Что такое пульсар. Школьная энциклопедия

Слишком уж необычным был. Главная его особенность, за что он и получил свое название – периодические вспышки излучения, причем со строго определенным периодом. Этакий радиомаяк в космосе. Сначала предполагали, что это пульсирующая звезда, которая меняет свои размеры – такие давно известны. А обнаружила его Джоселин Белл, аспирантка Кембриджского университета, с помощью радиотелескопа.
Что интересно, первый пульсар назвали LGM-1, что на английском означает «маленькие зеленые человечки». Однако постепенно выяснилось, что пульсары – естественные объекты нашей Вселенной, да и открыто их уже довольно много – под две тысячи. Самый близкий от нас находится на расстоянии 390 световых лет.

Итак, что же представляет собой пульсар? Это очень маленькая, но очень плотная нейтронная звезда. Такие звезды образуются после взрыва звезды – гиганта, гораздо большей, чем наше Солнце – карлик. В результате прекращения термоядерной реакции вещество звезды сжимается в очень плотный объект – это называется коллапсом, а во время этого электроны – отрицательные частицы, вдавливаются внутрь ядер и соединяются с протонами – положительными частицами. В конце концов, все вещество звезды оказывается состоящим из одних нейтронов, что и дает огромную плотность – нейтроны не имеют заряда и могут располагаться очень тесно, практически друг на друге.

Так вот, вся материя огромной звезды умещается в одной нейтронной звезде, которая имеет размеры всего в несколько километров. Плотность ее такова, что чайная ложка вещества этой звезды весит миллиард тонн.

Первый пульсар, открытый Джоселин Белл, посылал в космос электромагнитные вспышки с частотой 1.33733 секунды. Другие пульсары имеют другие периоды, но частота их излучения остается постоянной, хотя и может лежать в различных диапазонах – от радиоволн до рентгеновского излучения. Почему так происходит?

Дело в том, что нейтронная звезда размером с город очень быстро вращается. Она может совершить тысячу оборотов вокруг своей оси за одну секунду. При этом она имеет очень мощное магнитное поле. По силовым полям этого поля движутся протоны и электроны, а около полюсов, где магнитное поле особенно сильное и где эти частицы достигают очень больших скоростей, они выделяют кванты энергии в различных диапазонах. Получается как бы естественный синхрофазотрон – ускоритель частиц, только в природе. Вот так на поверхности звезды образуется две области, из которых идет очень мощное излучение.

Положите на стол фонарик и начните его вращать. Луч света вращается вместе с ним, освещая все по кругу. Так и пульсар, вращаясь, посылает свое излучение с периодом своего вращения, а оно у него очень быстрое. Когда на пути луча оказывается Земля, мы видим всплеск радиоизлучения. Притом идет этот луч из пятна на звезде, размер которого всего-навсего 250 метров! Это какая же мощность, если мы можем обнаружить сигнал за сотни и тысячи световых лет! Магнитные полюса и ось вращения у пульсара не совпадают, поэтому излучающие пятна вращаются, а не стоят на месте.

