Что такое эквипотенциальные линии и поверхности. §9 Силовые линии и эквипотенциали

Эквипотенциальные поверхности и силовые линии электростатического поля.

Хотелось бы иметь возможность наглядно представить себе электростатическое поле. Поле скалярного потенциала можно геометрически представить себе как совокупность эквипотенциальных поверхностей (в плоском случае - линий), или поверхностей уровня, как их называют математики:

Для каждой такой поверхности имеет место условие (в силу определения!):

(*)

Представим это условие в эквивалентной форме записи:

Здесь принадлежит рассматриваемой поверхности, вектор перпендикулярным элементу поверхности (скалярное произведение неравных нулю векторов равно нулю именно при этом условии). Мы имеем возможность определит единичный вектор нормали к рассматриваемому элементу поверхности:

Если вернуться к физике, заключаем, что вектор напряжённости электростатического поля перпендикулярен эквипотенциальной поверхности этого поля!

Математическое содержание понятия "градиент скалярного поля" :

Направление вектора - это направление, в котором функция возрастает наиболее быстро;

Это приращение функции на единице длины вдоль направления максимального возрастания.

Как построить эквипотенциальную поверхность?

Пусть эквипотенциальная поверхность, заданная уравнением (*), проходит через точку пространства с координатами (x,y,z ). Зададим произвольно малые смещения двух координат, например x=>x+dx и y=>y+dy. Из уравнения (*) определяем необходимое смещение dz , такое, чтобы конечная точка осталась на рассматриваемой эквипотенциальной поверхности. Таким способом можно "добраться" до нужной точки поверхности.

Силовая линия векторного поля .

Определение. Касательная к силовой линии совпадает по направлению с вектором, определяющим рассматриваемое векторное поле.

Вектор и вектор совпадают по направлению (т.е. параллельны друг другу), если

В координатной форме записи имеем:

Легко видеть, что справедливы соотношения:

К такому же результату можно придти, если записать условие параллельности двух векторов с помощью их векторного произведения:

Итак, имеем векторное поле . Рассмотрим элементарный вектор как элемент силовой линии векторного поля .

В соответствие с определением силовой линии должны выполняться соотношения:

(**)

Так выглядят дифференциальные уравнения силовой линии. Получить аналитическое решение этой системы уравнений удаётся в очень редких случаях (поле точечного заряда, постоянное поле и т.п.). Но построить графически семейство силовых линий несложно.

Пусть силовая линия проходит через точку с координатами (x,y,z ). Значения проекций вектора напряжённости на координатные направления в этой точке нам известны. Выберем произвольно малое смешение, например, х=>x+dx . По уравнениям (**) определяем требуемые смещения dy и dz . Так мы перешли в соседнюю точку силовой линии, Процесс построения можно продолжить.

NB! (Nota Bene!). Силовая линия не полностью определяет вектор напряжённости. Если на силовой линии задано положительное направление, вектор напряжённости может быть направлен либо в положительную, либо в отрицательную сторону (но по линии!). Силовая линия не определяет модуль вектора (т.е. его величину) рассматриваемого векторного поля.

Свойства введённых геометрических объектов:

> Эквипотенциальные линии

Характеристика и свойства линий эквипотенциальной поверхности : состояние электрического потенциала поля, статическое равновесие, формула точечного заряда.

Эквипотенциальные линии поля – одномерные области, где электрический потенциал остается неизменным.

Задача обучения

  • Охарактеризовать форму эквипотенциальных линий для нескольких конфигураций заряда.

Основные пункты

  • Для конкретного изолированного точечного заряда потенциал основывается на радиальной дистанции. Поэтому эквипотенциальные линии выступают круглыми.
  • Если контактирует несколько дискретных зарядов, то их поля пересекаются и демонстрируют потенциал. В итоге, эквипотенциальные линии перекашиваются.
  • Когда заряды распределяются по двум проводящим пластинам в статическом балансе, эквипотенциальные линии практически прямые.

