миеломной болезни, полиартритах.

Понижается данный показатель при длительном голодании и недоедании, заболеваниях желудка и кишечника, когда нарушено поступление белка. При заболеваниях печени нарушается его синтез. Также нарушен синтез белка при некоторых наследственных заболеваниях.

Альбумин (40-50 грамм/литр)

Одна из фракций белка плазмы. При снижении альбумина развиваются отеки, вплоть до анасарки. Связано это с тем, что альбумин связывает воду. При его значительном снижении вода не держится в кровяном русле и выходит в ткани.
Альбумин снижен при тех же состояниях, что и общий белок.

Общий билирубин (5-21мкмоль/литр)

Общий билирубин включает прямой и непрямой.

Все причины повышения общего билирубина можно разделить на несколько групп.
Внепеченочные – различные анемии, обширные кровоизлияния, то есть состояния, сопровождающиеся разрушением красных кровяных клеток.

Печеночные причины связаны с деструкцией гепатоцитов (клеток печени) при онкологии, гепатите, циррозе печени.

Нарушение оттока желчи вследствие обтурации желчных протоков камнями или опухолью.


При повышенном билирубине развивается желтуха, кожа и слизистые приобретают желтушный оттенок

Норма прямого билирубина до 7.9 мкмоль/литр. Непрямой билирубин определяется разницей между общим и прямым. Чаще всего его повышение связано с распадом эритроцитов.

Креатинин (80-115 мкмоль/литр)

Один из основных показателей, характеризующий функцию почек.

Данный показатель повышается при острых и хронических заболеваниях почек. Также при повышенном разрушении мышечных тканей, например, при рабдомиолизе после сверх интенсивной физической нагрузки. Может быть повышен при заболевании эндокринных желез (гиперфункция щитовидной железы, акромегалия). Если человек употребляет в пищу большое количества мясных продуктов, повышенный креатинин также гарантирован.

Креатинин ниже нормы особого диагностического значения не имеет. Может быть снижен у вегетарианцев, у беременных в первой половине беременности.

Мочевина (2.1-8.2 ммоль/литр)

Показывает состояние белкового обмена. Характеризует работу почек и печени. Увеличение мочевины в крови может быть при нарушении функции почек, когда они не справляются с ее выведением из организма. Также при усиленном распаде белков или повышенном поступлением белка в организм с пищей.

Снижение мочевины в крови наблюдается в третьем триместре беременности, при низкобелковой диете и тяжелых заболеваниях печени.

Трансаминазы (АЛТ, АСТ, ГГТ)

Аспартатаминотрансфераза (АСТ) – фермент, синтезируемый в печени. В плазме крови его содержание не должно в норме превышать 37Ед/литр у мужчин и 31Ед/литр у женщин.

Аланинаминотрансфераза (АЛТ) – также, как и АСТ фермент, синтезируется в печени.
Норма в крови у мужчин – до 45 ед/литр, у женщин – до 34 Ед/литр.

Кроме печени, большое количество трансаминаз находится в клетках сердца, селезенки, почек, поджелудочной железы, в мышцах. Повышение его уровня связано с разрушением клеток и выходом данного фермента в кровь. Таким образом, повышение АЛТ и АСТ возможно при патологии всех выше названных органов, сопровождающейся гибелью клеток (гепатит, инфаркт миокарда, панкреатит, некроз почки и селезенки).

Гамма-Глутамилтрансфераза (ГГТ) участвует в обмене аминокислот в печени. Ее содержание в крови повышается при токсических поражениях печени, в том числе, алкоголем. Также повышен уровень при патологии желчевыводящих путей и печени. Всегда повышается при хроническом алкоголизме.

Норма данного показателя – до 32 Ед/литре для мужчин, до 49 Ед/литре для женщин.
Низкий показатель ГГТ, как правило, определяется при циррозе печени.

Лактатдегидрогеназа (ЛДГ) (120-240 ед/литр)

Данный фермент содержится во всех тканях организма и участвует в энергетических процессах окисления глюкозы и молочной кислоты.

Повышен при заболеваниях печени (гепатит, цирроз), сердца (инфаркт), легких (инфаркт-пневмония), почек (различные нефриты), поджелудочной железы (панкреатит).
Снижение активности ЛДГ ниже нормы диагностически незначимо.

Амилаза (3.3-8.9)

Альфа-амилаза (α-амилаза) участвует в обмене углеводов, расщепляя сложные сахара до простых.

Повышают активность фермента острый гепатит, панкреатит, паротит. Также могут влиять некоторые лекарства (глюкокортикойды, тетрациклин).
Понижена активность амилазы при дисфункции поджелудочной железы и токсикозе беременных.

Панкреатическая амилаза (п-амилаза) синтезируется в поджелудочной железе и поступает в просвет кишечника, где излишки почти полностью растворяются трипсином. В норме лишь незначительное количество попадает в кровь, где показатель в норме у взрослых – не более 50 ед/литр.

Активность ее повышена при остром панкреатите. Может быть повышена и при приеме алкоголя и некоторых медикаментов, а также при хирургической патологии, осложненной перитонитом. Снижение амилазы – неблагоприятный признак утраты поджелудочной железой своей функции.

Общий холестерол (3,6-5.2 ммоль/л)

С одной стороны, важный компонент всех клеток и составная часть многих ферментов. А с другой, он играет важную роль в развитии системного атеросклероза.

Общий холестерол включает в себя липопротеиды высокой, низкой и очень низкой плотности. Повышен холестерин при атеросклерозе, нарушении функций печени, щитовидной железы, при ожирении.


Атеросклеротическая бляшка в сосуде – последствие повышенного холестерина

Понижен холестерин при диете, исключающей жиры, при гиперфункции щитовидной железы, при инфекционных заболеваниях и сепсисе.

Глюкоза (4.1-5.9 ммоль/литр)

Важный показатель состояния углеводного обмена и состояния поджелудочной железы.
Повышенная глюкоза может быть после приема пищи, поэтому анализ берется строго натощак. Также повышается при приеме некоторых препаратов (глюкокортикостеройдов, гормонов щитовидной железы), при патологии поджелудочной железы. Постоянно повышенный сахар в крови – главный диагностический критерий сахарного диабета.
Пониженный сахар может быть при острой инфекции, голодании, передозировке сахароснижающих препаратов.

Электролиты (K, Na, Cl, Mg)

Электролиты играют важную роль в системе транспорта веществ и энергии в клетку и обратно. Особенно важно это для правильной работы сердечной мышцы.


Изменение как в сторону увеличения концентрации, так и в сторону уменьшения ведет к нарушениям сердечного ритма, вплоть до остановки сердца

Нормы электролитов:

  • Калий (К+) – 3.5-5.1 ммоль/литр.
  • Натрий (Na+) – 139-155 ммоль/литр.
  • Кальций (Сa++) – 1.17-1.29 ммоль/литр.
  • Хлор (Cl-) – 98-107 ммоль/литр.
  • Магний (Mg++) – 0.66-1.07 ммоль/литр.