ПУЛЬСАР
астрономический объект, испускающий мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне. Энергия, излучаемая в импульсах, составляет лишь малую долю его полной энергии. Почти все известные пульсары находятся в нашей Галактике. У каждого пульсара свой период пульсаций; они лежат в диапазоне от 640 импульсов в секунду до одного импульса каждые 5 с. Периоды большинства пульсаров составляют от 0,5 до 1 с. Точные измерения показывают, что обычно период между импульсами возрастает на одну миллиардную долю секунды в сутки; как раз этого следует ожидать при замедлении вращения звезды, теряющей энергию в процессе излучения. Открытие пульсаров в 1967 было большой неожиданностью, поскольку такие явления не предсказывались ранее. Вскоре стало ясно, что это явление связано либо с радиальными пульсациями, либо с вращением звезд. Но ни обычные звезды, ни даже белые карлики не могут естественным образом пульсировать с такой высокой частотой. Не могут они и вращаться так быстро - центробежная сила разорвет их. Это может быть только очень плотное тело, состоящее из вещества, предсказанного Л.Д.Ландау и Р.Оппенгеймером в 1939. В этом веществе ядра атомов вплотную прижаты друг к другу. Сжать вещество до такой степени может только гигантская сила тяжести, которой обладают лишь очень массивные тела, такие, как звезды. При огромной плотности ядерные реакции превращают большинство частиц в нейтроны, поэтому такие тела называют нейтронными звездами.
См. также НЕЙТРОННАЯ ЗВЕЗДА . Обычные звезды, такие, как Солнце, состоят из газа со средней плотностью чуть больше, чем у воды. Белый карлик с такой же массой, но диаметром около 10 000 км имеет в центре плотность ок. 40 т/см3. У нейтронной звезды масса тоже близка к солнечной, но ее диаметр всего ок. 30 км и плотность ок. 200 млн. т/см3. Если бы до такой плотности сжать Землю, то ее диаметр составил бы ок. 300 м; при такой плотности все человечество уместилось бы в наперстке. По-видимому, нейтронная звезда может образоваться из центральной части массивной звезды в момент ее взрыва как сверхновой. При таком взрыве оболочка массивной звезды сбрасывается, а ядро сжимается в нейтронную звезду.
См. также
ГРАВИТАЦИОННЫЙ КОЛЛАПС ;
СВЕРХНОВАЯ ЗВЕЗДА . Наиболее детально исследован мощный пульсар PSR 0531 + 21, расположенный в Крабовидной туманности. Эта нейтронная звезда делает 30 оборотов в секунду и ее вращающееся магнитное поле с индукцией 1012 Гс "работает" как гигантский ускоритель заряженных частиц, сообщая им энергию до 1020 эВ, что в 100 млн. раз больше, чем в самом мощном ускорителе на Земле. Полная мощность излучения этого пульсара в 100 000 раз выше, чем у Солнца. Менее 0,01% этой мощности приходится на радиоимпульсы, ок. 1% излучается в виде оптических импульсов и ок. 10% - в виде рентгеновского излучения. Оставшаяся мощность, вероятно, приходится на низкочастотное радиоизлучение и высокоэнергичные элементарные частицы - космические лучи. Длительность радиоимпульса у типичного пульсара составляет всего 3% интервала времени между импульсами. Последовательно приходящие импульсы сильно отличаются друг от друга, но средняя (обобщенная) форма импульса у каждого пульсара своя и сохраняется в течение многих лет. Анализ формы импульсов показал много интересного. Обычно каждый импульс состоит из нескольких субимпульсов, которые "дрейфуют" вдоль среднего профиля импульса. У некоторых пульсаров форма среднего профиля может внезапно меняться, переходя от одной устойчивой формы к другой; каждая из них сохраняется в течение многих сотен импульсов. Иногда мощность импульсов падает, а затем восстанавливается. Такое "замирание" может длиться от нескольких секунд до нескольких суток. При подробном анализе у субимпульсов обнаруживается тонкая структура: каждый импульс состоит из сотен микроимпульсов. Область излучения такого микроимпульса на поверхности пульсара имеет размер менее 300 м. При этом мощность излучения сравнима с солнечной. Механизм действия пульсара. Пока существует лишь приближенная картина действия пульсара. Его основой служит вращающаяся нейтронная звезда с мощным магнитным полем. Вращающееся магнитное поле захватывает вылетающие с поверхности звезды ядерные частицы и ускоряет их до очень высоких энергий. Эти частицы испускают электромагнитные кванты в направлении своего движения, формируя вращающиеся пучки излучения. Когда пучок оказывается направленным на Землю, мы принимаем импульс излучения. Не совсем ясно, почему эти импульсы имеют столь четкую структуру; возможно, лишь небольшие области поверхности нейтронной звезды выбрасывают частицы в магнитное поле. Частицы максимально высокой энергии не могут быть ускорены по отдельности; по-видимому, они образуют пучки, содержащие, возможно, 10 12 частиц, которые ускоряются как единая частица. Это помогает понять и резкие границы импульсов, каждый из которых, вероятно, связан с отдельным пучком частиц.
