Что такое переменная величина. Соотношение между бесконечно малыми


ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ

В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь от их конкретного содержания. В дальнейшем, говоря о величинах, мы будем иметь в виду их числовые значения. В различных явлениях некоторые величины изменяются, а другие сохраняют свое числовое значение. Например, при равномерном движении точки время и расстояние меняются, а скорость остается постоянной.

Переменной величиной называется величина, которая принимает различные числовые значения. Величина, числовые значения которой не меняются, называется постоянной . Переменные величины будем обозначать буквами x, y, z,… , постоянные – a, b, c,…

Заметим, что в математике постоянная величина часто рассматривается как частный случай переменной, у которой все числовые значения одинаковы.

Областью изменения переменной величины называется совокупность всех принимаемых ею числовых значений. Область изменения может состоять как из одного или нескольких промежутков, так и из одной точки.

УПОРЯДОЧЕННАЯ ПЕРЕМЕННАЯ ВЕЛИЧИНА. ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ

Будем говорить, что переменная x есть упорядоченная переменная величина , если известна область ее изменения, и про каждые из двух любых ее значений можно сказать, какое из них предыдущее и какое последующее.

Частным случаем упорядоченной переменной величины является переменная величина, значения которой образуют числовую последовательность x 1 ,x 2 ,…,x n ,… Для таких величин при i < j, i, j Î N , значение x i считается предшествующим, а x j – последующим независимо от того, какое из этих значений больше. Таким образом, числовая последовательность – это переменная величина, последовательные значения которой могут быть перенумерованы. Числовую последовательность будем обозначать . Отдельные числа последовательности называются ее элементами .

Например, числовую последовательность образуют следующие величины:

ФУНКЦИЯ

При изучении различных явлений природы и решении технических задач, а, следовательно, и в математике приходится рассматривать изменение одной величины в зависимости от изменения другой. Так, например, известно, что площадь круга выражается через радиус формулой S = πr 2 . Если радиус r принимает различные числовые значения, то площадь S также принимает различные числовые значения, т.е. изменение одной переменной влечет изменение другой.

Если каждому значению переменной x , принадлежащему некоторой области, соответствует одно определенное значение другой переменной y , то y называется функцией переменной х . Символически будем записывать y=f(x) . При этом переменная x называется независимой переменной или аргументом .

Запись y=C , где C – постоянная, обозначает функцию, значение которой при любом значении x одно и то же и равно C .

Множество значений x , для которых можно определить значения функции y по правилу f(x) , называется областью определения функции .

Переменные и постоянные величины – это не совсем просто

Школьная математика всегда убеждала и продолжает убеждать нас в том, что вопрос о переменных и постоянных величинах решается очень просто. Переменными считаются величины, которые в условиях данной задачи могут принимать различные значения. Постоянными считаются величины, которые в условиях данной задачи свои значения не меняют.

При этом дополнительно сообщается, что деление величин на переменные и постоянные достаточно условно и зависит от обстоятельств, сопровождающих процесс решения задачи . Одна и та же величина, которая в одних условиях считалась постоянной, в других условиях должна рассматриваться как переменная. Классический пример: сопротивление проводника считается постоянным, пока мы не оказываемся вынужденными учитывать зависимость величины его сопротивления от температуры окружающей среды.

Но, как показывает практика, всего вышеуказанного для корректного решения той или иной задачи бывает недостаточно.

Что такое величина, каждому ясно интуитивно. Уточним это понятие.

В общем случае содержанием процесса решения задачи есть преобразование величин. При этом следует понимать, что в общефилософском смысле величина, представляющая результат решения задачи, уже содержится в её формулировке в неявном виде. Нужно только правильно построить процесс преобразования величин задачи, чтобы этот результат представить явно.

Определение

Будем называть величиной любой математический объект, который несет (или может нести) информацию о том или ином значении.

Форма представления величин может быть различной. Например, величина с числовым значением, равным действительной единице, может быть представлена десятичной констант ой 1,0, функцией Cos(0), а также арифметическим выражением 25,0 – 15,0 – 9,0.

Значения величин можно менять. Так, в результате выполнения действия x = 1,0 величина в форме переменной x оказывается носителем значения действительной единицы. При этом предыдущее значение переменной x теряется. Приведённые примеры уже несколько с иных позиций показывают, что величины могут быть переменными и постоянными.