Изменение электролитного баланса связано с алиментарными причинами (нарушение поступления в организм), нарушением функций почек, гормональными заболеваниями. Также выраженные электролитные нарушения могут быть при диарее, неукротимой рвоте, гипертермии.

За три дня до того, как сдавать кровь на биохимию с определением магния, необходимо не принимать его препараты.

Кроме этого существует большое количество показателей биохимии, которые назначаются индивидуально при конкретных заболеваниях. Перед сдачей крови ваш лечащий врач определит, какие конкретно из показателей берут в вашей ситуации. Процедурная медсестра выполнит забор крови, а врач-лаборант предоставит расшифровку анализа. Показатели нормы приведены для взрослого человека. У детей и стариков они могут несколько отличаться.

Как видите, биохимический анализ крови – очень большой помощник в диагностике, но сопоставить результаты с клинической картиной может только врач.

Что такое биохимия? Биологическая или физиологическая биохимия - наука о химических процессах, которые лежат в основе жизнедеятельности организма и тех, что происходят внутри клетки. Цель биохимии (термин происходит от греческого слова «bios» - «жизнь») как науки - это изучение химических веществ, структуры и метаболизма клеток, природы и методов его регуляции, механизма энергетического обеспечения процессов внутри клеток.

Медицинская биохимия: суть и цели науки

Медицинская биохимия - раздел который изучает химический состав клеток человеческого организма, обмен веществ в нем (в том числе при патологических состояниях). Ведь любая болезнь, даже в бессимптомном периоде, неизбежно наложит свой отпечаток на химические процессы в клетках, свойства молекул, что отразится в результатах биохимического анализа. Без знания биохимии невозможно найти причину развития болезни и путь ее эффективного лечения.

Биохимическое исследование крови

Что такое анализ «биохимия крови»? Биохимическим исследованием крови называют один из методов лабораторной диагностики во многих областях медицины (например, эндокринология, терапия, гинекология).

Он помогает точно диагностировать болезнь и исследовать образец крови по таким параметрам:

Аланинаминотрансфераза (АлАТ, АЛТ);

Холестерин или холестерол;

Билирубин;

Мочевина;

Диастаза;

Глюкоза, липаза;

Аспартатаминотрансфераза (АСТ, АсАТ);

Гамма-глутамил транспептидаза (ГГТ), гамма ГТ (глутамилтранспептидаза);

Креатинин, белок;

Антитела к вирусу Эпштейн-Барра.

Для здоровья каждого человека важно знать, что такое биохимия крови, и понимать, что показатели ее не только дадут все данные для эффективной схемы лечения, но и помогут предупредить болезнь. Отклонения от нормальных показателей - это первый сигнал о том, что в организме что-то не так.

Биохимический анализ крови для исследования печени: значимость и цели

Кроме того, биохимическая диагностика позволит провести мониторинг динамики заболевания и результатов лечения, создать полноценную картину обмена веществ, дефицита микроэлементов работы органов. Например, обязательным анализом для людей с нарушением работы печени станет биохимия печени. Что это? Так называют биохимический анализ крови для исследования количества и качества ферментов печени. Если их синтез нарушен, то такое состояние грозит развитием болезней, воспалительных процессов.

Специфика биохимии печени

Биохимия печени - что это такое? Печень человека состоит из воды, белков, ферментов, липидов, гликогена. Ее ткани содержат минералы: медь, железо, никель, марганец, поэтому биохимическое изучение тканей печени - очень информативный и довольно эффективный анализ. Самые важные ферменты в работе печени - это глюкокиназа, гексокиназа. Наиболее чувствительны к биохимическим тестам такие ферменты печени: аланинаминотрансфераза (АЛТ), гамма-глутамил трансфераза (ГГТ), аспартатаминотрансфераза (АСТ), Как правило, при исследовании ориентируются на показатели этих веществ.

Для полноценного и успешного мониторинга состояния своего здоровья каждый должен знать, что такое «анализ биохимия».

Сферы исследования биохимии и важность правильной интерпретации результатов анализа

Что изучает биохимия? Прежде всего, процессы обмена веществ, химический состав клетки, химическую природу и функцию ферментов, витаминов, кислот. Оценить показатели крови по этим параметрам возможно только при условии правильной расшифровки анализа. Если все хорошо, то показатели крови по разным параметрам (уровень глюкозы, белок, ферменты крови) не должны отклоняться от нормы. В противном случае это следует расценивать как сигнал о нарушении работы организма.

Расшифровка биохимии

Как же расшифровать цифры в результатах анализа? Ниже приведена по основным показателям.

Глюкоза

Уровень глюкозы показывает качество процесса углеводного обмена. Граничная норма содержания не должна превышать 5,5 ммоль/л. Если уровень ниже, то это может свидетельствовать о сахарном диабете, эндокринных заболеваниях, проблемах с печенью. Повышенный уровень глюкозы может быть из-за сахарного диабета, физических нагрузок, гормональных лекарств.

Белок

Холестерин

Мочевина

Так называют конечный продукт распада белков. У здорового человека она должна полностью выводиться из организма с мочой. Если этого не происходит, и она попадает в кровь, то следует обязательно проверить работу почек.

Гемоглобин

Это белок эритроцитов, который насыщает клетки организма кислородом. Норма: для мужчин - 130-160 г/л, у девушек - 120-150 г/л. Низкий уровень гемоглобина в крови считают одним из показателей развивающейся анемии.

Биохимическое исследование крови на ферменты крови (АлАТ, АсАТ, КФК, амилаза)

Ферменты отвечают за полноценную работу печени, сердца, почек, поджелудочной железы. Без нужного их количества полноценный обмен аминокислот просто невозможен.

Уровень аспартатаминотрансферазы (АсАТ, АСТ - клеточного фермента сердца, почек, печени) не должен быть выше 41 и 31 ед./л для мужчин и женщин соответственно. В противном случае это может свидетельствовать о развитии гепатита, болезней сердца.

Липаза (фермент, что расщепляет жиры) играет важную роль в обмене веществ и не должен превышать значение 190 ед./л. Повышенный уровень сигнализирует о нарушении работы поджелудочной железы.

Тяжело переоценить значимость биохимического анализа на ферменты крови. Что такое биохимия и что она исследует, обязан знать каждый человек, заботящийся о своем здоровье.

Амилаза

Этот фермент содержится в поджелудочной железе и слюне. Он отвечает за расщепление углеводов и их усвоение. Норма - 28-100 ед./л. Его высокое содержание в крови может указывать на почечную недостаточность, холецистит, сахарный диабет, перитонит.

Результаты биохимического анализа крови записывают в специальный бланк, где указаны уровни содержания веществ. Нередко этот анализ назначают как дополнительный для уточнения предполагаемого диагноза. При расшифровке результатов биохимии крови учитывайте, что на них также влияет пол пациента, его возраст и образ жизни. Теперь вы знаете, что изучает биохимия и как правильно интерпретировать ее результаты.

