Что такое скорость химической реакции и как ее определить. Скорость реакции, ее зависимость от различных факторов

Основные изучаемые понятия:

Скорость химических реакций

Молярная концентрация

Кинетика

Гомогенные и гетерогенные реакции

Факторы, влияющие на скорость химических реакций

Катализатор, ингибитор

Катализ

Обратимые и необратимые реакции

Химическое равновесие

Химические реакции – это реакции, в результате которых из одних веществ получаются другие (из исходных веществ образуются новые вещества). Одни химические реакции протекают за доли секунды (взрыв), другие же – за минуты, дни, годы, десятилетия и т.д.

Например: мгновенно с воспламенением и взрывом происходит реакция горения пороха, а реакция потемнения серебра или ржавления железа (коррозия) идёт так медленно, что проследить за её результатом можно лишь по истечении длительного времени.

Для характеристики быстроты химической реакции используют понятие скорости химической реакции – υ.

Скорость химической реакции – это изменение концентрации одного из реагирующих веществ реакции в единицу времени.

Формула вычисления скорости химической реакции:

υ = с 2 – с 1 = ∆ с
t 2 – t 1 ∆ t

с 1 – молярная концентрация вещества в начальный момент времени t 1

с 2 – молярная концентрация вещества в начальный момент времени t 2

так как скорость химической реакции характеризуется изменением молярной концентрации реагирующих веществ (исходных веществ), то t 2 > t 1 , а с 2 > с 1 (концентрация исходных веществ убывает по мере протекания реакции).

Молярная концентрация (с) – это количество вещества в единице объёма. Единица измерения молярной концентрации - [моль/л].

Раздел химии, который изучает скорость химических реакций, называется химической кинетикой . Зная её законы, человек может управлять химическими процессами, задавать им определённую скорость.

При расчёте скорости химической реакции необходимо помнить, что реакции делятся на гомогенные и гетерогенные.

Гомогенные реакции – реакции, которые протекают в одной среде (т.е. реагирующие вещества находятся в одинаковом агрегатном состоянии; например: газ + газ, жидкость + жидкость ).

Гетерогенные реакции – это реакции, протекающие между веществами в неоднородной среде (есть поверхность раздела фаз, т.е. реагирующие вещества находятся в разном агрегатном состоянии; например: газ + жидкость, жидкость + твёрдое вещество ).

Данная выше формула расчёта скорости химической реакции справедлива только для гомогенных реакций. Если реакция гетерогенная, то она может идти только на поверхности разделе реагирующих веществ.

Для гетерогенной реакции скорость вычисляется по формуле:

∆ν – изменение количества вещества

S – площадь поверхности раздела фаз

∆ t – промежуток времени, за который проходила реакция

Скорость химических реакций зависит от разных факторов: природы реагирующих веществ, концентрации веществ, температуры, катализаторов или ингибиторов.

Зависимость скорости реакций от природы реагирующих веществ.

Разберём данную зависимость скорости реакции на примере: опустим в две пробирки, в которых находится одинаковое количество раствора соляной кислоты (HCl), одинаковые по площади гранулы металлов: в первую пробирку гранулу железа (Fe), а во вторую – гранулу магния (Mg). В результате наблюдений, по скорости выделения водорода (Н 2), можно заметить, что с наибольшей скорость с соляной кислотой реагирует магний, чем железо . На скорость данной химической реакции оказывает влияние природа металла (т.е. магний более химически активный металл, чем железо, и поэтому он более энергично взаимодействует с кислотой).

Зависимость скорости химических реакций от концентрации реагирующих веществ.

Чем выше концентрация реагирующего (исходного) вещества, тем быстрее протекает реакция. И наоборот, чем меньше концентрация реагирующего вещества, тем медленнее идёт реакция.

Например: нальём в одну пробирку концентрированный раствор соляной кислоты (HCl), а в другую – разбавленный раствор соляной кислоты. Положим в обе пробирки по грануле цинка (Zn). Пронаблюдаем, по скорости выделения водорода, что реакция быстрее пойдёт в первой пробирке, т.к. концентрация соляной кислоты в ней больше, чем во второй пробирке.

Для определения зависимости скорости химической реакции применяют закон действия (действующих) масс : скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, которые равны их коэффициентам.

Например, для реакции, протекающей по схеме : nA + mB → D , скорость химической реакции определяют по формуле:

υ х.р. = k · C (A) n · C (B) m , где

υ х.р - скорость химической реакции

C (A) – А

C (В) – молярная концентрация вещества В

n и m – их коэффициенты

k – константа скорости химической реакции (справочная величина).

