Что такое диссимиляция охарактеризуйте этапы диссимиляции. Кислородный этап энергетического обмена

Диссимиляция в биологии обозначает процесс, обратный ассимиляции. Иными словами, это этап обмена веществ в организме, на котором происходит разрушение сложных органических соединений с получением более простых. Существует несколько разных определений понятия диссимиляция. Википедия трактует этот термин как утрату специфичности сложных веществ и разрушения сложных органических соединений до более простых. Синонимом этого понятия является катаболизм.

В обмене веществ в живой клетке центральное место занимают сложные реакции диссимиляции - дыхание, брожение, гликолиз. Результатом этих биологических процессов является высвобождение энергии, которая заключена в сложных молекулах. Эта энергия частично трансформируется в энергию Аденозинтрифосфорной кислоты (АТФ). Конечными продуктами диссимиляции во всех живых клетках являются углекислый газ, аммиак и вода. Растительные клетки получили возможность частично использовать эти вещества для ассимиляции. Животные организмы выводят эти продукты распада наружу .

Виды

По характеру участия кислородных молекул в реакциях катаболизма все организмы принято подразделять на аэробные, то есть протекающие с участием кислорода, и анаэробные (бескислородные).

Анаэробные организмы осуществляют процессы энергетического обмена путем брожения, а аэробные - путем дыхания.

Брожение

Брожением называется совокупность реакций распада органических молекул до более простых соединений, при которых происходит выделение энергии и синтез молекул АТФ. Среди других способов получения энергии брожение считается самым малоэффективным: из 1 моль глюкозы при молочнокислом брожении получается 2 моль АТФ.

Наиболее широко в природе распространены два вида брожения:

Дыхание

Дыхание в контексте раскрываемого вопроса имеет более обширное значение, чем привычный процесс газообмена. В этом случае под дыханием следует понимать разновидность диссимиляции, которая реализуется в среде, содержащей молекулы кислорода.

Процесс дыхания включает в себя две части:

  1. Процесс газообмена в дыхательной системе многоклеточных организмов и в тканях;
  2. Последовательность биохимических реакций окисления, которым подвергаются органические соединения. В результате таких процессов образуются вода, аммиак и углекислый газ. Возможно образование некоторых других простых соединений - сероводорода, неорганических фосфорных соединений и пр.

Для большинства людей привычной является более узкой трактовка процесса дыхания как газообмена.

Этапы и их характеристика

Процесс диссимиляции в живых клетках состоит из нескольких этапов. Следует заметить, что в разных организмах эти этапы могут протекать по-разному.

У аэробных организмов процесс катаболизма включает в себя три основных этапа. Каждый этап протекает с участием специальных ферментативных систем.

В результате реакций диссимиляции получается энергия, которая в дальнейшем используется организмом для пластического обмена.

Процессы окислительного фосфорилирования происходят на внутренних митохондриальных мембранах. В этих мембранах имеются встроенные молекулы-переносчики. Их функцией является доставка электронов к атомам кислорода. Часть энергии в ходе этой реакции рассеивается в виде тепла.

В результате реакций гликолиза вырабатывается малое количество энергии, которого недостаточно для осуществления жизнедеятельности организмов с аэробным типом обмена веществ. Именно это является причиной, почему при недостатке кислорода в мышечных клетках образуется молочная кислота. Это вещество накапливается в виде лактата и вызывает боль в мышцах.

В клетке постоянно происходит обмен веществ и энергии с окружающей средой. Обмен веществ (метаболизм ) - основное свойство живых организмов. На клеточном уровне метаболизм включает два процесса: ассимиляцию (пластический обмен) и диссимиляцию (энергетический обмен). Эти процессы происходят в клетке одновременно.

Диссимиляция (энергетический обмен) - совокупность реакций расщепления веществ. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. По типу диссимиляции организмы делят на аэробные и анаэробные .

Аэробная диссимиляция

Энергетический обмен проходит в 3 этапа:

1-й этап - подготовительный.

На этом этапе молекулы сложных веществ (белков, жиров, углеводов, нуклеиновых кислот) распадаются до мономеров. Выделяется небольшое количество энергии, которая рассеивается в виде тепла. Синтез АТФ не происходит.