Определение

Переменные величины обладают тем свойством, что их значения могут быть изменены в результате выполнения тех или иных действий. И это значит, что понятие “переменная величина” отражает возможность, но не факт изменения.

Постоянной величиной (константой) следует считать ту, значение которой, в отличие от переменной, изменить принципиально невозможно.

Например, значение постоянной величины в виде выражения 12+3 равно 15, и изменить его нельзя. При этом необходимо фиксировать смысл знаков, с помощью которых представляется величина. В противном случае, если считать, например, знаки этого выражения цифрами в системе счисления с основанием 5, то тогда его значение окажется равным 10.

Определение

Итак, в математических текстах носителями значений, то есть величинами, являются переменные, константы, обращения к функциям (или просто функции), а также выражения.

Особенности переменных

Обозначения, с которыми связываются определённые значения, в математике называют переменными (термин употребляется как имя существительное).

Например, значение переменной величины x+1 зависит от значения, связанного с обозначением x. Здесь обозначение x используется в качестве переменной. Изменив значение переменной x, мы тем самым изменим и значение переменной величины x+1.

Таким образом, значения переменных величин зависят от значений переменных, которые входят в их состав. Отличительным свойством переменной является то, что конкретное её значение должно быть ей просто приписано (назначено).

Математический подход, определяющий возможность вычисления значений переменных, в данном контексте оказывается неправильным. В математике можно вычислять только значения выражений.

Основное условие использования переменной в математических текстах в окончательном виде таково: для обращения к переменной достаточно указать её обозначение.

Особенности констант

В математических текстах могут быть использованы две разновидности констант: константы-лексемы и именованные константы.

Кстати, программисты на языках высокого уровня, пользуются этим на вполне формальных (законных) основаниях.

С помощью констант-лексем значения постоянных величин указываются непосредственно без выполнения каких-либо операций. Например, для получения значения постоянной величины 12+3, которая является выражением, необходимо выполнить сложение двух констант-лексем 12 и 3.

Определение

Именованная константа представляет собой обозначение, сопоставленное конкретному значению, указанному в виде константы-лексемы.

Такой приём широко используется в естественных науках из соображений удобства записи физических, химических, математических и иных формул. Например: g = 9,81523 – ускорение свободного падения на широте Москвы; π = 3,1415926 – число $π$.

Помимо компактной записи выражений, именованные константы обеспечивают наглядность и значительные удобства в работе с математическими текстами.

Своё значение именованная константа приобретает как результат предварительной договорённости.

Важное свойство любой именованной константы состоит в том, что её значение не рекомендуется менять в пределах некоторого математического текста.

Выражения

Выражения являются составными частями подавляющего большинства математических текстов. С помощью выражений задают порядок вычисления новых значений на основании других заранее известных значений.

В общем случае в составе выражений используют операнды, знаки операций и регулирующие круглые (квадратные, фигурные) скобки.

Определение

Операнды – это общее название объектов, значения которых используют при выполнении операций. Операндами могут быть переменные, константы и функции. Кстати, этот термин весьма популярен в среде программистов. Фрагмент выражения, заключённый в регулирующие скобки, рассматривается как отдельный составной операнд.

Знак операции символизирует вполне определённую совокупность действий, которые должны быть выполнены над соответствующими операндами. Регулирующие скобки устанавливают нужный порядок выполнения операций, который может отличаться от предусмотренного приоритетом операций.

Простейшим случаем выражения является отдельный операнд. В таком выражении нет знаков операций.

Операнд-функция имеет свои особенности. Как правило, такой операнд представляет собой наименование (или знак) функции с последующим указанием в круглых скобках перечня её аргументов. В данном случае круглые скобки являются неотъемлемой принадлежностью функций и к регулирующим не относятся. Отметим, что во многих случаях в операндах-функциях обходятся без скобок (например, 5! – вычисление факториала целого числа 5).

Математические операции

Основные особенности математических операций таковы:

  • знаки операций могут быть указаны с помощью специальных символов, а также с помощью специально оговоренных слов;
  • операции могут быть унарными (выполняемыми над одним операндом) и бинарными (выполняемыми над двумя операндами);
  • для операций установлены четыре уровня приоритетов, определяющих порядок вычисления выражения.

Правила вычисления сложного выражения, содержащего цепочку операций при отсутствии регулирующих скобок, следующие:

  1. cначала вычисляются значения всех функций;
  2. затем поочерёдно выполняются операции в порядке убывания их приоритета;
  3. операции равного приоритета выполняются по порядку слева направо.