Закон действия масс не распространяется на вещества, находящиеся в твёрдом состоянии, т.к. их концентрация постоянна (вследствие того, что они реагируют лишь на поверхности, которая остаётся неизменной).

Например: для реакции 2 Cu + O 2 = 2CuO скорость реакции определяют по формуле:

υ х.р. = k · C(O 2)

ЗАДАЧА: Константа скорости реакции 2А + В = D равна 0,005. вычислить скорость реакции при молярной концентрации вещества А = 0,6 моль/л, вещества В = 0,8 моль/л.

Зависимость скорости химической реакции от температуры .

Эта зависимость определяется правилом Вант – Гоффа (1884г.): при увеличении температура на каждые 10 С о скорость химической реакции увеличивается в среднем в 2 – 4 раза.

Так, взаимодействие водорода (Н 2) и кислорода (О 2) при комнатной температуре почти не происходит, так мала скорость этой химической реакции. Но при температуре 500 С о эта реакция протекает за 50 минут, а при температуре 700 С о – почти мгновенно.

Формула расчёта скорости химической реакции по правилу Вант – Гоффа:

где: υ t 1 и υ t 2 - скорости химических реакций при t 2 и t 1

γ – температурный коэффициент, который показывает во сколько раз увеличивается скорость реакции с повышением температуры на 10 С о.

Изменение скорости реакции:

2. Подставим данные из условия задачи в формулу:

Зависимость скорости реакций от специальных веществ – катализаторов и ингибиторов.

Катализатор – вещество, которое увеличивает скорость химической реакции, но само в ней не участвует.

Ингибитор – вещество, замедляющее химическую реакцию, но само в ней не участвующие.

Пример: в пробирку с раствором 3% перекиси водорода (Н 2 О 2), которую нагрели, внесём тлеющую лучину – она не загорится, т.к. скорость реакции разложения перекиси водорода на воду (Н 2 О) и кислород (О 2) очень мала, и образовавшегося кислорода недостаточно для проведения качественной реакции на кислород (поддержание горения). Теперь внесём в пробирку немного чёрного порошка оксида марганца (IV) (MnO 2) и увидим, что началось бурное выделение пузырьков газа (кислорода), а внесённая в пробирку тлеющая лучина ярко вспыхивает. MnO 2 – катализатор данной реакции, он ускорил скорость реакции, но сам в ней не участвовал (это можно доказать взвесив катализатор до и после проведения реакции – его масса не изменится).

Химические методы

Физические методы

Методы измерения скорости реакции

В приведенном выше примере скорость реакции между карбонатом кальция и кислотой измеряли путем изучения зависимости объема выделившегося газа от времени. Опытные данные о скоростях реакций можно получать измерением других величин.

Если в ходе реакции изменяется общее количество газообразных веществ, то за ее протеканием можно наблюдать, измеряя давление газа при постоянном объеме. В тех случаях, когда одно из исходных веществ или один из продуктов реакции окрашены, за ходом реакции можно следить, наблюдая изменение окраски раствора. Другим оптическим методом является измерение вращения плоскости поляризации света (если исходные вещества и продукты реакции обладают различной вращающей способностью).

Некоторые реакции сопровождаются изменением числа ионов в растворе. В таких случаях скорость реакции можно изучать путем измерения электрической проводимости раствора. В следующей главе будут рассмотрены некоторые другие электрохимические методы, которые могут быть использованы для измерения скоростей реакций.

За ходом реакции можно следить, измеряя во времени концентрацию одного из участников реакции с помощью разнообразных методов химического анализа. Реакцию проводят в термостатированном сосуде. Через определенные промежутки времени из сосуда отбирают пробу раствора (или газа) и определяют концентрацию одного из компонентов. Для получения надежных результатов важно, чтобы в пробе, отобранной для анализа, реакция не происходила. Это достигается путем химического связывания одного из реагентов, резким охлаждением или разбавлением раствора.

Экспериментальные исследования показывают, что скорость реакции зависит от нескольких факторов. Рассмотрим влияние этих факторов вначале на качественном уровне.

1.Природа реагирующих веществ. Из лабораторной практики мы знаем, что нейтрализация кислоты основанием

Н + + ОН – ® Н 2 О

взаимодействие солей с образованием малорастворимого соединения

Ag + + Cl – ® AgCl

и другие реакции в растворах электролитов происходят очень быстро. Время, необходимое для завершения таких реакций, измеряется в миллисекундах и даже в микросекундах. Это вполне понятно, т.к. сущность таких реакций состоит в сближении и соединении заряженных частиц с зарядами противоположного знака.

В противоположность ионным реакциям взаимодействие между ковалентно связанными молекулами обычно протекает гораздо медленнее. Ведь в ходе реакции между такими частицами должен произойти разрыв связей в молекулах исходных веществ. Для этого сталкивающиеся молекулы должны обладать определенным запасом энергии. Кроме того,если молекулы достаточно сложны, для того, чтобы произошла между ними реакция, они должны быть определенным образом ориентированы в пространстве.

2. Концентрация реагирующих веществ . Скорость химической реакции, при прочих равных условиях, зависит от числа столкновений реагирующих частиц в единицу времени. Вероятность столкновений зависит от количества частиц в единице объема, т.е. от концентрации. Поэтому скорость реакции увеличивается с повышением концентрации.

3. Физическое состояние веществ . В гомогенных системах скорость реакции зависит от числа столкновений частиц в объеме раствора (или газа). В гетерогенных системах химическое взаимодействие происходит на поверхности раздела фаз . Увеличение площади поверхности твердого вещества при его измельчении облегчает доступ реагирующих частиц к частицам твердого вещества, что приводит к существенному ускорению реакции.

4. Температура оказывает существенное влияние на скорость разнообразных химических и биологических процессов. При увеличении температуры повышается кинетическая энергия частиц, а, следовательно, увеличивается доля частиц, энергия которых достаточна для химического взаимодействия.

5. Стерический фактор характеризует необходимость взаимной ориентации реагирующих частиц. Чем сложнее молекулы, тем меньше вероятность их должной ориентации, тем меньше эффективность столкновений.

6. Наличие катализаторов . Катализаторами называются вещества, в присутствии которых изменяется скорость химической реакции. Вводимые в реакционную систему в небольших количествах и остающиеся после реакции неизменившимися, они способны чрезвычайно менять скорость процесса.

Основные факторы, от которых зависит скорость реакции, будут подробнее рассмотрены ниже.

Химическая реакция - это превращение одних веществ в другие.

К какому бы типу ни относились химические реакции, они осуществляются с различной скоростью. Например, геохимические превращения в недрах Земли (образование кристаллогидратов, гидролиз солей, синтез или разложение минералов) протекают тысячи, миллионы лет. А такие реакции, как горение пороха, водорода, селитр, бертолетовой соли происходят в течение долей секунд.

Под скоростью химической реакции понимается изменение количеств реагирующих веществ (или продуктов реакции) в единицу времени. Чаще всего используется понятие средней скорости реакции (Δc p) в интервале времени.

v ср = ± ∆C/∆t

Для продуктов ∆С > 0, для исходных веществ -∆С < 0. Наиболее употребляемая единица измерения - моль на литр в секунду (моль/л*с).

Скорость каждой химической реакции зависит от многих факторов: от природы реагирующих веществ, концентрации реагирующих веществ, изменении температуры реакции, степени измельчённости реагирующих веществ, изменении давления, введения в среду реакци катализатора.

Природа реагирующих веществ существенно влияет на скорость химической реакции. В качестве примера рассмотрим взаимодействие некоторых металлов с постоянным компонентом - водой. Определим металлы: Na, Са, Аl ,Аu . Натрий реагирует с водой при обычной температуре очень бурно, с выделением большого количества теплоты.

2Na + 2H 2 O = 2NaOH + H 2 + Q;

Менее энергично при обычной температуре реагирует с водой кальций:

Са + 2Н 2 О = Са(ОН) 2 + H 2 + Q;

Алюминий реагирует с водой уже при повышенной температуре:

2Аl + 6Н 2 О = 2Аl(ОН)з + ЗН 2 - Q;

А золото - один из неактивных металлов, с водой ни при обычной, ни при повышенной температуре не реагирует.

Скорость химической реакции находится в прямой зависимости от концентрации реагирующих веществ . Так, для реакции:

C 2 H 4 + 3O 2 = 2CO 2 + 2Н 2 О;

Выражение скорости реакции имеет вид:

v = k**[О 2 ] 3 ;

Где k - константа скорости химической реакции, численно равная скорости данной реакции при условии, что концентрации реагирующих компонентов равны 1 г/моль; величины [С 2 Н 4 ] и [О 2 ] 3 соответствуют концентрациям реагирующих веществ, возведенные в степень их стехиометрических коэффициентов. Чем больше концентрация [С 2 Н 4 ] или [О 2 ], тем больше в единицу времени соударений молекул данных веществ, следовательно больше скорость химической реакции.

Скорости химических реакций, как правило, находятся также в прямой зависимости от температуры реакции . Естественно, при увеличении температуры кинетическая энергия молекул возрастает, что так же приводит к большим столкновением молекул в единицу времени. Многочисленные опыты показали, что при изменении температуры на каждые 10 градусов скорость реакции изменяется в 2-4 раза (правило Вант-Гоффа):

где V T 2 - скорость химической реакции при Т 2 ; V ti - скорость химической реакции при T 1 ; g- температурный коэффициент скорости реакции.

Влияние степени измельчённости веществ на скорость реакции так же находится в прямой зависимости. Чем в более мелком состоянии находятся частицы реагирующих веществ, тем в большей степени они соприкасаются друг с другом в единицу времени тем больше скорость химической реакции. Поэтому, как правило, реакции между газообразными веществами или растворами протекают быстрее, чем в твердом состоянии.

Изменение давления оказывает влияние на скорость реакции между веществами, находящимися в газообразном состоянии. Находясь в замкнутом объеме при постоянной температуре реакция протекает со скоростью V 1. Если в данной системе мы повысим давление (следовательно, уменьшим объем), концентрации реагирующих веществ возрастут, увеличится соударение их молекул в единицу времени, скорость реакции повысится до V 2 (v 2 > v 1).

Катализаторы - это вещества, изменяющие скорость химической реакции, но остающиеся неизменными после того, как химическая реакция заканчивается. Влияние катализаторов на скорость реакции называется катализом, Катализаторы могут как ускорять химико-динамический процесс, так и замедлять его. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, то говорят о гомогенном катализе, а при гетерогенном катализе реагирующие вещества и катализатор находятся в разных агрегатных состояниях. Катализатор с реагентами образует промежуточный комплекс. Например, для реакции:

Катализатор (К) образует комплекс с А или В - АК, ВК, который высвобождает К при взаимодействии со свободной частицей А или В:

АК + В = АВ + К

ВК + А = ВА + К;

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.

Обычно концентрацию выражают в моль/л, а время – в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1-0,6)/4=0,1 моль/(л*с).

Средняя скорость реакции вычисляется по формуле:

Скорость химической реакции зависит от:

    Природы реагирующих веществ.

Вещества с полярной связью в растворах взаимодействуют быстрей, это объясняется тем, что такие вещества в растворах образуются ионы, которые легко взаимодействуют друг с другом.

Вещества с неполярной и малополярной ковалентной связью реагируют с различной скоростью, это зависит от их химической активности.

H 2 + F 2 = 2HF (идёт очень быстро со взрывом при комнатной температуре)

H 2 + Br 2 = 2HBr (идет медленно, даже при нагревании)

    Величины поверхностного соприкосновения реагирующих веществ (для гетерогенных)

    Концентрации реагирующих веществ

Скорость реакции прямопропорциональна произведению концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов.

    Температуры

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа:

при повышении температуры на каждые 10 0 скорость большинства реакций увеличивается в 2-4 раза.

    Присутствия катализатора

Катализаторами называются вещества, изменяющие скорость химической реакций.

Явление изменения скорости реакции в присутствии катализатора называется катализом.

    Давления

При увеличение давления скорость реакции повышается (для гомогенных)

Вопрос№26. Закон действия масс. Константа скорости. Энергия активации.

Закон действия масс.

скорость, с которой вещества реагируют друг с другом, зависит от их концентрации

Константа скорости.

коэффициент пропорциональности в кинетическом уравнении химической реакции, выражающий зависимость скорости реакции от концентрации

Константа скорости зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Энергия активации.

энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные

Энергия активации зависит от природы реагирующих веществ и изменяется в присутствии катализатора.

Повышение концентрации увеличивается общее число молекул, а соответственно активных частиц.

Вопрос№27. Обратимые и необратимые реакции. Химическое равновесие, константа равновесия. Принцип Ле Шателье.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми.

Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

В уравнениях обратимых реакций между левой и правой частью ставят две стрелки, направленные в противоположные стороны. Примером такой реакции может служить синтез аммиака их водорода и азота:

3H 2 + N 2 = 2NH 3

Необратимыми называются такие реакции, при протекании которых:

    Образующиеся продукты выпадают в осадок, или выделяются в виде газа, например:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

    Образование воды:

HCl + NaOH = H 2 O + NaCl

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия .

Химическое равновесие – это состояние системы реагирующих веществ, при котором скорости прямой и обратной реакции равны между собой.

На состояние химического равновесия оказывает влияние концентрации реагирующих веществ, температура, а для газов – и давление. При изменении одного из этих параметров, химическое равновесия нарушается.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К. Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k1[A]равн[B]равн = k2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k1/k2 = К, то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = 2 равн/3равнравн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Пинцип Ле Шателье.

если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие, то равновесие смещается в сторону той реакции, которая противодействует этому воздействию.

На химическое равновесие влияет:

    Изменение температуры. При повышении температуры равновесие смещается в сторону эндотермической реакции. При понижении температуры равновесие смещается в сторону экзотермической реакции.

    Изменение давления. При повышении давления равновесие смещается в сторону уменьшения числа молекул. При понижении давления равновесие смещается в сторону увеличения числа молекул.

7.1. Гомогенные и гетерогенные реакции

Химические вещества могут находиться в разных агрегатных состояниях, при этом их химические свойства в разных состояниях одинаковы, однако активность отличается (что на прошлой лекции было показано на примере теплового эффекта химической реакции).

Рассмотрим различные комбинации агрегатных состояний, в которых могут находиться два вещества А и Б.

A (г.), Б (г.)

A (тв.), Б (тв.)

A (ж.), Б (тв.)

смешиваются

A(тв.), Б (г.)

A (ж.), Б (г.)

смешиваются

(раствор)

гетерогенная

гетерогенная

гетерогенная

гомогенная

гетерогенная

гетерогенная

гомогенная

Hg(ж.) + HNO3

H2 O + D2 O

Fe + O2

H2 S + H2 SO4

CO + O2

Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называетсяхимическая система , в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется

гетерогенной.

Соответственно химическая реакция называетсягомогенной , еслиреагенты находятся в одной фазе. Еслиреагенты находятся в разных фазах, тохимическая реакция называетсягетерогенной .

Нетрудно понять, что поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Таким образом, мы переходим к понятию скорость химической реакции .

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

7.2. Скорость химической реакции

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой .

Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Таким образом, если объем

или площадь

поверхности раздела фаз

не изменяются, то выражения для скоростей химических реакций имеют вид:

hom o

Отношение изменения количества вещества к объему системы можно интерпретировать как изменение концентрации данного вещества.

Отметим, что для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции – вообще-то величина положительная.

Дальнейшие умозаключения базируются на простых физических соображениях, которые рассматривают химическую реакцию как следствие взаимодействия нескольких частиц.

Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями.

В 1867 году для описания скорости химической реакции был предложен закон действующих масс : скорость элементарной химической реакции пропорциональная концентрациям реагирующих веществ в степенях стехиометрических коэффициентов.n A +m B P,

A, B – реагенты, P – продукты, n ,m – коэффициенты.

W =k n m

Коэффициент k называется константой скорости химической реакции,

характеризует природу взаимодействующих частиц и не зависит от концентрации частиц.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Величины n иm называютсяпорядком реакции по веществу А и B соответственно, а

их сумма (n +m ) –порядком реакции .

Для элементарных реакций порядок реакции может быть 1, 2 и 3.

Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым , в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частицW =k ).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скоростьлимитирующей стадией).

Представьте себе, что большое количество молекул пошли в бесплатный кинотеатр, но на входе стоит контролер, который проверяет возраст каждой молекулы. Поэтому в двери кинотеатра заходит поток вещества, а в кинозал молекулы проникают по одной, т.е. очень медленно.

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то там получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

В качестве иллюстрации посмотрим предсказательную силу химической кинетики.

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

Кинетическое уравнение первого порядка

(иллюстративный дополнительный материал)

Рассмотрим гомогенную реакцию первого порядка, константа скорости которой равна k , начальная концентрация вещества A равна [A]0 .

По определению скорость гомогенной химической реакции равна

K [ A ]

изменению концентрации в единицу времени. Раз вещество A –

реагент, ставим знак «минус».

Такое уравнение называется дифференциальным (есть

производная)

[ A ]

Для его решения в левую часть переносим величины

концентраций, а в правую – времени.

Если равны производные двух функций, то сами функции

должны отличаться не более, чем на константу.

Для решения данного уравнения берут интеграл левой части (по

концентрации) и правой части (по времени). Чтобы не пугать

ln[ A ] = −kt +C

слушателей, ограничимся ответом.

Значок ln – натуральный логарифм, т.е. число b, такое что

= [ A ] ,e = 2,71828…

ln[ A ]- ln0 = - kt

Константу C находят из начальных условий:

при t = 0 начальная концентрация равна [A]0

[ A ]

Раз логарифм –

это степень числа, используем свойства степеней

[ A ]0

e a− b=

Теперь избавимся от противного логарифма (см. определение

логарифма на 6-7 строчек выше),

для чего возведем число

в степень левой части уравнения и правой части уравнения.

[ A ]

E − kt

Умножим на [A]0

[ A ]0

Кинетическое уравнение первого порядка.

[ A ]= 0 × e − kt

На основании

полученного кинетического уравнения первого

порядка может

рассчитана

концентрация вещества

в любой момент времени

Для целей нашего курса данный вывод носит ознакомительный характер, для того чтобы продемонстрировать Вам применение математического аппарата для расчета хода химической реакции. Следовательно, грамотный химик не может не знать математику. Учите математику!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. График зависимости концентрации реагентов и продуктов от времени может быть качественно изображен следующим образом (на примере необратимой реакции первого порядка)

Факторы, которые влияют на скорость реакции

1. Природа реагирующих веществ

Например, скорость реакции следующих веществ: H2 SO4 , CH3 COOH, H2 S, CH3 OH – с гидроксид-ионом будет различаться в зависимости от прочности связи H-O. Для оценки прочности данной связи можно использовать величину относительного положительного заряда на атоме водорода: чем больше заряд, тем легче будет идти реакция.

2. Температура

Жизненный опыт подсказывает нам, что скорость реакции от температуры зависит и увеличивается с ростом температуры. Например, процесс скисания молока быстрее происходит при комнатной температуре, а не в холодильнике.

Обратимся к математическому выражению закона действующих масс.

W =k n m

Раз левая часть этого выражения (скорость реакции) от температуры зависит, следовательно, правая часть выражения также зависит от температуры. При этом концентрация, разумеется, от температуры не зависит: например, молоко сохраняет свою жирность 2,5% и в холодильнике, и при комнатной температуре. Тогда, как говаривал Шерлок Холмс оставшееся решение и есть верное, каким бы странным оно ни казалось: от температуры зависит константа скорости!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Зависимость константы скорости реакции от температуры выражается посредством уравнения Аррениуса:

− E a

k = k0 eRT ,

в котором

R = 8,314 Дж·моль-1 ·К-1 – универсальная газовая постоянная,

E a – энергия активации реакции (см. ниже), её условно считают не зависящей от температуры;

k 0 – предэкспоненциальный множитель (т.е. множитель, который стоит перед экспонентойe ), величина которого тоже почти не зависит от температуры и определяется, в первую очередь, порядком реакции.

Так, величина k0 составляет примерно для реакции первого порядка 1013 с-1 , для реакции второго порядка – 10 -10 л·моль-1 ·с-1 ,

для реакции третьего порядка – 10 -33 л2 ·моль-2 ·с-1 . Эти значения запоминать не обязательно.

Точные значения k0 для каждой реакции определяют экспериментально.

Понятие энергии активации становится ясным из следующего рисунка. Фактически энергия активации представляет собой энергию, которой должна обладать реагирующая частица, для того, чтобы реакция произошла.

При этом если мы нагреваем систему, то энергия частиц повышается (пунктирный график), тогда как переходное состояние (≠) остается на прежнем уровне. Разница в энергии между переходным состоянием и реагентами (энергия активации) сокращается, а скорость реакции согласно уравнению Аррениуса возрастает.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Кроме уравнения Аррениуса, существует уравнение Вант-Гоффа, которое

характеризует зависимость скорости реакции от температуры посредством температурного коэффициента γ:

Температурный коэффициент γ показывает, во сколько раз вырастет скорость химической реакции при изменении температуры на 10o .

Уравнение Вант-Гоффа:

T 2− T 1

W (T 2 )= W (T 1 )× γ10

Обычно коэффициент γ находится в диапазоне от 2 до 4. По этой причине химики часто пользуются приближением, что увеличение температуры на 20o приводит к возрастанию скорости реакции на порядок (т.е. в 10 раз).