Открытие. Первый пульсар открыли случайно в 1967 астрономы Кембриджского университета Дж. Белл и Э. Хьюиш. Испытывая новый радиотелескоп с аппаратурой для регистрации быстропеременного космического излучения, они неожиданно обнаружили цепочки импульсов, приходящих с четкой периодичностью. Первый пульсар имел период 1,3373 с и длительность импульса 0,037 с. Ученые назвали его CP 1919, что значит "кембриджский пульсар" (Cambridge Pulsar), имеющий прямое восхождение 19 ч 19 мин. К 1997 усилиями всех радиоастрономов мира было открыто более 700 пульсаров. Исследование пульсаров проводится с помощью крупнейших телескопов, поскольку для регистрации коротких импульсов необходима высокая чувствительность.
Строение пульсара. Нейтронные звезды имеют жидкое ядро и твердую кору толщиной ок. 1 км. Поэтому по структуре пульсары больше напоминают планеты, чем звезды. Быстрое вращение приводит к некоторой сплюснутости пульсара. Излучение уносит энергию и момент импульса, что вызывает торможение вращения. Однако твердая кора не позволяет пульсару постепенно становиться сферическим. По мере замедления вращения в коре накапливаются напряжения и наконец она ломается: звезда скачкообразно становится чуть более сферической, ее экваториальный радиус уменьшается (всего на 0,01 мм), а скорость вращения (в результате сохранения момента) немного возрастает. Затем вновь следует постепенное замедление вращения и новое "звездотрясение", приводящее к скачку скорости вращения. Так, изучая изменения периодов пульсаров, удается многое узнать о физике твердой коры нейтронных звезд. В ней происходят тектонические процессы, как в коре планет, и, возможно, образуются свои микроскопические горы.
Двойные пульсары. Пульсар PSR 1913+16 стал первым, обнаруженным в двойной системе. Его орбита сильно вытянута, поэтому он очень близко подходит к своему соседу, который может быть только компактным объектом - белым карликом, нейтронной звездой или черной дырой. Высокая стабильность импульсов пульсара позволяет по доплеровскому смещению частоты их прихода очень точно изучать его орбитальное движение. Поэтому двойной пульсар был использован для проверки выводов общей теории относительности, согласно которой большая ось его орбиты должна поворачиваться в год примерно на 4°; именно это и наблюдается. Известно несколько десятков двойных пульсаров. Открытый в 1988 пульсар в двойной системе совершает 622 оборота в секунду. Его сосед с массой всего 2% солнечной, вероятно, был когда-то нормальной звездой. Но пульсар заставил его "похудеть", часть массы перетянув на себя, а часть - испарив и "сдув" в космическое пространство. Скоро пульсар окончательно уничтожит соседа и останется в одиночестве. Видимо, этим можно объяснить тот факт, что подавляющее число пульсаров - одиночки, тогда как не менее половины нормальных звезд входит в двойные и более сложные системы.
Расстояние до пульсаров. Проходя от пульсара до Земли, радиоволны преодолевают межзвездную среду; взаимодействуя в ней со свободными электронами, они замедляются - чем больше длина волны, тем сильнее замедление. Измерив задержку длинноволнового импульса относительно коротковолнового (которая достигает нескольких минут) и зная плотность межзвездной среды, можно определить расстояние до пульсара. Как показывают наблюдения, в среднем в межзвездной среде приходится ок. 0,03 электрона на кубический сантиметр. Основанные на этой величине расстояния до пульсаров в среднем составляют несколько сотен св. лет. Но есть и более удаленные объекты: упомянутый выше двойной пульсар PSR 1913+16 удален на 18 000 св. лет.
ЛИТЕРАТУРА
Дайсон Ф., Тер Хаар Д. Нейтронные звезды и пульсары. М., 1973 Смит Ф. Г. Пульсары. М., 1979