При наличии регулирующих скобок выражение содержит составные операнды, значения которых должны быть вычислены в первую очередь.

Некоторые особенности записи математических выражений:

  • не рекомендуется пропускать знаки операций, хотя во многих случаях можно пропустить знак умножения;
  • аргументы функций желательно указываться в круглых скобках;
  • указание подряд двух и более знаков бинарных операций недопустимо; формально допустимо использование нескольких знаков унарных операций подряд, в том числе и вместе с бинарной.

Объектом исследования в курсе математического анализа являются различные величины, исследуются возможности описания с помощью этих величин реально происходящих явлений или процессов.

Величины могут быть переменными и постоянными , то есть меняющимися, или не меняющимися в процессе исследования. Эти заключения являются условными, покажем это на примере. Координаты нашего города, конечно, являются постоянными величинами, по их значениям легко находится местоположение города на карте. Однако, это утверждение является истинным только для находящихся на Земле. Если наблюдать за местоположением нашего города с космической станции, его координаты будут меняться с вращением Земли. Изучая земные дела, мы уверенно можем считать эти величины постоянными.

Переменные величины могут быть независимыми и зависимыми , меняющимися в зависимости от каких-то других величин. Эти понятия также условны. К примеру, время меняется независимо от чего либо, и его следует считать переменной величиной. Однако, с позиций общей теории относительности Эйнштейна это совсем не так.

Если рассмотреть уравнение окружности , в нем участвует две переменные величины и . Одной из них можно придавать в некоторой области любые значения, другая находится из приведенного уравнения. Следовательно, одну из них можно считать независимой, другую - зависимой переменной. При этом независимой переменной может считаться любая из них, тогда вторая будет зависимой.

Для работы с величинами необходимо задать множество , то есть совокупность значений, которые могут принимать эти величины в процессе их использования. В школе вас знакомили с несколькими множествами. Рассмотрим только некоторые из них.

Пусть множество является множеством натуральных чисел, это множество содержит бесконечное количество элементов, обозначение показывает, что элемент принадлежит множеству натуральных чисел.

Обозначим - множество действительных (вещественных) чисел, тогда множество является подмножеством множества , то есть полностью расположено на множестве и является его частью. Обозначение .

Множество всех действительных чисел обычно располагается на некоторой оси, называемой вещественной (числовой) осью. Каждому числу множества соответствует точка на оси.

Для краткой записи используются следующие обозначения:

– «для любого», «для всякого»,

– «существует», «найдется»,

– «следует»,

– «равносильно»,

– «ставится в соответствие»,

: – «имеет место».

Например, выражение

читается «для всякого x из A имеет место ».

Функция. Способы ее задания

Вернемся к независимым и зависимым переменным. Независимую переменную часто называют аргументом, зависимую – функцией.

Примерами переменных могут служить: температура воздуха, параметр функции и многое другое.

Переменная характеризуется только множеством значений, которые она может принимать . Переменную обозначают символом, общим для каждого из её значений.

Переменные в математике

В математике переменной может быть как реальная физическая величина , так и некая абстрактная величина, не отражающая процессов реального мира.

Декарт считал значения переменных всегда неотрицательными, а отрицательные величины выражал знаком отражал знаком «минус» перед переменной. Если знак коэффициента был неизвестен, Декарт ставил многоточие . Нидерландский математик Иоганн Худде уже в 1657 году позволил буквенным переменным принимать значения любого знака .

Переменные в программировании

В программировании переменная - это идентификатор , определяющий данные . Обычно это имя, скрывающее за собой область памяти, куда могут помещаться данные, хранящиеся в другой области памяти. Переменная может иметь тип значений, которые она может принимать. В программировании, переменные, как правило, обозначаются одним или несколькими словами или символами, такими, как «time», «x», «

Под величиной будем понимать все то, что выражает свойства предмета, явления или процесса. Площадь земельного участка, масса животного, себестоимость продукции, процент жира в молоке и т. д. – все это примеры величин. Каждая из величин может быть измерена с помощью прибора или вычислена, в результате чего получают число, называемое числовым значением величины.

Величины выражаются в определенных единицах. Такие величины называются размерными . Каждой величине свойственна своя единица. Единицы величин образуют систему. Общепринятой является Международная система (СИ). Ее основными единицами являются: метр (м) – единица длины; килограмм (кг) – единица массы; секунда (с) – единица времени; кельвин (к) – единица температуры; кандела (кд) – единица силы света; моль – единица количества вещества.