2-й этап - бескислородный (анаэробный).

Бескислородный распад протекает в цитоплазме клеток. Мономеры, образовавшиеся на первом этапе, расщепляются без участия кислорода, в несколько стадий. Расщепление происходит под действием ферментов с образованием энергии АТФ. Например, в мышцах (в цитоплазме клеток) молекула глюкозы распадается на две молекулы молочной кислоты и две молекулы АТФ

3-й этап - кислородное расщепление (аэробное дыхание).

Все реакции этой стадии катализируются ферментами и проходят при участии кислорода в митохондриях на кистах. Вещества, образовавшиеся в предыдущем этапе, окисляются до конечных продуктов - СО 2 и Н 2 О. При этом выделяется большое количество энергии. Данный процесс называют клеточным дыханием. При окислении двух молекул молочной кислоты образуется 36 молекул АТФ. В результате второго и третьего этапов при расщеплении одной молекулы С 6 Н 12 О 6 выделяется 38 молекул АТФ.

Анаэробная диссимиляция.

Распад глюкозы у анаэробныхбактерий может идти в бескислородных условиях. Этот процесс называется брожением . При брожении выделяется не вся энергия, заключенная в веществе, а лишь часть ее. Остальная энергия остается в химических связях в образовавшемся веществе. При спиртовом брожении образуется спирт и две молекулы АТФ.

Вопрос 3

Билет 5

1. Белки, их роль в организме;

2. Уровни организации живой материи;

3. Определить процентное содержание азотистых оснований в определенном фрагменте ДНК.

Вопрос 1

Белки.

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты.

Есть первичная, вторичная, третичная и четвертичная структуры белка. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи, скручиваясь в компактную структуру, образуют глобулу (шар) - это третичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка. При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы (денатурация). Иногда денатурированный белок при изменении условий вновь может восстановить свою структуру (ренатурация) и это возможно лишь тогда, когда не разрушена первичная структура белка.


Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины.

Функции белков:

1. Энергетическая. При распаде 1 г белка выделяется 17,6 кДж энергии.

2. Ферментативная. Служат катализаторами биохимических реакций. Катализаторы - ферменты. Ферменты ускоряют биохимические реакции, но не входят в состав конечных продуктов. Ферменты строго специфичны.

3. Структурная. Белки входят в состав мембран и органоидов клетки.

4. Транспортная. Белки связывают и переносят различные вещества и внутри клетки, и по всему организму. Например, гемоглобин переносит кислород и СО 2 в крови позвоночных.

5. Защитная. Защита организма от вредных воздействий: выработка антител.

6. Сократительная. Благодаря наличию белков актина и миозина в мышечных волокнах происходит сокращение мышц.

7. Белки-гормоны. Обеспечивают регуляторную функцию.

Диссимиляция (катаболизм) - совокупность процессов, при которых происходит окисление сложных органических веществ и превращение их в неорганические (воду, углекислый газ, мочевину (простое органическое вещество) и др.), сопровождающееся синтезом АТФ, которая используется организмом в процессах ассимиляции и других процессах жизнедеятельности организма.

Главной функцией процессов диссимиляции в организме является перевод энергии из «неудобной» организму формы (энергии химических связей сложных органических веществ - белков, углеводов, жиров) в «удобную» форму - макроэргические связи соединения типа АТФ и АДФ, которых за счет процессов фосфорилирования легко переходит от одного соединения к другому. Это одна из биолого-экологических функций ассимиляции. Другой такой функцией является реализация круговорота веществ, когда органические вещества превращаются в неорганические, а последние вновь вступают в круговорот, участвуя в образовании органических веществ.

Перевод энергии из «неудобной» для организма формы в «удобную» происходит за счет превращения сначала АМФ в АДФ, а затем АДФ в АТФ.

Превращения аденозинфосфатов с образованием макроэргических связей выражаются схемами: АМФ + Н 3 РO 4 → АДФ + Н 2 O (поглощение энергии); АДФ + Н 3 РO 4 = АТФ + Н 2 O (поглощение энергии).