Как правильно подготовится к сдаче крови на биохимию?

Острых болезней внутренних органов;

Интоксикации;

Авитаминоза;

Воспалительных процессов;

Для профилактики заболеваний, во время беременности;

Для уточнения поставленного диагноза.

Кровь для анализа берут рано утром, и перед приходом к врачу есть нельзя. В противном случае результаты анализа будут искажены. Биохимическое исследование покажет, насколько правильным является ваш обмен веществ и солей в организме. Кроме того, воздержитесь от питья сладкого чая, кофе, молока хотя бы за час-два до забора крови.

Обязательно ответьте себе на вопрос о том, что такое биохимия, перед сдачей анализа. Знание процесса и его значимости поможет вам правильно оценить состояние здоровья и быть компетентным в медицинских вопросах.

Как берут кровь на биохимию?

Процедура длится недолго и практически безболезненна. У человека в положении сидя (иногда предлагают прилечь на кушетку) медик берет предварительно наложив жгут. Место укола обязательно должно быть обработано антисептиком. Взятый образец помещают в стерильную пробирку и отправляют на анализ в лабораторию.

Контроль за качеством проведения биохимического исследования проводят в несколько этапов:

Преаналитический (подготовка пациента, взятие анализа, транспортировка в лабораторию);

Аналитический (обработка и хранения биоматериала, дозирование, проведение реакции, анализ результата);

Постаналитический (заполнение бланка с результатом, лабораторно-клинический анализ, отправка врачу).

Качество результата биохимии зависит от целесообразности выбранного метода исследования, компетентности лаборантов, точности мерок, техничной оснащенности, чистоты реактивов, соблюдения диеты.

Биохимия для волос

Что такое биохимия для волос? Биозавивка - это способ долгосрочного завивания локонов. Разница между обычной химической завивкой и биозавивкой принципиальна. В последнем случае не используют пероксид водорода, аммиак, тиогликолевую кислоту. Роль действующего вещества исполняет аналог цистина (биологический белок). Именно отсюда и произошло название метода укладки волос.

Несомненными плюсами можно назвать:

Щадящее действие на структуру волоса;

Смытую грань между отросшими и волосами, подвергавшимся биозавивке;

Процедуру можно повторять, не дожидаясь окончательного исчезновения ее эффекта.

Но перед походом к мастеру следует учитывать следующие ньансы:

Технология биозавивки сравнительно сложная, и нужно щепетильно подойти к выбору мастера;

Эффект недолгосрочен, около 1-4 месяцев (особенно на волосах, которые не подвергались завивке, окрашиванию, имеют плотную структуру);

Биозавивка стоит недешево (в среднем 1500-3500 р.).

Методы биохимии

Что такое биохимия и какие методы используются для исследования? Их выбор зависит от его цели и поставленных доктором задач. Они призваны изучить биохимическую структуру клетки, исследовать образец на возможные отклонения от нормы и таким образом помочь диагностировать болезнь, узнать динамику выздоровления и т. п.


Биохимия - один из самых эффективных анализов для уточнения, постановки диагноза, мониторинга лечения, определения успешной схемы терапии.

БИОХИМИЯ (биологическая химия) - биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ (см. Обмен веществ и энергии).

Изучение состава живых организмов издавна привлекало внимание ученых, поскольку к числу веществ, входящих в состав живых организмов, помимо воды, минеральных элементов, липидов, углеводов и т. д., относится ряд наиболее сложных органических соединений: белки и их комплексы с рядом других биополимеров, в первую очередь с нуклеиновыми кислотами.

Установлена возможность спонтанного объединения (при определенных условиях) большого числа белковых молекул с образованием сложных надмолекулярных структур, напр, белкового чехла хвоста фага, некоторых клеточных органоидов и т. д. Это позволило ввести понятие о самособирающихся системах. Такого рода исследования создают предпосылки для решения проблемы образования сложнейших надмолекулярных структур, обладающих признаками и свойствами живой материи, из высокомолекулярных органических соединений, возникших некогда в природе абиогенным путем.

Современная Б. как самостоятельная наука сложилась на рубеже 19 и 20 вв. До этого времени вопросы, рассматриваемые ныне Б., изучались с разных сторон органической химией и физиологией. Органическая химия (см.), изучающая углеродистые соединения вообще, занимается, в частности, анализом п синтезом тех хим. соединений, которые входят в состав живой ткани. Физиология (см.) же наряду с изучением жизненных функций изучает и хим. процессы, лежащие в основе жизнедеятельности. Т. о., биохимия является продуктом развития этих двух наук и ее можно подразделить на две части: статическую (или структурную) и динамическую. Статическая Б. занимается изучением природных органических веществ, их анализом и синтезом, тогда как динамическая Б. изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности. Динамическая Б., т. о., стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале Б. называлась физиологической (или медицинской) химией.

Как всякая быстро развивающаяся наука, Б. вскоре после своего возникновения начала делиться на ряд обособленных дисциплин: биохимия человека и животных, биохимия растений, биохимия микробов (микроорганизмов) и ряд других, поскольку, несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия в характере обмена веществ. В первую очередь это касается процессов ассимиляции. Растения, в отличие от животных организмов, обладают способностью использовать для построения своего тела такие простые химические вещества, как углекислый газ, вода, соли азотной и азотистой кислот, аммиак и др. При этом процесс построения клеток растений требует для своего осуществления притока энергии извне в форме солнечного света. Использование этой энергии первично осуществляют зеленые аутотрофные организмы (растения, простейшие - Euglena, ряд бактерий), которые в свою очередь сами служат пищей для всех остальных, так наз. гетеротрофных организмов (в т. ч. и человека), населяющих биосферу (см.). Т. о., выделение биохимии растений в особую дисциплину является обоснованным как с теоретической, так и практической сторон.

Развитие ряда отраслей промышленности и сельского хозяйства (переработка сырья растительного и животного происхождения, приготовление пищевых продуктов, изготовление витаминных и гормональных препаратов, антибиотиков и т. д.) привело к выделению в особый раздел технической Б.

При изучении химизма различных микроорганизмов исследователи столкнулись с целым рядом специфических веществ и процессов, представляющих большой научно-практический интерес (антибиотики микробного и грибкового происхождения, различные виды брожений, имеющие промышленное значение, образование белковых веществ из углеводов и простейших азотистых соединений и т. д.). Все эти вопросы рассматривают в биохимии микроорганизмов.

В 20 в. возникла как особая дисциплина биохимия вирусов (см. Вирусы).

Потребностями клинической медицины было вызвано возникновение клинической биохимии (см.).

Из других разделов Б., которые обычно рассматриваются как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования, следует назвать: эволюционную и сравнительную Б. (биохимические процессы и хим. состав организмов на различных стадиях их эволюционного развития), энзимологию (структура и функция ферментов, кинетика ферментативных реакций), Б. витаминов, гормонов, радиационную биохимию, квантовую биохимию - сопоставление свойств, функций и путей превращения биологически важных соединений с их электронными характеристиками, полученными с помощью квантовохимических расчетов (см. Квантовая биохимия).