Величины могут быть безразмерными. Например, доля опытов, в которых наблюдаемое явление произошло.

Когда мы наблюдаем какой-нибудь процесс или явление из области физики, экономики, агрономии или другой области знаний, то видим, что одни величины сохраняют свои значения, другие же принимают различные значения. Например, при равномерном движении точки время и расстояние меняются, а скорость постоянна. Переменной величиной называется величина, которая принимает различные числовые значения. Величина, числовые значения которой не меняются, называется постоянной .

Обозначения: x, y, z, t,… -переменные величины; a, b, c, d,… - постоянные величины.

Совокупность всех числовых значений переменной величины называется областью изменения этой переменной.

Области изменения переменной величины:

(a, b) = {x : a < x < b } – промежуток или интервал;

[a, b ] = {x : a ≤ x ≤ b } – отрезок или замкнутый интервал;

(a , b ] = {x : a < x ≤ b },

[a , b ) = {x : a ≤ x < b } – полуоткрытые интервалы;

(-∞, b ] = {x: x ≤ b },

(-∞, b) = {x: x < b},

[a , +∞) = {x: x ≥ a },

(a , +∞) = {x: x > a },

(-∞, +∞) = {x: -∞ < x < +∞} – бесконечные интервалы.

Произвольный интервал (a, b ), содержащий внутри себя точку , называется окрестностью точки : a < < b .

Если точка середина окрестности, то она называется центром окрестности , величина называется радиусом окрестности .

Переменная величина называется возрастающей , если каждое последующее ее значение больше предыдущего ее значения. Переменная величина называется убывающей , если каждое ее последующее значение меньше предыдущего.

Понятие функции. Область её определения. Способы задания.

К понятию функции приводит изучение разнообразных явлений в окружающем нас мире. Например, каждому значению длины грани куба соответствует его объём; каждому моменту времени в данной местности соответствует определённая температура воздуха; каждому значению возраста животного соответствует его масса; каждому показателю рентабельности соответствует определённая величина прибыли.

Во всех этих примерах общим является то, что каждому числовому значению одной величины сопоставляется определенное числовое значение другой.

Правило f , сопоставляющее каждому числу единственное число , называется числовой функцией, заданной на множестве X и принимающей значения в множестве Y.

Если , то пишут y = f(x) .

Функцией называют также уравнение y = f(x), т.е. формулу где у выражено через х с помощью правила f .

В уравнении y = f(x) «х » называют независимой переменной или аргументом , а у - зависимой переменной или функцией от «х ». Зависимость х и у называется функциональной.

Множество всех значений независимой переменой, для которых определена функция, называется областью определения этой функции, обозначается D(f).

Обычно D(f) представляет собой интервал – открытый, полуоткрытый, бесконечный, или их сумму.

Пример . . Найти D(f) .

Решение. Функция не определена при . D(f) = (-∞, -1) (-1, +∞).

Наиболее часто встречаются три способа задания функции: аналитический, табличный, графический.

Аналитический способ : функция задаётся в виде одной или нескольких формул или уравнений.

Например, 1) , 2) , 3)

Аналитический способ задания функции является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию.

Графический способ : задаётся график функции.

Совокупность точек плоскости xOy, абсциссы которых являются значениями независимой переменной, а ординаты – соответствующими значениями функции, называется графиком данной функции.

Часто графики вычерчиваются автоматически самопишущими приборами или изображаются на экране дисплея. Преимущество графического задания является его наглядность, недостатком – его неточность.

Табличный способ : функция задаётся таблицей ряда значений аргумента и соответствующих значений функции.

Например, таблицы тригонометрических функций, логарифмов, таблицы железнодорожных тарифов.

Табличный способ удобен для использования, он широко применяется при регистрации опытов, лабораторных анализов, при подсчете объема грубых кормов в скирдах и т. д. К недостатку способа относится то, что представление о функциональной зависимости здесь не является полным, так как невозможно поместить в таблице все значения аргумента.

Существует еще один способ задания функции, возникший с развитием и внедрением в производство ЭВМ. Этот способ состоит в указании программы для вычисления значения функций на ЭВМ.

Сложная функция. Пусть даны две функции и , при этом множество значений второй функции входит в область определения первой. Тогда любому в силу правила φ соответствует определенное число и , а числу и функция сопоставляет число у . В этом случае правила f и φ сопоставляют каждому х одно значение у , т.е.