В результате процессов диссимиляции накапливается АТФ, которая затем используется в процессах ассимиляции, а энергия, заключенная в макроэргических связях молекул АТФ, передается на другие молекулы либо за счет процессов фосфорилирования (остаток переходит с молекулы АТФ на другие молекулы), либо за счет гидролиза АТФ и ее превращения в АДФ и фосфорную кислоту.

Организмы по характеру участия в процессах диссимиляции молекулярного кислорода делятся на анаэробные (бескислородные) и аэробные (кислородные). В анаэробных организмах диссимиляция осуществляется за счет брожения, а в аэробных - за счет в широком понимании сущности этого понятия.

Брожение - совокупность процессов разложения сложных органических веществ до более простых, сопровождающаяся выделением энергии и синтезом АТФ.

В природе наиболее распространенными видами брожения являются молочнокислое и спиртовое. Как способ «извлечения» энергии брожение - малоэффективный процесс: так, при молочнокислом брожении из 1 моль глюкозы образуется 2 моль АТФ.

1. Молочнокислое брожение - анаэробный процесс распада глюкозы до молочной кислоты. Выражается схемой:

С 6 Н 12 O 6 (глюкоза) → 2СН 3 СН(ОН)СООН (молочная кислота)

(выделяется энергия, под действием которой синтезируется две молекулы АТФ).

Этот вид брожения характерен для молочнокислых бактерий, в присутствии которых происходит скисание молока.

Молочнокислое брожение является одной из стадий процесса дыхания (в широком смысле) у аэробных организмов, в том числе и у человека.

2. Спиртовое брожение - аэробный процесс распада глюкозы, сопровождающийся образованием этилового спирта и углекислого газа; протекает по схеме:

С 6 Н 12 О 6 (глюкоза) → 2СО 2 + 2С 2 Н 5 ОН (этиловый спирт)

(выделяется энергия, используемая для синтеза АТФ).

Этот вид брожения происходит в плодах, в других органах растения, находящихся в анаэробной среде.

В природе наиболее широкое распространение имеет другой способ диссимиляции - дыхание, которое реализуется в окислительной среде, т. е. среде, содержащей молекулярный кислород. Процесс дыхания состоит из двух частей: газообмена и сложной последовательности биохимических процессов окисления органических соединений, конечными продуктами которых являются углекислый газ, аммиак (превращается в другие вещества) и некоторые другие соединения (сероводород, неорганические соединения фосфора и др.).

В обиходе дыхание рассматривается как процесс газообмена (это понимание понятия «дыхания» в узком смысле). Так, зоологи в организмах высших животных выделяют систему органов дыхания - в этих органах осуществляется газообмен, в результате которого из организма удаляется СО 2 , а в организм поступает О 2 (мы «дышим», т. е. выделяем углекислый газ и поглощаем молекулярный кислород).

В данном пособии дыхание рассматривается в широком смысле этого слова как совокупность процессов газообмена, перенесения газов по организму и совокупность химических процессов, при которых сложные органические вещества превращаются в неорганические, при этом энергия усваивается организмом в форме АТФ, синтезирующейся в процессе диссимиляции.

Итак, процесс дыхания в широком смысле состоит из двух фаз: газообмена и совокупности химических процессов освобождения энергии и синтеза АТФ. Кратко охарактеризуем эти фазы.

1. Газообмен.

Для одноклеточных и относительно просто устроенных организмов (как растительных, так животных и грибов) газообмен протекает на всей поверхности тела: кислород поступает в клетки, а углекислый газ выделяется в окружающую среду. У высших растений роль органов дыхания играют или устьица(листья), или особо устроенные поры (чечевички) в коре многолетних органов (стебли, корни), кроме того, корни поглощают кислород и выделяют углекислый газ корневыми волосками. У высокоорганизованных многоклеточных животных имеются сложно устроенные органы дыхания - это или жабры (у водных животных), или легкие (высшие животные типа Позвоночные), или система трахей (насекомые).