Термины

  • Эквипотенциальный – участок, где каждая точка обладает единым потенциалом.
  • Статическое равновесие – физическое состояние, где все компоненты пребывают в покое, а чистая сила приравнивается к нулю.

Эквипотенциальные линии отображают одномерные участки, где электрический потенциал остается неизменным. То есть, для такого заряда (где бы он ни находился на эквипотенциальной линии) не нужно осуществлять работу, чтобы сдвинуться с одной точки на другую в пределах конкретной линии.

Линии эквипотенциальной поверхности бывают прямыми, изогнутыми или неправильными. Все это основывается на распределении зарядов. Они располагаются радиально вокруг заряженного тела, поэтому остаются перпендикулярными к линиям электрического поля.

Одиночный точечный заряд

Для одиночного точечного заряда формула потенциала:

Здесь наблюдается радиальная зависимость, то есть, независимо от дистанции к точечному заряду потенциал остается неизменным. Поэтому эквипотенциальные линии принимают круглую форму с точечным зарядом в центре.

Изолированный точечный заряд с линиями электрического поля (синий) и эквипотенциальными (зеленый)

Множественные заряды

Если контактирует несколько дискретных зарядов, то мы видим, как перекрываются их поля. Это перекрытие заставляет потенциал объединяться, а эквипотенциальные линии перекашиваться.

Если присутствует несколько зарядов, то эквипотенциальные линии формируются нерегулярно. В точке между зарядами контрольный способен ощущать эффекты от обоих зарядов

Непрерывный заряд

Если заряды расположены на двух проводящих пластинах в условиях статического баланса, где заряды не прерываются и находятся на прямой, то и эквипотенциальные линии выпрямляются. Дело в том, что непрерывность зарядов вызывает непрерывные действия в любой точке.

Если заряды вытягиваются в линию и лишены прерывания, то эквипотенциальные линии идут прямо перед ними. В качестве исключения можно вспомнить только изгиб возле краев проводящих пластин

Непрерывность нарушается ближе к концам пластин, из-за чего на этих участках создается кривизна – краевой эффект.

Эквипотенциальные поверхности это такие поверхности каждая из точек, которых обладают одинаковым потенциалом. То есть на эквипотенциальной поверхности электрический потенциал имеет неизменное значение. Такой поверхностью является поверхности проводников, так как их потенциал одинаков.

Представим себе такую поверхность, для двух точек которой разность потенциалов будет равна нулю. Это и будет эквипотенциальная поверхность. Поскольку потенциал на ней одинаков. Если рассматривать эквипотенциальную поверхность в двухмерном пространстве, допустим на чертеже, то она будет иметь форму лини. Работа сил электрического поля по перемещению электрического заряда вдоль этой лини будет равна нулю.

Одним из свойств эквипотенциальных поверхностей является то, что они всегда перпендикулярны силовым линиям поля. Это свойство можно сформулировать и наоборот. Любая поверхность, которая перпендикулярна во всех точках к линиям электрического поля и называется эквипотенциальной.

Также такие поверхности никогда не пересекаются между собой. Так как это означало бы различие потенциала в пределах одной поверхности, что противоречит определению. Еще они всегда замкнуты. Поверхности равного потенциала не могут начаться и уйти в бесконечность, не имея при этом четких границ.

Как правило, на чертежах нет необходимости изображать поверхности целиком. Чаще изображают перпендикулярное сечение к эквипотенциальным поверхностям. Таким образом, они вырождаются в линии. Этого оказывается вполне достаточно для оценки распределения данного поля. При изображении графически поверхности располагают с одинаковым интервалом. То есть между двумя соседними поверхностям соблюдается одинаковый, шаг скажем в один вольт. Тогда по густоте линий образованных сечением эквипотенциальных поверхностей можно судить о напряжённости электрического поля.