Особенно перспективным оказалось изучение структуры и функции белков и нуклеиновых кислот на молекулярном уровне. Этот круг вопросов изучается науками, возникшими на стыках Б. с биологией и генетикой,- молекулярной биологией (см.) и биохимической генетикой (см.).

Исторический очерк развития исследований по химии живой материи. Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям. В 16 - 17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков (см. Ятрохимия), считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии - немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчеркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в мед. практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в «соках» живого тела особых начал - так наз. «ферментов», участвующих в разнообразных хим. превращениях.

В 17 -18 вв. широкое распространение получила теория флогистона (см. Химия). Опровержение этой, ошибочной в своей основе, теории связано с работами М. В. Ломоносова и А. Лавуазье, открывших и утвердивших в науке закон сохранения материи (массы). Лавуазье внес важнейший вклад в развитие не только химии, но и в изучение биол, процессов. Развивая более ранние наблюдения Майова (J. Mayow, 1643-1679), он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 в. было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

Крупными событиями второй половины 18 в. стали исследования Реомюра (R. Reaumur) и Спалланцани (L. Spallanzani) по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (гл. обр. мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учения о ферментах), однако, обычно связывают с именами К. С. Кирхгофа (1814), а также Пейена и Персо (A. Payen, J. Persoz, 1833), впервые изучивших действие на крахмал фермента амилазы in vitro.

Важную роль сыграли работы Пристли (J. Priestley) и особенно Ингенхауса (J. Ingenhouse), открывших явление фотосинтеза (конец 18 в.).

На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.

Успехи статической Б. с самого начала были неразрывно связаны с развитием органической химии.

Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742 - 1786). Он выделил и описал свойства целого ряда природных соединений - молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И. Берцелиуса и 10. Либиха, закончившиеся разработкой в начале 19 в. методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи - синтез в 1828 г. мочевины Ф. Веллером, уксусной к-ты А. Кольбе (1844), жиров П. Бертло (1850), углеводов А. М. Бутлеровым (1861) - имели особенно большое значение, т. к. показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Тем самым была установлена полная несостоятельность широко распространенных в 18-19 вв. виталистических представлений (см. Витализм). Во второй половине 18 - начале 19 в. были проведены и многие другие важные исследования: из мочевых камней была выделена мочевая к-та (Бергман и Шееле), из желчи - холестерин [Конради (J. Conradi)], из меда - глюкоза и фруктоза (Т. Ловиц), из листьев зеленых растений - пигмент хлорофилл [Пеллетье и Кавенту (J. Pelletier, J. Caventou)], в составе мышц был открыт креатин [ Шев-рель (М. E. Chevreul)]. Было показано существование особой группы органических соединений - растительных алкалоидов (Сертюрнер, Мейстер и др.), нашедших позднее применение в мед. практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты - глицин и лейцин [Пруст (J. Proust), 1819; Браконно (H. Braconnot), 1820].

Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя, Э. Абдергальдена и других были изучены структура и свойства белков, а также продуктов их гидролиза, в т. ч. и ферментативного.

В связи с описанием дрожжевых клеток (К. Коньяр-Латур во Франции и Т. Шванн в Германии, 1836 -1838 гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический процесс, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза т. е. жизни в отсутствие воздуха, за счет энергии брожения (процесса, неразрывно связанного, по его мнению, с жизнедеятельностью клеток, напр, клеток дрожжей). Ясность в этот вопрос была внесена опытами М. М. Манассеиной (1871), показавшей возможность сбраживания сахара разрушенными (растиранием с песком) дрожжевыми клетками, и особенно работами Бухнера (1897) по природе брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты.

Возникновение и развитие биологической (физиологической) химии

Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области Б. Первой работой в этом плане был учебник Зимона (J. E. Simon) «Handbuch der angewandten medizinischen Chemie» (1842). Очевидно, именно с этого времени термин «биологическая (физиологическая) химия» утвердился в науке.

Несколько позднее (1846) вышла в свет монография Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 г. Периодическая литература по биологической (физиологической) химии регулярно начала выходить с 1873 г. в Германии. В этом году Мали (L. R. Maly) опубликовал «Jahres-Bericht uber die Fortschritte der Tierchemie». B 1877 г. Э. Ф. Гоппе-Зейлером был основан научный журнал «Zeitschr. fur physiologische Chemie», переименованный впоследствии в «Hoppe-Seyler’s Zeitschr. fur physiologische Chemie». Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках.

Во второй половине 19 в. на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической, химии. В России первая кафедра медицинской химии была организована А. Я. Данилевским в 1863 г. в Казанском ун-те. В 1864 г. А. Д. Булыгинский основал кафедру медицинской химии на медицинском ф-те Московского ун-та. Вскоре кафедры медицинской химии, позднее переименованные в кафедры физиологической химии, возникают на медицинских факультетах других университетов. В 1892 г. начинает функционировать организованная А. Я. Данилевским кафедра физиологической химии в Военно-медицинской (медико-хирургической) академии в Петербурге. Однако чтение отдельных разделов курса физиологической химии проводилось там значительно раньше (1862- 1874) на кафедре химии (А. П. Бородин).

Подлинный расцвет Б. наступил в 20 в. В самом начале ого была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер, 1901 - 1902, и др.). Позднее был разработан ряд аналитических методов, в т. ч. микрометодов, позволяющих изучать аминокислотный состав минимальных количеств белка (несколько миллиграммов); широкое распространение получил метод хроматографии (см.), впервые разработанный русским ученым М. С. Цветом (1901 - 1910), методы рентгеноструктурного анализа (см.), «меченых атомов» (изотопной индикации), цитоспектрофотометрии, электронной микроскопии (см.). Крупных успехов добивается препаративная белковая химия, разрабатываются эффективные методы выделения и фракционирования белков и ферментов и определения их молекулярного веса [Коэн (S. Cohen), Тизелиус (A. Tiselius), Сведберг (Т. Swedberg)].

Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков (в т. ч. и ферментов) и полипептидов. Синтезируется ряд важных, обладающих биологической активностью белковых веществ.

Крупнейшие заслуги в развитии этого направления связаны с именами Л. Полинга и Кори (R. Corey) - структура полипептидных цепей белка (1951); В. Виньо - структура и синтез окситоцина и вазопрессин (1953); Сэнгера (F. Sanger) - структура инсулина (1953); Стайна (W. Stein) и С. Мура - расшифровка формулы рибонуклеазы, создание автомата для определения аминокислотного состава белковых гидролизатов; Перутца (М. F. Perutz), Кендрю (J. Kendrew) и Филлипса (D. Phillips) - расшифровка с помощью методов рентгеноструктурного анализа структуры и создание трехмерных моделей молекул миоглобина, гемоглобина, лизоцима и ряда других белков (1960 и последующие годы).