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ПУЛЬСАР" в других словарях:

    ПУЛЬСАР, небесное тело, которое с чрезвычайной регулярностью испускает РАДИОВОЛНЫ в виде импульсов. Впервые они были обнаружены англичанкой Джоселин Белл (р. 1943), работавшей в Меллардовской радиоастрономической обсерватории в Кембридже. Первый… … Научно-технический энциклопедический словарь

    пульсар - а, м. Poulsard. Вино из Пульсара, действительно, приобрело себе вполне заслуженную славу. Кроме того пульсар прекрасный столовый виноград. 1900. Бр. Елисеевы 1 16. Пульсар Poulsard, Peloussard. Хороший винный сорт. ЭСХ 1905 9 153. Юрское вино,… … Исторический словарь галлицизмов русского языка

    Спинар, источник, звезда Словарь русских синонимов. пульсар сущ., кол во синонимов: 4 звезда (503) источник … Словарь синонимов - астрономический объект, испускающий мощные, строго периодические импульсы электромагнитного излучения. Первыми были открыты радиопульсары, а затем эти же объекты были обнаружены в оптическом, рентгеновском и гамма диапазонах. Все они оказались… … Астрономический словарь

    Пульсар, пульсары, пульсара, пульсаров, пульсару, пульсарам, пульсар, пульсары, пульсаром, пульсарами, пульсаре, пульсарах (

– это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Поэтому по виду излучения их разделяют на радиопульсары, оптические пульсары, рентгеновские и/или гамма-пульсары. Природа излучения пульсаров пока полностью не раскрыта, модели пульсаров и механизмов излучения ими энергии изучаются теоретически. На сегодняшний день преобладает мнение о пульсарах как о вращающихся нейтронных звездах с сильным магнитным полем.

Открытие пульсаров

Это произошло в 1967 г. Английский радиоастроном Э. Хьюиш и его сотрудники обнаружили идущие как бы из пустого места в космосе короткие радиоимпульсы, повторяющиеся стабильно с периодом не менее секунды. Сначала результаты наблюдений за этим явлением хранились в тайне, т.к. можно было предположить, что эти импульсы радиоизлучения имеют искусственное происхождение – возможно, это сигналы какой-нибудь внеземной цивилизации? Но источника излучения, совершающего орбитальное движение, обнаружено не было, зато группа Хьюиша нашла еще 3 источника подобных сигналов. Таким образом, надежда на сигналы внеземной цивилизации исчезла, и в феврале 1968 г. в появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой.

Это сообщение вызвало настоящую сенсацию, а в 1974 г. за это открытие Хьюиш получил Нобелевскую премию. Пульсар этот называется PSR J1921+2153. В настоящее время известно около 2 тысяч радиопульсаров, они обычно обозначаются буквами PSR и цифрами, которые выражают их экваториальные координаты.

Что представляет собой радиопульсар?

Астрофизики пришли к общему мнению, что радиопульсар представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени - так образуются импульсы пульсара. Большинство астрономов уверены в том, что пульсары - это крохотные нейтронные звезды с диаметром в несколько километров, вращающиеся с периодами в доли секунды. Их даже называют иногда «звездными волчками». Из-за магнитного поля излучение пульсара похоже на луч прожектора: когда из-за вращения нейтронной звезды луч попадает на антенну радиотелескопа, видны всплески излучения. Сигналы пульсаров на разных радиочастотах распространяются в межзвездной плазме с разной скоростью. По взаимному запаздыванию сигналов определяют расстояние до пульсара, определяют их расположение в Галактике. Распределение пульсаров приблизительно соответствует распределению остатков сверхновых звезд.

Рентгеновские пульсары

Рентгеновский пульсар представляет собой тесную двойную систему , одним из компонентов которой является нейтронная звезда , а вторым - нормальная звезда , в результате чего происходит перетекание материи с обычной звезды на нейтронную. Нейтронные звезды - это звезды с очень малыми размерами (20-30 км в диаметре) и чрезвычайно высокими плотностями, превышающими плотность атомного ядра. Астрономы считают, что нейтронные звёзды появляются в результате взрывов сверхновых. При взрыве сверхновой происходит стремительный коллапс ядра нормальной звезды, которое затем и превращается в нейтронную звезду. Во время сжатия в силу закона сохранения момента импульса, а также сохранения магнитного потока происходит резкое увеличение скорости вращения и магнитного поля звезды. Таким образом, для рентгеновского пульсара важны именно два этих признака: быстрая скорость вращения и чрезвычайно высокие магнитные поля. Материя, ударяясь о твердую поверхность нейтронной звезды, сильно разогревается и начинает излучать в рентгене. Близкими родственниками рентгеновских пульсаров являются поляры и промежуточные поляры . Различие между пульсарами и полярами заключается в том, что пульсар - это нейтронная звезда, а поляр - белый карлик. Соответственно, у них ниже магнитные поля и скорость вращения.