Рассмотрим газообмен на примере человека - представителя типа Позвоночные. Этот процесс протекает достаточно сложно и начинается в легких, в которых в капиллярах альвеол кровь, обогащенная СO 2 (венозная ), контактирует с воздухом, богатым кислородом (поступил в легкие во время вдоха), за счет чего в легких выделяется углекислый газ, а молекулярный кислород взаимодействует с гемоглобином крови, образуя соединение алого цвета - оксигемоглобин (О 2 вытесняет СО 2 из его соединения с гемоглобином). В полость легких диффундирует и СО 2 , содержащийся в плазме крови. Возникшая артериальная кровь по венам легких поступает в левое предсердие, а из него - в левый желудочек и аорту. Далее кровь по кровеносным сосудам разносится к тканям различных органов и через капилляры в тканях углекислый газ из тканевой жидкости (в тканевую жидкость СО 2 поступил из клеток) поступает в эритроциты крови, частично реагируя с оксигемоглобином, а частично растворяясь в плазме клетки. Молекулярный кислород диффундирует сначала в тканевую жидкость, а потом - в клетки. В результате охарактеризованных процессов в тканях образуется венозная кровь, которая из капилляров поступает в вены, а затем - в правое предсердие, правый желудочек, из которого через легочные артерии поступает в легкие и процесс повторяется.

2. Характеристика химических процессов окисления при диссимиляции.

Химизм «освобождения энергии», содержащейся в сложных биохимических соединениях, сложен и протекает в три этапа.

1 этап - подготовительный.

Этот этап протекает в любом организме и состоит в том, что сложные органические вещества превращаются в более простые ( - в смесь природных альфа-аминокислот; полисахара - в моносахара; - в смесь глицерина и жирных кислот). При протекании данного этапа выделяется небольшое количество энергии, которую организм практически не использует - она рассеивается.

2 этап - анаэробный.

Он представляет собой процессы брожения. Наиболее важным процессом брожения является молочнокислое брожение, которое можно изобразить схемой:

С 6 Н 12 О 6 (глюкоза) + 2АДФ + 2Н 3 РО 4 → 2 АТФ + 2Н 2 О + СН 3 СН(ОН)СООН (молочная кислота)

Этот этап необходим организмам для реализации их физиологических функций (совершение механической работы, перемещения организма в пространстве и т. д.). Кроме того, молочная кислота является веществом, вступающим в третий этап.

3 этап - аэробный.

Для осуществления этого этапа необходим молекулярный кислород. Он реализуется в особых органоидах клетки - митохондриях (их образно называют «энергетическими станциями клетки»). Аэробный этап представляет собой сложнейшую цепь превращений, в результате которых образуются неорганические вещества. Если превращениям подвергалась глюкоза, то схематически аэробный этап можно изобразить так:

2СН 3 СН(ОН)СООН (молочная кислота) + 6О 2 + 36 АДФ + 36 Н 3 Р04 6СО 2 + 42Н 2 О + 36АТФ

Две молекулы молочной кислоты взяты потому, что из одной молекулы глюкозы при молочнокислом брожении образуется две молекулы кислоты.

Итак, при полном распаде одной молекулы глюкозы до СО 2 и Н 2 О синтезируется 38 (36+2) молекул АТФ, что соответствует 55%-му усвоению энергии, которая выделяется при полном окислении глюкозы до указанных выше продуктов.

Завершая рассмотрение процессов диссимиляции следует отметить различие в газообмене растений и животных, а для газообмена растений - различие газообмена днем и ночью. Следует помнить, что и у растений и у животных ночью газообмен одинаков - организм поглощает кислород и выделяет в среду обитания СО 2 . Днем газообмен у растений состоит в том, что растение на свету поглощает СО 2 , а выделяет в среду обитания О 2 (у животных наоборот - выделяется СО 2 , а поглощается кислород). Из вышесказанного следует экологический вывод об особенностях жилища: в спальне не следует держать много растений (Обоснуйте почему).

Вспомните!

Что такое метаболизм?

(от греч. μεταβολή - «превращение, изменение»), или обмен веществ - набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Из каких двух взаимосвязанных процессов он состоит?

Энергетический обмен и пластический обмен

Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?

Первоначально, в пищеварительном тракте, затем в клетках и их органоидах (митохондрии, цитоплазма).