Выдающееся значение имели работы Самнера (J. Sumner), впервые доказавшего (1926) белковую природу фермента уреазы; исследования Нортропа (J. Northrop) и Кунитца (М. Kunitz) по очистке и получению кристаллических препаратов ферментов - пепсина и других (1930); В. А. Энгельгардта о наличии АТФ-азной активности у контрактильного белка мышц миозина (1939 - 1942) и т. д. Большое число работ посвящается изучению механизма ферментативного катализа [Михаэлис и Ментен (L. Michaelis, М. L. Menten), 1913; Р. Вильштеттер, Теорелль, Кошленд (Н. Theorell, D. E. Koshland), A. E. Браунштейн и М. М. Шемякин, 1963; Штрауб (F. В. Straub) и др.], сложных мультиферментных комплексов (С. Е. Северин, Ф. Линен и др.), роли структуры клеток в осуществлении ферментативных реакций, природы активных и аллостерических центров в молекулах ферментов (см. Ферменты), первичной структуры ферментов [В. Шорм, Анфинсен (С. В. Anfinsen), В. Н. Орехович и др.], регуляции активности ряда ферментов гормонами (В. С. Ильин и др.). Изучаются свойства «семейств ферментов» - изоферментов [Маркерт, Каплан, Вроблевский (С. Markert, N. Kaplan, F. Wroblewski), 1960-1961].

Важным этапом в развитии Б. явилась расшифровка механизма биосинтеза белка при участии рибосом, информационной и транспортной форм рибонуклеиновых кислот [Ж. Браше, Ф. Жакоб, Моно (J. Monod), 1953-1961; А. Н. Белозерский (1959); А. С. Спирин, А. А. Баев (1957 и последующие годы)].

Блестящие работы Чаргаффа (E. Chargaff), Ж. Дейвидсона, особенно Дж. Уотсона, Ф. Крика и Уилкинса (М. Wilkins), завершаются выяснением структуры дезоксирибонуклеиновой кислоты (см.). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез нуклеиновых кислот (ДНК и РНК) А. Корнбергом (1960 - 1968), Вейссом (S. Weiss), С. Очоа. Решается (1962 и последующие годы) одна из центральных проблем современной Б. - расшифровывается РНК-аминокислотный код [Крик, М. Ниренберг, Маттеи (F. Crick, J. H. Matthaei), и др.].

Впервые синтезируется один из генов и фаг фх174. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки (см. Молекулярная генетика). Разрабатывается теория регуляции работы цистронов (см.), ответственных за синтез различных белков и ферментов (Жакоб, Моно), продолжается изучение механизма белкового (азотистого) обмена.

Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Особенно плодотворным было содружество лабораторий А. Я. Данилевского и М. В. Ненцкого с лабораторией И. П. Павлова, к-рое привело к выяснению места образования мочевины (в печени). Ф. Гопкинс и его сотр. (Англия) установили значение ранее неизвестных компонентов пищи, развив на этой основе новую концепцию заболеваний, вызываемых пищевой недостаточностью. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Расшифровывается промежуточный обмен аминокислот - дезаминирование, переаминирование (А. Е. Браунштейн и М. Г. Крицман), декарбоксилирование, их взаимные превращения и особенности обмена (С. Р. Мардашев и др.). Выясняются механизмы биосинтеза мочевины (Г. Кребс), креатина и креатинина, открывается и подвергается детальному изучению группа экстрактивных азотистых веществ мышц - дипептиды карнозин, карнитин, ансерин [В. С. Гулевич, Аккерманн (D. Ackermann),

С. Е. Северин и др.]. Детальному изучению подвергаются особенности процесса азотистого обмена у растений (Д. Н. Прянишников, В. Л. Кретович и др.). Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности (С. Я. Капланский, Ю. М. Гефтер и др.). Осуществляется синтез пуриновых и пиримидиновых оснований, выясняются механизмы образования мочевой к-ты, детально исследуются продукты распада гемоглобина (пигменты желчи, кала и мочи), расшифровываются пути образования гема и механизм возникновения острых и врожденных форм порфирий и порфиринурий.

Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов [А. А. Колли, Толленс, Киллиани, Хауорт (B.C.Tollens, H. Killiani, W. Haworth) и др.] и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов (в частности, у травоядных животных); уточняются и расширяются работы, посвященные роли печени в углеводном обмене и поддержании концентрации сахара в крови на определенном уровне, начатые в середине прошлого века К. Бернаром и Э. Пфлюгером, расшифровываются механизмы синтеза гликогена (при участии УДФ-глюкозы) и его распада [К. Кори, Лелуар (L. F. Leloir) и др.]; создаются схемы промежуточного обмена углеводов (гликолитический, пентозный цикл, цикл Трикарбоновых кислот); выясняется характер отдельных промежуточных продуктов обмена [Я. О. Парнас, Эмбден (G. Embden), О. Мейергоф, Л. А. Иванов, С. П. Костычев, Гарден (A. Harden), Кребс, Ф. Липманн, Коэн (S. Cohen), В. А. Энгельгардт и др.]. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментных систем.

Выдающиеся успехи достигнуты в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглиозидов, стеринов и стеридов [Тирфельдер, А. Виндаус, А. Бутенандт, Ружичка, Рейхштейн (H. Thierfelder, A. Ruzicka, Т. Reichstein) и др.].

Трудами М. В. Ненцкого, Ф. Кноопа (1904) и Дакина (H. Dakin) создается теория β-окисления жирных кислот. Разработка современных представлений о путях окисления (при участии коэнзима А) и синтеза (при участии малонил-КоА) жирных кислот и сложных липидов связана с именами Лелуара, Линена, Липманна, Грина (D. Е. Green), Кеннеди (Е. Kennedy) и др.

Значительный прогресс достигнут при изучении механизма биологического окисления. Одна из первых теорий биологического окисления (так наз. перекисная теория) была предложена А. Н. Бахом (см. Окисление биологическое). Позднее появилась теория, согласно к-рой различные субстраты клеточного дыхания подвергаются окислению и углерод их в конечном счете превращается в CO2 за счет кислорода не поглощаемого воздуха, а кислорода воды (В. И. Палладии, 1908). В дальнейшем в разработку современной теории тканевого дыхания крупный вклад был внесен работами Г. Виланда, Тунберга (Т. Tunberg), Л. С. Штерн, О. Варбурга, Эйлера, Д. Кейлина (Н. Euler) и др. Варбургу принадлежит заслуга открытия одного из коферментов дегидрогеназ - никотинамидадениндинуклеотид фосфата (НАДФ), флавинового фермента и его простетической группы, дыхательного железосодержащего фермента, получившего впоследствии название цитохромоксидазы. Им же был предложен спектрофотометрический метод определения концентрации НАД и НАДФ (тест Варбурга), который затем лег в основу количественных методов определения целого ряда биохимических компонентов крови и тканей. Кейлин установил роль в цепи дыхательных катализаторов железосодержащих пигментов (цитохромов).

Крупное значение имело открытие Липманном коэнзима А., позволившее разработать универсальный цикл аэробного окисления активной формы ацетата - ацетил-КоА (лимоннокислый цикл Кребса).

В. А. Энгельгардтом, а также Липманном было введено понятие о «богатых энергией» фосфорных соединениях, в частности АТФ (см. Аденозинфосфорные кислоты), в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании (см. Окисление биологическое).

Возможность сопряженного с дыханием фосфорилирования (см.) в цепи дыхательных катализаторов, вмонтированных в мембраны митохондрий, была показана В. А. Белицером и Калькаром (H. Kalckar). Большое число работ посвящено изучению механизма окислительного фосфорилирования [Чейне (В. Chance), Митчелл (P. Mitchell), В. П. Скулачев и др.].

20 в. ознаменовался расшифровкой химического строения всех известных в наст, время витаминов (см.), вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность.

Не менее значительные успехи достигнуты в области химии и биохимии гормонов (см.); изучена структура и синтезированы стероидные гормоны коры надпочечников (Виндаус, Рейхштейн, Бутенандт, Ружичка); установлено строение гормонов щитовидной железы - тироксина, дийодтиронина [Э. Кендалл (Е. С. Kendall), 1919; Харингтон (С. Harington), 1926]; мозгового слоя надпочечников - адреналина, норадреналина [Такамине (J. Takamine), 1907]. Осуществлен синтез инсулина, установлено строение соматотропной), адренокортикотропного, меланоцитостимулирующего гормонов; выделены и изучены другие гормоны белковой природы; разработаны схемы взаимопревращения и обмена стероидных гормонов (Н. А. Юдаев и др.). Получены первые данные о механизме действия гормонов (АКТГ, вазопрессина и др.) на обмен веществ. Расшифрован механизм регуляции функций эндокринных желез по принципу обратной связи.

Существенные данные получены при изучении химического состава и обмена веществ ряда важнейших органов и тканей (функциональная биохимия). Установлены особенности в химическом составе нервной ткани. Возникает новое направление в Б.- нейрохимия. Выделен ряд сложных липидов, составляющих основную массу тканей мозга, - фосфатиды, сфингомиелины, плазмалогены, цереброзиды, холестериды, ганглиозиды [Тудихум,Уэлш (J. Thudichum, H. Waelsh), A. B. Палладии, E. М. K репс и др.]. Выясняются основные закономерности обмена нервных клеток, расшифровывается роль биологически активных аминов - адреналина, норадреналина, гистамина, серотонина, γ-амино-масляной к-ты и др. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении различных нервных заболеваний. Подробно изучаются химические передатчики нервного возбуждения (медиаторы), широко используются, особенно в сельском хозяйстве, различные ингибиторы холинэстеразы для борьбы с насекомыми-вредителями и т. д.

Значительные успехи достигнуты при изучении мышечной деятельности. Подробно исследуются сократительные белки мышц (см. Мышечная ткань). Установлена важнейшая роль АТФ в сокращении мышц [В. А. Энгельгардт и М. Н. Любимова, Сент-Дъёрдьи, Штрауб (A. Szent-Gyorgyi, F. В. Straub)], в движении клеточных органелл, проникновении в бактерии фагов [Вебер, Гоффманн-Берлинг (Н. Weber, H. Hoffmann-Berling), И. И. Иванов, В. Я. Александров, Н. И. Арронет, Б. Ф. Поглазов и др.]; подробно исследуется механизм мышечного сокращения на молекулярном уровне [Хаксли, Хансон (H. Huxley, J. Hanson), Г. М. Франк, Тономура (J. Tonomura) и др.], изучается роль в мышечном сокращении имидазола и его производных (G. Е. Северин); разрабатываются теории двухфазной мышечной деятельности [Хассельбах (W. Hasselbach)] и т. д.

Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от легких к тканям и углекислоты от тканей к легким [И. М. Сеченов, Дж.Холдейн, Ван-Слайк (D.van Slyke), Дж. Баркрофт, Гендерсон (L. Henderson), С. Е. Северин, Г. Е. Владимиров, Е.М. Крепе, Г. В. Дервиз]; уточнены и расширены представления о механизме свертывания крови; установлено наличие в плазме крови целого ряда новых факторов, при врожденном отсутствии которых в крови наблюдаются различные формы гемофилии. Изучен фракционный состав белков плазмы крови (альбумин, альфа-, бета- и гамма-глобулины, липопротеиды и др.). Открыт ряд новых плазменных белков (пропердин, C-реактивпый белок, гаптоглобин, криоглобулин, трансферрин, церулоплазмин, интерферон и др.). Открыта система кининов - биологически активных полипептидов плазмы крови (брадикинин, каллидин), играющих важную роль в регуляции местного и общего кровотока и принимающих участие в механизме развития воспалительных процессов, шока и других патологических процессов и состояний.

В развитии современной Б. важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования (разделение субклеточных органоидов), спектрофотометрии (см.), масс-спектрометрии (см.), электронного парамагнитного резонанса (см.) и др.

Некоторые перспективы развития биохимии

Успехи Б. в значительной мере определяют не только современный уровень медицины, но и ее возможный дальнейший прогресс. Одной из основных проблем Б. и молекулярной биологии (см.) становится исправление дефектов генетического аппарата (см. Генотерапия). Радикальная терапия наследственных болезней, связанных с мутационными изменениями тех или иных генов (т. е. участков ДНК), ответственных за синтез определенных белков и ферментов, в принципе возможна лишь путем трансплантации синтезированных in vitro или выделенных из клеток (напр., бактерий) аналогичных «здоровых» генов. Весьма заманчивой задачей является также овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Проблема терапии ряда вирусных заболеваний, особенно лейкозов, вероятно, не будет решена до тех пор, пока не станет полностью ясен механизм взаимодействия вирусов (в частности, онкогенных) с инфицируемой клеткой. В этом направлении интенсивно ведутся работы во многих лабораториях мира. Выяснение картины жизни на молекулярном уровне позволит не только полностью понять происходящие в организме процессы (биокатализ, механизм использования энергии АТФ и ГТФ при выполнении механических функций, передача нервного возбуждения, активный транспорт веществ через мембраны, явление иммунитета и т. д.), но и откроет новые возможности в создании эффективных лекарственных средств, в борьбе с преждевременным старением, развитием сердечно-сосудистых заболеваний (атеросклероз), продлении жизни.

Биохимические центры в СССР. В системе АН СССР функционируют Институт биохимии им. А. Н. Баха, Институт молекулярной биологии, Институт химии природных соединений, Институт эволюционной физиологии и биохимии им. И. М. Сеченова, Институт белка, Институт физиологии и биохимии растений, Институт биохимии и физиологии микроорганизмов, филиал Института биохимии УССР, Институт биохимии Арм. ССР и др. В системе АМН СССР имеются Институт биологической и медицинской химии, Институт экспериментальной эндокринологии и химии гормонов, Институт питания, Отдел биохимии Института экспериментальной медицины. Существует также ряд биохимических лабораторий в других институтах и научных учреждениях АН СССР, АМН СССР, академиях союзных республик, в вузах (кафедры биохимии Московского, Ленинградского и других университетов, ряда медицинских институтов, Военно-медицинской академии и т. д.), ветеринарных, сельскохозяйственных и других научных учреждениях. В СССР насчитывается около 8 тыс. членов Всесоюзного биохимического общества (ВБО), к-рое входит в Европейскую федерацию биохимиков (FEBS) и в Международный биохимический союз (IUB).