Оптические пульсары

В январе 1969 г. район пульсара в Крабовидной туманности был обследован оптическим телескопом с фотоэлектрической аппаратурой, способной регистрировать быстрые колебания блеска. Было отмечено существование оптического объекта с колебаниями блеска, имеющими такой же период, как и радиопульсар в этой туманности. Этим объектом оказалась звездочка 16-й величины в центре туманности. Она имела какой-то неразборчивый спектр без спектральных линий. Исследуя в 1942 г. Крабовидную туманность, В. Бааде указал на нее как на возможный звездный остаток сверхновой, а И.С. Шкловский в более поздние годы предполагал, что она является источником релятивистских частиц и фотонов высокой энергии. Но все это были лишь предположения. И вот звезда оказалась оптическим пульсаром , имеющим одинаковые с радиопульсаром период и интеримпульсы, а физически она должна быть нейтронной звездой, расход энергии которой достаточен для поддержания свечения и всех видов излучений Крабовидной туманности. После открытия оптического пульсара были проведены поиски и в других остатках сверхновых, особенно в тех, где уже найдены радиопульсары. Но только в 1977 г. австралийским астрономам с помощью специальной техники удалось нащупать пульсацию в оптическом диапазоне исключительно слабой звездочки 25-й величины в остатке сверхновой Паруса X. Третий оптический пульсар нашли в 1982 г. в созвездии Лисички по радиоизлучению. Остатка сверхновой не найдено.

Что же собой представляет оптический пульсар? Центральные компоненты спектральных линий SS 433 показывают перемещения с периодом 13 суток и изменения скорости движения от -73 до +73 км/с. Видимо, здесь также присутствует тесная двойная система, состоящая из оптически наблюдаемого горячего сверхгиганта классов О или В и невидимого в оптике рентгеновского компонента. Сверхгигант имеет массу более десяти солнечных, он раздулся до предельных границ собственной зоны тяготения, пополняет своим газом диск, окружающий по экватору вращения рентгеновский компонент. Плоскость диска перпендикулярна оси вращения компактного объекта, каким является рентгеновский компонент, а не лежит в орбитальной плоскости двойной системы. Поэтому диск и обе газовые струи ведут себя как наклонно вращающийся волчок, причем ось их вращения прецессирует (описывает конус), совершая один оборот за 164 суток (это известное явление прецессии вращающихся тел). Рентгеновский компонент, пожирающий газ диска и выбрасывающий струи, может быть нейтронной звездой.

Относятся к числу самых мощных космических источников гамма-излучения. Астрофизики очень хотят выяснить, каким образом эти нейтронные звезды ухитряются так сильно светить в гамма-диапазоне. До запуска телескопа Ферми было известно лишь около десятка гамма-пульсаров, в то время как общее число пульсаров составило примерно 1800. Теперь новая обсерватория стала открывать гамма-пульсары десятками. Ученые надеются, что ее работа дастмножество ценных сведений, которые помогут лучше понять природу гамма-пульсаров и других космическихгенераторов гамма-квантов.

В 2012 г. астрономы обнаружили при помощи орбитального гамма-телескопа "Ферми" быстрейший на сегодня гамма-пульсар в созвездии Центавра, совершающий один оборот за 2,5 миллисекунды и пожирающий при этом останки звезды-компаньона размером с Юпитер. (Га́мма-излуче́ние (гамма-лучи , γ-лучи ) - вид электромагнитного излучения с чрезвычайно малой длиной волны - < 5·10 −3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. На картинке гамма-излучение показано фиолетовым цветом.

Подытожим…

Нейтронные звезды – удивительные объекты. Их в последнее время наблюдают с особенным интересом, т.к. загадку представляет не только их строение, но и огромная их плотность, сильнейшие магнитные и гравитационные поля. Материя там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно воспроизвести в земных лабораториях.
Пульсар - это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита . Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, а вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 1010-1014 гаусс. Сравним: земное поле составляет 1 гаусс, солнечное - 10-50 гаусс). Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары, оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка - лишь на миг прорезая окружающую мглу.

Нейтронная звезда - весьма странный объект при диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Что же это за объекты? О них и пойдет речь в статье.

Состав нейтронных звёзд

Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов. Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды - самые плотные объекты во вселенной. Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.

Магнитное поле

Нейтронные звёзды имеют скорости вращения до 1000 оборотов в секунду. При этом электропроводящие плазма и ядерное вещество вырабатывают магнитные поля гигантских величин. Для примера магнитное поле Земли 1 гаусс, нейтронной звезды 10 000 000 000 000 гаусс. Самое сильное поле, созданное человеком, будет в миллиарды раз слабее.

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной».