Для примера рассмотрим поле, создаваемое точечным электрическим зарядом. Силовые линии такого поля радиальные. То есть они начинаются в центре заряда и направлены на бесконечность, если заряд положительный. Или направлены к заряду, если он отрицательный. Эквипотенциальные поверхности такого поля будут иметь форму сфер с центром в заряде и расходящихся от него. Если же изобразить двухмерное сечение, то тогда эквипотенциальные лини будут в виде концентрических окружностей, центр которых также расположен в заряде.

Рисунок 1 — эквипотенциальные лини точечного заряда

Для однородного поля такого как, например поле между обкладками электрического конденсатора поверхности равного потенциала будут иметь форму плоскостей. Эти плоскости расположены параллельно друг другу на одинаковом расстоянии. Правда на краях обкладок картина поля исказится вследствие краевого эффекта. Но мы представим себе, что обкладки бесконечно длинные.

Рисунок 2 — эквипотенциальные линии однородного поля

Чтобы изобразить эквипотенциальные лини для поля, создаваемого двумя равными по величине и противоположными по знаку зарядами не достаточно применить принцип суперпозиции. Так как в этом случае при наложении двух изображений точечных зарядов будут точки пересечения линий поля. А этого быть не может, так как поле не может быть направлено сразу в две разные стороны. В этом случае задачу необходимо решить аналитически.

Рисунок 3 — Картина поля двух электрических зарядов

Связь между напряженностью и потенциалом.

Для потенциального поля, между потенциальной (консервативной) силой и потенциальной энергией существует связь

где ("набла") - оператор Гамильтона.

Поскольку то

Знак минус показывает, что вектор Е направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала используются эквипотенциальные поверхности - поверхности во всех точках которых потенциал имеет одно и то же значение.

Эквипотенциальные поверхности обычно проводят так, чтобы разности потенциалов между двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше. На рисунке пунктиром изображены силовые линии, сплошными линиями - сечения эквипотенциальных поверхностей для: положительного точечного заряда (а), диполя (б), двух одноименных зарядов (в), заряженного металлического проводника сложной конфигурации (г).

Для точечного заряда потенциал поэтому эквипотенциальные поверхности - концентрические сферы. С другой стороны, линии напряженности - радиальные прямые. Следовательно, линии напряженности перпендикулярны эквипотенциальным поверхностям.

Можно показать, что во всех случаях вектор Е перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала.

Примеры расчета наиболее важных симметричных электростатических полей в вакууме.

1. Электростатическое поле электрического диполя в вакууме.

Электрическим диполем (или двойным электрическим полюсом) называется система двух равных по модулю разноименных точечных зарядов (+q,-q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля (l<< r).

Плечо диполя l - вектор, направленный по оси диполя от отрицательного заряда к положительному и равный расстоянию между ними.

Электрический момент диполя ре - вектор, совпадающий по направлению с плечом диполя и равный произведению модуля заряда |q| на плечо I:

Пусть r - расстояние до точки А от середины оси диполя. Тогда, учитывая что

2)Напряженность поля в точке В на перпендикуляре, восстановленном к оси диполя из его середины при

Точка В равноудалена от зарядов +q и -q диполя, поэтому потенциал поля в точке В равен нулю. Вектор Ёв направлен противоположно вектору l .

3)Во внешнем электрическом поле на концы диполя действует пара сил, которая стремится повернуть диполь таким образом, чтобы электрический момент ре диполя развернулся вдоль направления поля Ё (рис.(а)).



Во внешнем однородном поле момент пары сил равен M = qElsin а или Во внешнем неоднородном поле (рис.(в)) силы, действующие на концы диполя, неодинаковы и их результирующая стремится передвинуть диполь в область поля с большей напряженностью - диполь втягивается в область более сильного поля.

2. Поле равномерно заряженной бесконечной плоскости.

Бесконечная плоскость заряжена с постоянной поверхностной плотностью Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны.

В качестве Гауссовой поверхности примем поверхность цилиндра, образующие которого перпендикулярны заряженной плоскости, а основания параллельны заряженной плоскости и лежат по разные стороны от нее на одинаковых расстояниях.

Так как образующие цилиндра параллельны линиям напряженности, то поток вектора напряженности через боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания 2ES. Заряд, заключенный внутри цилиндра, равен . По теореме Гаусса откуда:

Е не зависит от длины цилиндра, т.е. напряженность поля на любых расстояниях одинакова по модулю. Такое поле называется однородным.

Разность потенциалов между точками, лежащими на расстояниях х1 и х2 от плоскости, равна

3.Поле двух бесконечных параллельных разноименно заряженных плоскостей с равными по абсолютному значению поверхностными плотностями зарядов σ>0 и - σ.

Из предыдущего примера следует, что векторы напряженности Е 1 и E 2 первой и второй плоскостей равны по модулю и всюду направлены перпендикулярно плоскостям. Поэтому в пространстве вне плоскостей они компенсируют друг друга, а в пространстве между плоскостями суммарная напряженность . Поэтому между плоскостями

(в диэлектрике. ).

Поле между плоскостями однородное. Разность потенциалов между плоскостями.
(в диэлектрике ).

4.Поле равномерно заряженной сферической поверхности.

Сферическая поверхность радиуса R с общим зарядом q заряжена равномерно с поверхностной плотностью

Поскольку система зарядов и, следовательно, само поле центрально-симметрично относительно центра сферы, то линии напряженности направлены радиально.

В качестве Гауссовой поверхности выберем сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд q. По теореме Гаусса , откуда

При r<=R замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферы Е = 0.

Разность потенциалов между двумя точками, лежащими на расстояниях r 1 и r 2 от центра сферы

(r1 >R,r2 >R), равна

Вне заряженной сферы поле такое же, как поле точечного заряда q, находящегося в центре сферы. Внутри заряженной сферы поля нет, поэтому потенциал всюду одинаков и такой же, как на поверхности

Графическое изображение полей, можно составить не только с линиями напряженности, но и с помощью разности потенциалов. Если объединить в электрическом поле точки с равными потенциалами, то мы получим поверхности равного потенциала или как еще их называют эквипотенциальные поверхности. В пересечении с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изображая эквипотенциальные линии, которые соответствуют различным значениям потенциала, мы получаем наглядную картину, которая отражает, как изменяется потенциал конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда работы не требует, так как все точки поля по такой поверхности имеют равный потенциал и сила, которая действует на заряд, всегда перпендикулярна перемещению.

Следовательно, линии напряженности всегда перпендикулярны поверхностям с равными потенциалами.

Наиболее наглядная картина поля будет представлена, если изображать эквипотенциальные линии с равными изменениями потенциала, например в 10 В, 20В, 30 В и т.д. В таком случае скорость изменения потенциала будет обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. То есть густота эквипотенциальных линий пропорциональна напряженности поля (чем выше напряженность поля, тем теснее изображаются линии). Зная эквипотенциальные линии, можно построить линии напряженности рассматриваемого поля и наоборот.

Следовательно, изображения полей с помощью эквипотенциальных линий и линий напряженности равнозначны.

Нумерация эквипотенциальных линий на чертеже

Довольно часто эквипотенциальные линии на чертеже нумеруют. Для того, чтобы указать разность потенциалов на чертеже, произвольную линию обозначают цифрой 0, возле всех остальных линий расставляют цифры 1,2,3 и т.д. Эти цифры указывают разность потенциалов в вольтах избранной эквипотенциальной линии и линии, которую выбрали нулевой. При этом отмечаем, что выбор нулевой линии не важен, так как физический смысл имеет только разность потенциалов для двух поверхностей, и она не зависит от выбора нуля.

Поле точечного заряда с положительным зарядом

Рассмотрим как пример поле точечного заряда, который имеет положительный заряд. Линиями поля точечного заряда являются радиальные прямые, следовательно, эквипотенциальные поверхности - это система концентрических сфер. Линии поля перпендикуляры поверхностям сфер в каждой точке поля. Эквипотенциальными линиями же служат концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Что очевидно из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность ($\varphi \left(\infty \right)=0$):

\[\varphi =\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{q}{r}\left(1\right).\]

Система параллельных плоскостей, которые находятся на равных расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.

Пример 1

Задание: Потенциал поля, создаваемый системой зарядов, имеет вид:

\[\varphi =a\left(x^2+y^2\right)+bz^2,\]

где $a,b$ -- постоянные больше нуля. Какова форма имеют эквипотенциальных поверхностей?

Эквипотенциальные поверхности, как мы знаем, -- это поверхности, в которых в любых точках потенциалы равны. Зная вышесказанное, изучим уравнение, которое предложено в условиях задачи. Разделим правую и левую части уравнения $=a\left(x^2+y^2\right)+bz^2,$ на $\varphi $, получим:

\[{\frac{a}{\varphi }x}^2+{\frac{a}{\varphi }y}^2+\frac{b}{\varphi }z^2=1\ \left(1.1\right).\]

Запишем уравнение (1.1) в каноническом виде:

\[\frac{x^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{y^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{z^2}{{\left(\sqrt{\frac{\varphi }{b}}\right)}^2}=1\ (1.2)\]

Из уравнения $(1.2)\ $ видно, что заданной фигурой является эллипсоид вращения. Его полуоси

\[\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi}{a}},\ \sqrt{\frac{\varphi}{b}}.\]

Ответ: Эквипотенциальная поверхность заданного поля -- эллипсоид вращения с полуосями ($\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{b}}$).

Пример 2

Задание: Потенциал поля, имеет вид:

\[\varphi =a\left(x^2+y^2\right)-bz^2,\]

где $a,b$ -- $const$ больше нуля. Что представляют собой эквипотенциальные поверхности?

Рассмотрим случай при $\varphi >0$. Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на $\varphi ,$ получим:

\[\frac{a}{\varphi }x^2+{\frac{a}{\varphi }y}^2-\frac{b}{\varphi }z^2=1\ \left(2.1\right).\]

\[\frac{x^2}{\frac{\varphi }{a}}+\frac{y^2}{\frac{\varphi }{a}}-\frac{z^2}{\frac{\varphi }{b}}=1\ \left(2.2\right).\]

В (2.2) мы получили каноническое уравнение однополостного гиперболоида. Его полуоси равны ($\sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{b}}(мнимая\ полуось)$).

Рассмотрим случай, когда $\varphi

Представим $\varphi =-\left|\varphi \right|$ Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на минус модуль $\varphi ,$ получим:

\[-\frac{a}{\left|\varphi \right|}x^2-{\frac{a}{\left|\varphi \right|}y}^2+\frac{b}{\left|\varphi \right|}z^2=1\ \left(2.3\right).\]

Перепишем уравнение (1.1) в виде:

\[-\frac{x^2}{\frac{\left|\varphi \right|}{a}}-\frac{y^2}{\frac{\left|\varphi \right|}{a}}+\frac{z^2}{\frac{\left|\varphi \right|}{b}}=1\ \left(2.4\right).\]

Мы получили каноническое уравнение двуполостного гиперболоида, его полуоси:

($\sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{b}}(\ действительная\ полуось)$).

Рассмотрим случай, когда $\varphi =0.$ Тогда уравнение поля имеет вид:

Перепишем уравнение (2.5) в виде:

\[\frac{x^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}+\frac{y^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}-\frac{z^2}{{\left(\frac{1}{\sqrt{b}}\right)}^2}=0\left(2.6\right).\]

Мы получили каноническое уравнение прямого круглого конуса, который опирается на эллипс с полуосями $(\frac{\sqrt{b}}{\sqrt{a}}$;$\ \frac{\sqrt{b}}{\sqrt{a}}$).

Ответ: В качестве эквипотенциальных поверхностей для заданного уравнения потенциала мы получили: при $\varphi >0$ -- однополостной гиперболоид, при $\varphi