Радиационная биохимия

Радиационная Б. изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующей радиации. Облучение вызывает ионизацию и возбуждение молекул клетки, реакции их с возникающими в водной среде свободными радикалами (см.) и перекисями, что приводит к нарушению структур биосубстратов клеточных органелл, равновесия и взаимных связей внутриклеточных биохимических процессов. В частности, эти сдвиги в сочетании с пострадиационными воздействиями со стороны поврежденной ц. н. с. и гуморальных факторов дают начало вторичным нарушениям обмена веществ, обусловливающим течение лучевого заболевания. Важную роль в развитии лучевой болезни играет ускорение распада нуклеопротеидов, ДНК и простых белков, торможение их биосинтеза, нарушения скоординированного действия ферментов, а также окислительного фосфорилирования (см.) в митохондриях, уменьшение количества АТФ в тканях и усиленная окисляемость липидов с образованием перекисей (см. Лучевая болезнь , Радиобиология , Радиология медицинская).

Библиография: Афонский С. И. Биохимия животных, М., 1970; Биохимия, под ред. H. Н. Яковлева, М., 1969; ЗбарекиЙ Б. И., Иванов И. И. и М а р-д а ш e в С. Р. Биологическая химия, JI., 1972; Кретович В. JI. Основы биохимии растений, М., 1971; JI e н и н д-ж e р А. Биохимия, пер. с англ., М., 1974; Макеев И. А., Гулевич В. С. иБроуде JI. М. Курс биологической химии, JI., 1947; Малер Г. Р. и КордесЮ. Г. Оснопы биологической химии, пер. с англ., М., 1970; Фердман Д. JI. Биохимия, М., 1966; Филиппович Ю. Б. Основы биохимии, М., 1969; III т р а у б Ф. Б. Биохимия, пер. с венгер., Будапешт, 1965; R а р о р о г t S. М. Medizinische Bioc-hemie, B., 1962.

Периодические издания - Биохимия, М., с 1936; Вопросы медицинской химии, М., с 1955; Журнал эволюционной биохимии и физиологии, М., с 1965; Известия АН СССР, Серия биологические науки, М., с 1958; Молекулярная биология, М., с 1967; Украшський бюхем1чний журнал, Кшв, с 1946 (1926-1937 - Науков1 записки Украшського бюхемичного шети-туту, 1938-1941 - Бюхем1чний журнал); Успехи биологической химии, JI., с 1924; Успехи современной биологии, М., с 1932; Annual Review of Biochemistry, Stanford, с 1932; Archives of Biochemistry and Biophysics, N. Y., с 1951 (1942-1950 - Archives of Biochemistry); Biochemical Journal, L., с 1906; Biochemische Zeitsch-rift, В., с 1906; Biochemistry, Washington, с 1964; Biochimica et biophysica acta, N. Y.- Amsterdam, с 1947; Bulletin de la Soci6t<5 de chimie biologique, P., с 1914; Comparative Biochemistry and Physiology, L., с 1960; Hoppe-Seyler’s Zeitschrift fiir physiologische Chemie, В., с 1877; Journal of Biochemistry, Tokyo, с 1922; Journal of Biological Chemistry, Baltimore, с 1905; Journal of Molecular Biology, L.-N.Y., с 1960; Journal of Neurochemistry, L., с 1956; Proceedings of the Society for Experimental Biology and Medicine, N. Y., с 1903; См. также в ст. Клиническая биохимия, Физиология, Химия.

Б. радиационная - Кузин А. М. Радиационная биохимия, М., 1962; P о -манцев Е. Ф. и д р. Ранние радиационно-биохимические реакции, М., 1966; Федорова Т. А., Терещенко О. Я. и М а з у р и к В. К. Нуклеиновые кислоты и белки в организме при лучевом поражении, М., 1972; Черкасова Л. С. и д р. Ионизирующее излучение и обмен веществ, Минск, 1962, библиогр.; Altman К. I., Gerber G. В. а. О k a d a S. Radiation biochemistry, v. 1-2, N. Y.- L., 1970.

И. И. Иванов; Т. А. Федорова (рад.).

Жизнь и неживое? Химия и биохимия? Где между ними грань? И есть ли она? Где связь? Ключ к разгадке этих проблем долгое время был у природы за семью замками. И лишь в XX веке удалось несколько приоткрыть тайны жизни, причем многие кардинальные вопросы прояснились, когда ученые дошли до исследований на уровне молекул. Познание физико-химических основ жизненных процессов стало одной из главных задач естествознания, и именно на этом направлении, пожалуй, были получены самые интересные результаты, имеющие принципиальное теоретическое значение и сулящие громадный выход в практику.

Химия давно уже присматривается к природным веществам, участвующим в процессах жизнедеятельности.

За прошедшие два столетия химии суждено было сыграть выдающуюся роль в познании живой природы. На первом этапе химическое изучение носило описательный характер, и учеными были выделены и охарактеризованы разнообразные природные вещества, продукты жизнедеятельности микроорганизмов, растений и животных, обладавшие часто ценными свойствами (лекарственные препараты, красители и т. п.). Однако лишь сравнительно недавно на смену этой традиционной химии природных соединений пришла современная биохимия с ее стремлением не только описать, но и объяснить, и не только самое простое, но и самое сложное в живом.

Внеорганическая биохимия

Внеорганическая биохимия как наука сложилась в середине XX столетия, когда на сцену вырвались новые направления биологии, оплодотворенные достижениями других наук, и когда в естествознание пришли специалисты нового склада ума, объединенные желанием и стремлением точнее описать живой мир. И не случайно под одной крышей старомодного здания по Академическому проезду, 18 оказались два вновь организованных института, представлявших самые новые в то время направления химико-биологической науки, - Институт химии природных соединений и Институт радиационной и физико-химической биологии. Этим двум институтам суждено было начать в нашей стране бой за познание механизмов биологических процессов и детальное выяснение структур физиологически активных веществ.

К этому периоду стала ясна уникальная структура основного объекта молекулярной биологии - дезоксирибонуклеиновой кислоты (ДНК), знаменитая «двойная спираль». (Это длинная молекула, на которой, как на магнитофонной ленте или матрице, записан полный «текст» всей информации об организме.) Появилась структура первого белка - гормона инсулина, был успешно выполнен химический синтез гормона окситоцина.

А что, собственно, такое биохимия, чем она занимается?

Эта наука изучает биологически важные природные и искусственные (синтетические) структуры, химические соединения - как биополимеры, так и низкомолекулярные вещества. Точнее, закономерности связи их конкретной химической структуры с соответствующей физиологической функцией. Биоорганическую химию интересует тонкое устройство молекулы биологически важного вещества, внутренние ее связи, динамика и конкретный механизм ее изменения, роль каждого ее звена в выполнении функции.

Биохимия — ключ к пониманию белков

Биоорганической химии принадлежат, несомненно, крупные успехи в изучении белковых веществ. Еще в 1973 году было завершено выяснение полной первичной структуры фермента аспартат-аминотрансферазы, состоящего из 412 аминокислотных остатков. Это один из наиболее важных биокатализаторов живого организма и один из наиболее крупных белков с расшифрованной структурой. Позднее было определено строение и других важных белков - несколько нейротоксинов из яда среднеазиатской кобры, которые используются при изучении механизма передачи нервного возбуждения в качестве специфических блокаторов, а также растительного гемоглобина из клубеньков желтого люпина и антилейкозного белка актиноксантина.

Огромный интерес представляют родопсины. Давно известно, что родопсин - основной белок , участвующий у животных в процессах зрительной рецепции, и его выделяют из особых систем глаза. Этот уникальный белок принимает световой сигнал и обеспечивает нам способность видеть. Было обнаружено, что подобный родопсину белок встречается и у некоторых микроорганизмов, но выполняет совсем другую функцию (поскольку бактерии «не видят»). Здесь он энергетическая машина, синтезирующая богатые энергией вещества за счет света. Оба белка очень близки по структуре, но их назначение принципиально различно.

Одним из важнейших объектов изучения был фермент, участвующий в реализации генетической информации. Двигаясь по ДНК-матрице, он как бы считывает записанную в ней наследственную информацию и на этой основе синтезирует информационную рибонуклеиновую кислоту. Последняя же, в свою очередь, служит матрицей для синтеза белков. Этот фермент - огромный белок, его молекулярный вес приближается к полумиллиону (вспомним: у воды он всего лишь 18) и состоит из нескольких различных субъединиц. Выяснение его структуры суждено было помочь ответить на важнейший вопрос биологии: каков механизм «снятия» генетической информации, как идет расшифровка текста, записанного в ДНК - основном веществе наследственности.

Пептиды

Ученых привлекают не только белки, но и более короткие цепочки из аминокислот, называемые пептидами. Среди них сотни веществ громадного физиологического значения. Вазопрессин и ангиотензин участвуют в регуляции кровяного давления, гастрин управляет секрецией желудочного сока, грамицидин С и полимиксин - антибиотики, к которым относятся и так называемые вещества памяти. В короткой цепочке несколькими «буквами» аминокислотами записана огромная биологическая информация!

Сегодня мы умеем искусственно получать не только любой сложный пептид, но и простой белок, например инсулин. Значение таких работ трудно переоценить.

Был создан метод комплексного анализа пространственного строения пептидов с помощью разнообразных физических и расчетных методов. А ведь сложная объемная архитектура пептида и определяет всю специфику его биологической активности. Пространственное строение любого биологически активного вещества, или, как говорят, его конформация, - ключ к пониманию механизма его действия.

Среди представителей нового класса пептидных систем - депсипелтидов - коллектив ученых обнаружил вещества поразительной природы, способные селективно переносить ионы металлов через биологические мембраны, так называемые ионофоры. И главный среди них - валиномицин.

Открытие ионофоров составило целую эру в мембранологии, поскольку позволило направленно изменять транспорт ионов щелочных металлов - калий и натрий - через биомембраны. С транспортом этих ионов связаны и процессы нервного возбуждения, и процессы дыхания, и процессы рецепции - восприятия сигналов внешней среды. На примере валиномицина удалось показать, как биологические системы способны выбрать лишь один ион из десятков других, связать его в удобно транспортируемый комплекс и перенести через мембрану. Это удивительное свойство валиномицина заключено в его пространственной структуре, напоминающей собой ажурный браслет.

Другой тип ионофоров представляет собой антибиотик грамицидин А. Это линейная цепочка, построенная из 15 аминокислот, в пространстве образует спираль из двух молекул, причем, как было установлено, это истинная двойная спираль. Первая двойная спираль в белковых системах! И спиральная структура, встраиваясь в мембрану, образует своеобразную пору, канал, через который ионы щелочных металлов проходят сквозь мембрану. Простейшая модель ионного канала. Понятно, почему грамицидин вызвал такую бурю в мембранологии. Ученые уже получили многие синтетические аналоги грамицидина, он детально изучался на искусственных и биологических мембранах. Сколько прелести и значимости в такой, казалось бы, маленькой молекуле!

Не без помощи валиномицина и грамицидина ученые оказались втянутыми в исследование биологических мембран.

Биологические мембраны

Но в состав мембран всегда входит еще один основной компонент, который определяет их природу. Это жироподобные вещества, или липиды. Молекулы липидов невелики по размеру, но они образуют прочные гигантские ансамбли, формирующие сплошной мембранный слой. В этот слой встраиваются молекулы белков - и вот вам одна из моделей биологической мембраны.

Почему же важны биомембраны? Вообще мембраны - важнейшие регуляторные системы живого организма. Сейчас по подобию биомембран создаются важные технические средства - микроэлектроды, датчики, фильтры, топливные элементы… И дальнейшие перспективы использования мембранных принципов в технике поистине безграничны.

Прочие интересы биохимии

Видное место занимают исследования по бихимии нуклеиновых кислот. Они нацелены на расшифровку механизма химического мутагенеза, а также на познание природы связи между нуклеиновыми кислотами и белками.

Особое внимание было издавна сосредоточено на искусственном синтезе гена. Ген, или, если говорить упрощенно, функционально значимый участок ДНК, сегодня уже можно получить химическим синтезом. Это одно из важных направлений модной сейчас «генной инженерии». Работы, лежащие на стыке биоорганической химии и молекулярной биологии, требуют овладения сложнейшими приемами, дружного сотрудничества химиков и биологов.

Еще один класс биополимеров - углеводы, или полисахариды. Мы знаем типичных представителей веществ этой группы - целлюлозу, крахмал, гликоген, свекловичный сахар. Но в живом организме углеводы выполняют самые разнообразные функции. Это защита клетки от врагов (иммунитет), она важнейшая составная часть клеточных стенок, компонент рецепторных систем.

Наконец, антибиотики. В лабораториях выяснено строение таких важнейших групп антибиотиков, как стрептотрицин, оливомицин, альбофунгин, абиковхромицин, ауреоловая кислота, обладающие противоопухолевой, противовирусной и антибактериальной активностью.

Рассказать о всех поисках и достижениях биоорганической химии невозможно. С уверенностью только можно утверждать, что у биооргаников больше планов, чем сделанного.

Биохимия тесно сотрудничает с молекулярной биологией, биофизикой, изучающими жизнь на уровне молекул. Она стала химическим фундаментом этих исследований. Создание и широкое использование новых ее методов, новых научных концепций способствует дальнейшему прогрессу биологии. Последняя, в свою очередь, стимулирует развитие химических наук.