Вопросы для повторения и задания

1. Что такое диссимиляция? Перечислите её этапы.

Совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии, называют энергетическим обменом или диссимиляцией. В основном энергия запасается в виде универсального энергоёмкого соединения - АТФ.

1) Подготовительный

2) Бескислородное окисление

3) Кислородное окисление

2. В чём заключается роль АТФ в обмене веществ в клетке?

Аденозинтрифосфорная кислота (АТФ) - нуклеотид, состоящий из азотистого основания (аденина), сахара рибозы и трёх остатков фосфорной кислоты (рис. 53). АТФ является главной энергетической молекулой клетки, своего рода аккумулятором энергии. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекулы АТФ в АДФ (аденозиндифосфорную кислоту). При отщеплении остатка фосфорной кислоты высвобождается большое количество энергии - 40 кДж/моль. Таких высокоэнергетических (так называемых макроэргических) связей в молекуле АТФ две. Восстановление структуры АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением энергии.

3. Какие структуры клетки осуществляют синтез АТФ?

Митохондрии

4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.

1) Подготовительный этап расщепления углеводов идет в пищеварительном тракте до простого углевода – глюкозы, при этом энергии выделяется мало и она рассеивается в организме в виде тепла.

2) Бескислородный этап расщепления глюкозы – гликолиз (анаэробное окисление). Этап протекает в цитоплазме в отсутствие свободного кислорода. Глюкоза С6Н12О6 пировиноградная кислота (ПВК) С3Н4О3. Глюкоза расщепляется до ПВК с выделением 4АТФ. Затем 2АТФ используются в этом этапе для дальнейшего превращения ПВК в молочную кислоту. И в итоге во втором этапе выделяется 2АТФ.

3) Кислородное окисление – аэробное окисление (или клеточное дыхание). Этап, в результате которого молочная кислота расщепляется под действием молекулярного кислорода до конечных продуктов распада – углекислого газа и воды. Протекает в митохондриях на дыхательной цепи ферментов, которые располагаются на кристах митохондрий. Вт результате этого этапа выделяется 36 АТФ. Таким образом, за два этапа – при полном окислении 1 моль глюкозы (1 молекулы) выделяется 38 АТФ (2АТФ + 36АТФ). Итоговый синтез и запас АТФ осуществляется в митохондриях – эти органоиды называются энергетическими центрами клетки.

6. Синонимами слов «диссимиляция» и «ассимиляция» являются термины «катаболизм» и «анаболизм». Объясните происхождение этих терминов.

Катаболизм (от греч. Καταβολή, «сбрасывание, разрушение») или энергетический обмен, или диссимиляция - процесс метаболического распада, разложения на более простые вещества (дифференциация) или окисления какого-либо вещества, обычно протекающий с освобождением энергии в виде тепла и в виде АТФ. Анаболизм (от греч. ἀναβολή, «подъём») – так называются все процессы создания новых веществ, клеток и тканей организма. Примеры анаболизма: синтез в организме белков и гормонов, создание новых клеток, накопление жиров, создание новых мышечных волокон – это все анаболизм.

Подумайте! Вспомните!

Так как в клетках все органические соединения соединены друг с другом основными метаболитами (ПВК, ацетил-КоА) через которые одни органические вещества могут превращаться при избытке в другие. Наример, избыток углеводов превращаются в жиры.

Энергия, которая высвобождается при энергетическом обмене идет на процессы в пластическом обмене. И вещества пластического обмена расщепляются в энергетическом обмене.

3. Как вы считаете, почему после тяжёлой физической работы, для того чтобы быстрее снять боли в мышцах, рекомендуют принять тёплую ванну?

Боль в мышцах вызывает накопление молочной кислоты при гликолизе, ее концентрация действует на рецепторы, раздражая их, вызывая жжение. Чтобы снять это действие необходим прилив крови с кислородом, кислород расщепить молочную кислоту до конечных продуктов распада. Одним из способов служит принятие теплой ванны. При этом тело разогревается, сосуды расширяются и кровь с кислородом приливает и питает все мышцы, тем самым молочная кислота окисляется до углекислого газа и воды, снимается болевые ощущения в мышцах.