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров

Экзопланеты у нейтронных звезд

Первую экзопланету открыли при исследовании радиопульсара. Так как нейтронные звезды очень стабильны, возможно очень точно отслеживать находящиеся рядом планеты с массами, намного меньшими массы Юпитера.

Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.

На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

— это космический источник радио, оптического, рентгеновского, гамма – излучений, приходящих на Землю в виде периодических всплесков (импульсов). (Википедия).

​ В конце шестидесятых годов прошлого столетия, а точнее в июне 1967 года, Джоселин Белл, аспирантка Э. Хьюиша, при помощи меридианного радиотелескопа, установленного в Маллардской радиоастрономической обсерватории университета Кембридж, открыла первый источник импульсного излучения, названный впоследствии пульсаром.

​ В феврале 1968 года в прессе было опубликовано сообщение об открытии внеземных радиоисточников, отличающихся быстро переменной высокостабильной частотой неизвестного происхождения. Это событие вызвало сенсацию в научном обществе. Уже к концу 1968 года мировыми обсерваториями было открыто еще 58 подобных объектов. После внимательного изучения их свойств астрофизики пришли к выводу, что пульсар – это не что иное, как нейтронная звезда, испускающая узконаправленный поток радиоизлучения (импульс) через равный промежуток времени при вращении объекта, попадающий в поле зрения внешнего наблюдателя.

Нейтронные звёзды – это один из самых загадочных объектов вселенной, пристально изучаемый астрофизиками всей планеты. В наши дни только приоткрылась завеса над природой рождения и жизни пульсаров. Наблюдения зафиксировали, что их образование происходит после гравитационного коллапса старых звёзд.

​ Превращение протонов и электронов в нейтроны с образованием нейтрино (нейтронизация), происходит при невообразимо огромных плотностях вещества. Другими словами, обычная звезда, массой, примерно в три наших Солнца, сжимается до размеров шара, с диаметром в 10 км. Так образовывается нейтронная звезда, верхние слои которой «утрамбованы» до плотности 104 г/см3, а слои её центра до 1014 г/см3. В этом состоянии нейтронная звезда похожа на атомное ядро невообразимо огромных размеров и температуры в сотню миллионов градусов по Кельвину. Считается, что самое плотное вещество во Вселенной находится внутри нейтронных звёзд.

Кроме нейтронов в центральных областях находятся сверхтяжёлые элементарные частицы – гипероны. Они крайне нестабильны в условиях . Возникающие иногда странные явления — «звёздотрясения», происходящие в коре пульсаров, очень напоминают аналог земных.

После открытия нейтронной звезды некоторое время результаты наблюдения скрывались, поскольку была выдвинута версия об её искусственном происхождении.В связи с этой гипотезой первый пульсар получил название LGM-1 (сокр. от Little Green Men – «маленькие зелёные человечки»). Однако последующие наблюдения не подтвердили наличие «доплеровского» смещения частоты, характерное для источников, совершающим орбитальное движение вокруг звезды.

Во время наблюдений астрофизиками было установлено, что двойная система, состоящая из нейтронной звезды и чёрной дыры, может быть индикатором дополнительных измерений нашего пространства.

С открытием пульсаров не кажется бредовой идея, что небо полно алмазных звёзд. Красивое поэтическое сравнение теперь стало явью. Совсем недавно возле пульсара PSR J1719−1438 учёные обнаружили планету, которая представляет собой необъятных размеров алмазный кристалл. Её вес сродни весу , а диаметр в пять раз больше земного.

Сколько живут пульсары?

До последнего момента считалось, что самый короткий период пульсара имел 0,333 секунды.В созвездии Лисички в 1982 году Аресибской обсерваторией (Пуэрто-Рико) был зафиксирован пульсар с периодом 1, 558 миллисекунды! Он находится от Земли на расстоянии больше восьми тысяч световых лет. Окружённый остатками горячей туманности, пульсар образовался после взрыва, произошедшего около 7500 лет назад. Последний миг жизни одной из взорвавшихся старых звёзд стал рождением сверхновой, которая будет существовать ещё 300 миллионов лет.

После открытия первых нейтронных звёзд прошло более сорока лет. Сегодня известно, что они являются источниками регулярных импульсов рентгеновского и радиоизлучения и, тем не менее остаётся вариант того, что пульсары вполне реально могут служить небесными радиомаяками, используемыми внеземными цивилизациями из других галактик при перемещениях в космическом пространстве.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .