Действие силы лоренца на кровеносную систему. Общие принципы устройства

Сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;

V - скорость заряда;

a - угол между вектором скорости заряда и вектором магнитной индукции .

Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца:

.

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движетсяравномерно и прямолинейно.

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной:

и создает центростремительное ускорение равное:

В этом случае частица движется по окружности.


.

Согласно второму закону Ньютона : сила Лоренца равнв произведению массы частицы на центростремительное ускорение:

тогда радиус окружности:

а период обращения заряда в магнитном поле:

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Если внести проводник с током в магнитное поле (фиг.96,а), то мы увидим, что в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление магнитных линий и они, стремясь сократиться, будут выталкивать проводник вниз (фиг. 96, б).

Направление силы, действующей на проводник с током в магнитном поле, можно определить по «правилу левой руки». Если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы. Сила Ампера , действующая на элемент длины проводника, зависит: от величины магнитной индукции В, величины тока в проводнике I, от элемента длины проводника и от синуса угла а между направлением элемента длины проводника и направлением магнитного поля.


Эта зависимость может быть выражена формулой:

Для прямолинейного проводника конечной длины, помещенного перпендикулярно к направлению равномерного магнитного поля, сила, действующая на проводник, будет равна:

Из последней формулы определим размерность магнитной индукции.

Так как размерность силы:

т. е. размерность индукции такая же, какая была получена нами из закона Био и Савара.

Тесла (единица магнитной индукции)

Тесла, единица магнитной индукции Международной системы единиц, равная магнитной индукции, при которой магнитный поток сквозь поперечное сечение площадью 1 м 2 равен 1 веберу. Названа по имени Н. Тесла . Обозначения: русское тл, международное Т. 1 тл = 104 гс (гаусс ).

Магни?тный моме?нт , магни?тный дипо?льный моме?нт — основная величина, характеризующая магнитные свойства вещества. Магнитный момент измеряется в А⋅м 2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10 -3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора . В случае плоского контура с электрическим током магнитный момент вычисляется как

где — сила тока в контуре, — площадь контура, — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из:

,

где — радиус-вектор, проведенный из начала координат до элемента длины контура

В общем случае произвольного распределения токов в среде:

,

где — плотность тока в элементе объёма .

Итак, на контур с током в магнитном поле действует вращающий момент. Контур ориентируется в данной точке поля только одним способом. Примем положительное направление нормали за направление магнитного поля в данной точке. Вращающий момент прямо пропорционален величине тока I , площади контура S и синусу угла между направлением магнитного поля и нормали .

здесь М - вращающий момент , или момент силы , - магнитный момент контура (аналогично - электрический момент диполя).

В неоднородном поле () формула справедлива, если размер контура достаточно мал (тогда в пределах контура поле можно считать приближенно однородным). Следовательно, контур с током по-прежнему стремится развернуться так, чтобы его магнитный момент был направлен вдоль линий вектора .

Но, кроме того, на контур действует результирующая сила (в случае однородного поля и . Эта сила действует на контур с током или на постоянный магнит с моментом и втягивает их в область более сильного магнитного поля.
Работа по перемещению контура с током в магнитном поле.

Нетрудно доказать, что работа по перемещению контура с током в магнитном поле равна , где и - магнитные потоки через площадь контура в конечном и начальном положениях. Эта формула справедлива, если ток в контуре постоянен , т.е. при перемещении контура не учитывается явление электромагнитной индукции.

Формула справедлива и для больших контуров в сильно неоднородном магнитном поле (при условии I= const).

Наконец, если контур с током не смещать, а изменять магнитное поле, т.е. изменять магнитный поток через поверхность, охватываемую контуром, от значения до то для этого надо совершить ту же работу . Эта работа называется работой изменения магнитного потока, связанного с контуром. Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, которая равна

где B n =Вcosα - проекция вектора В на направление нормали к площадке dS (α — угол между векторами n и В ), dS = dSn — вектор, у которого модуль равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosα (задается выбором положительного направления нормали n ). Поток вектора В обычно связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру нами задавалось: оно связывается с током правилом правого винта. Значит, магнитный поток, который создается контуром, через поверхность, ограниченную им самим, всегда положителен.

Поток вектора магнитной индукции Ф B через произвольную заданную поверхность S равен

(2)

Для однородного поля и плоской поверхности, которая расположена перпендикулярно вектору В , B n =B=const и

Из этой формулы задается единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, который проходит сквозь плоскую поверхность площадью 1 м 2 , который расположен перпендикулярно однородному магнитному полю и индукция которого равна 1 Тл (1 Вб=1 Тл.м 2).

Теорема Гаусса для поля В : поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:

(3)

Эта теорема является отражением факта, что магнитные заряды отсутствуют , вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Следовательно, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные формулы.

В качестве примера найдем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью μ, равна

Магнитный поток сквозь один виток соленоида площадью S равен

а полный магнитный поток, который сцеплен со всеми витками соленоида и называемый потокосцеплением ,

Сила Ампера , действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B ,

Выражение для силы Ампера можно записать в виде:

Эту силу называют силой Лоренца . Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика . Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1.

Взаимное расположение векторов , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на заряд q

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Период обращения частицы в однородном магнитном поле равен

называется циклотронной частотой . Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов). Принципиальная схема циклотрона приведена на рис. 1.18.3.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов ). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте . Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов , то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20 Ne и 22 Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S , проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей , в котором частицы движутся в скрещенных однородных электрическом и магнитном полях . Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца . При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B .

Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = m υ / qB" . Измеряя радиусы траекторий при известных значениях υ и B" можно определить отношение q / m . В случае изотопов (q 1 = q 2) масс-спектрометр позволяет разделить частицы с разными массами.

Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10 –4 .

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектора а шаг спирали p – от модуля продольной составляющей υ || (рис. 1.18.5).

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы , то есть полностью ионизированного газа при температуре порядка 10 6 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. В качестве примера на рис. 1.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке ).

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 1.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

Контрольные вопросы

1.Опишите опыты Эрстеда и Ампера.

2.Что является источником магнитного поля?

3. В чем состоит гипотеза Ампера, объясняющая существования магнитного поля постоянного магнита?

4.В чем состоит принципиальное отличие магнитного поля от электрического?

5.Сформулируйте определение вектора магнитной индукции.

6. Почему магнитное поле называется вихревым?

7. Сформулируйте законы:

А) Ампера;

Б) Био-Савара-Лапласа.

8. Чему равен модуль вектора магнитной индукции поля прямого тока?

9. Сформулируйте определение единицы силы тока (ампера) в Международной системе единиц.

10. Запишите формулы, выражающую величину:

А) модуля вектора магнитной индукции;

Б) силы Ампера;

В) силы Лоренца;

Г) периода обращения частицы в однородном магнитном поле;

Д) радиуса кривизны окружности, при движении заряженной частицы в магнитном поле;

Тест для самоконтроля

          Что наблюдалось в опыте Эрстеда?

1) Взаимодействие двух параллельных проводников с током.

2) Взаимодействие двух магнитных стрелок

3) Поворот.магнитной стрелки вблизи проводника при пропускании через него тока.

4) Возникновение электрического тока в катушке пнри вдвигании в нее магнита.

          Как взаимодействуют два параллельных проводника, если по ним пропускают токи в одном направлении?

    Притягиваются;

    Отталкиваются;

    Сила и момент сил равны нулю.

    Сила равна нулю, но момент сил не равен нулю.

          Какая формула определяет выражение модуля силы Ампера?

          Какая формула определяет выражение модуля силы Лоренца?

Б)

В)

Г)

    0,6 Н; 2) 1 Н; 3) 1,4 Н; 4) 2,4 Н.

1) 0,5 Тл; 2) 1 Тл; 3) 2 Тл; 4) 0,8 Тл.

          Электрон со скоростью V влетает в магнитное поле с модулем индукции В перпендикулярно магнитным линиям. Какое выражение соответствует радиусу орбиты электрона?

Ответ: 1)
2)

4)

8. Как изменится период обращения заряженной частицы в циклотроне при увеличении её скорости в 2 раза? (V << c).

1) Увеличится в 2 раза; 2) Увеличится в 2 раза;

3) Увеличится в 16 раз; 4) Не изменится.

9. Какой формулой определяется модуль индукции магнитного поля, созданного в центре кругового тока с радиусом окружности R ?

1)
2)
3)
4)

10. Сила тока в катушке равна I . Какой из формул определяется модуль индукции магнитного поля в середине катушки длиной l c числом витков N ?

1)
2)
3)
4)

Лабораторная работа №

Определение горизонтальной составляющей индукции магнитного поля Земли.

Краткая теория к лабораторной работе.

Магнитное поле это материальная среда, передающая так называемые магнитные взаимодействия. Магнитное поле является одной из форм проявления электромагнитного поля.

Источниками магнитных полей являются движущиеся электрические за­ряды, проводники с током и переменные электрические поля. Порождаясь дви­жущимися зарядами (токами), магнитное поле, в свою очередь, действует толь­ко на движущиеся заряды (токи), на неподвижные же заряды оно действия не оказывает.

Основной характеристикой магнитного поля является вектор магнитной индукции :

Модуль вектора магнитной индукции численно равен максимальной си­ле, действующей со стороны магнитного поля на проводник единичной длины, по которому протекает ток единичной силы. Вектор образует правую тройку с вектором силы и направлением тока. Таким образом, магнитная индукция это силовая характеристика магнитного поля.

Единицей магнитной индукции в СИ является Тесла (Тл).

Силовыми линиями магнитного поля называются воображаемые линии, в каждой точке которых касательные совпадают с направлением вектора магнитной индукции. Магнитные силовые линии всегда замкнуты, никогда не пересекаются.

Закон Ампера определяет силовое действие магнитного поля на проводник с током.

Если в магнитное поле с индукцией помещен проводник с током, то на каждый направленный по току элемент проводника действует сила Ампера, определяемая соотношением

.

Направление силы Ампера совпадает с направлением векторного произ­ведения
, т.е. она перпендикулярна плоскости, в которой лежат векторы и (рис.1).

Рис. 1. К определению направления силы Ампера

Если перпендикулярен , то направление силы Ампера можно определить по правилу левой руки: четыре вытянутых пальца направить по току, ладонь расположить перпендикулярно силовым линиям, тогда большой палец покажет направление силы Ампера. Закон Ампера положен в основу определения магнитной индукции, т.е. соотношение (1) следует из формулы (2), записанной в скалярном виде.

Сила Лоренца – это сила, с которой электромагнитное поле действует на движущуюся в этом поле заряженную частицу. Формула силы Лоренца была впервые получена Г. Лоренцем как результат обобщения опыта и имеет вид:

.

где
– сила, действующая на заряженную частицу в электрическом поле с напряженностью ;
сила, действующая на заряженную частицу в магнитном поле.

Формулу для магнитной составляющей силы Лоренца можно получить из закона Ампера, учитывая, что ток – это упорядоченное движение электрических зарядов. Если бы магнитное поле не действовало на движущиеся заряды, оно не оказывало бы действия и на проводник с током. Магнитная составляющая силы Лоренца определяется выражением:

.

Направлена эта сила перпендикулярно плоскости, в которой лежат векторы скорости и индукции магнитного поля ; её направление совпадает с направлением векторного произведения
для q > 0 и с направлением
для q >0 (рис. 2).

Рис. 2. К определению направления магнитной составляющей силы Лоренца

Если вектор перпендикулярен вектору , то направление магнитной составляющей силы Лоренца для положительно заряженных частиц можно найти по правилу левой руки, а для отрицательно заряженных частиц по правилу правой руки. Так как магнитная составляющая силы Лоренца всегда направлена перпендикулярно скорости , то работы по перемещению частицы она не совершает. Она может лишь изменять направление скорости , искривлять траекторию движения частицы, т.е. выполнять роль центростремительной силы.

Закон Био-Савара-Лапласа служит для расчёта магнитных полей (определения ), создаваемых проводниками с током.

Согласно закону Био-Савара-Лапласа, каждый направленный по току элемент проводника создаёт в точке, находящейся на расстоянии от этого элемента, магнитное поле, индукция которого определяется соотношением:

.

где
Гн/м – магнитная постоянная;µ – магнитная проницаемость среды.

Рис. 3. К закону Био-Савара-Лапласа

Направление
совпадает с направлением векторного произведения
, т.е.
перпендикулярен плоскости, в которой лежат векторы и. Одновременно
является касательной к силовой линии, направление которой можно определить по правилу буравчика: если поступательное движение острия буравчика направить по току, то направление вращения рукоятки определит направление силовой линии магнитного поля (рис. 3).

Чтобы найти магнитное поле, создаваемое всем проводником, нужно применить принцип суперпозиции полей:

.

Например, вычислим магнитную индукцию в центре кругового тока (рис. 4).

Рис. 4. К расчёту поля в центре кругового тока

Для кругового тока
и
, поэтому соотношение (5) в скалярной форме имеет вид:

Закон полного тока (теорема о циркуляции магнитной индукции) является ещё одним законом для расчёта магнитных полей.

Закон полного тока для магнитного поля в вакууме имеет вид:

.

где B l проекция на элемент проводника , направленный по току.

Циркуляция вектора магнитной индукции по любому замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром.

Теорема Остроградского-Гаусса для магнитного поля выглядит следующим образом:

.

где B n проекция вектора на нормаль к площадке dS .

Поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Характер магнитного поля следует из формул (9), (10).

Условием потенциальности электрического поля является равенство нулю циркуляции вектора напряженности
.

Потенциальное электрическое поле порождается неподвижными электрическими зарядами; силовые линии поля не замкнуты, начинаются на положительных зарядах и кончаются на отрицательных.

Из формулы (9) мы видим, что в магнитном поле циркуляция вектора магнитной индукции отлична от нуля, следовательно, магнитное поле потенциальным не является.

Из соотношения (10) следует, что магнитных зарядов, способных создавать потенциальные магнитные поля, не существует. (В электростатике аналогичная теорема тлеет вид
.

Магнитные силовые линии замыкаются сами на себя. Такое поле называется вихревым. Таким образом, магнитное поле – это вихревое поле. Направление силовых линий поля определяется правилом буравчика. У прямолинейного бесконечно длинного проводника с током силовые линии имеют вид концентрических окружностей, охватывающих проводник (рис. 3).


Действие магнитного поля на движущиеся заряды широко используется в современной технике и играет важную роль в природе. Приведем некоторые примеры.
Движение заряженной частицы в однородном магнитном поле
Наиболее простой случай движения заряженной частицы в магнитном поле - это движение в однородном магнитном поле с магнитной индукцией, перпендикулярной начальной скорости частицы (рис. 4.49). Рассмотрим это движение количественно.
Так как магнитное поле не меняет модуля скорости, то остается неизменным и модуль силы Лоренца. Эта сила перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы. Неизменность по модулю цент-ростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что радиус кривизны R плоской траектории частицы постоянен. Частица равномерно

движется по окружности радиусом R. Определим этот радиус. Согласно второму закону Ньютона
2
=qvB. (4.10.1)
Отсюда
(4.10.2)
Следовательно, измерив R при известных v и В, мы можем
q v
определить удельный заряд - = различных частиц.
171 J5K
Масс-спектрограф
С помощью магнитного поля можно разделять заряженные частицы по их удельным зарядам. Одновременно можно точно определять массы частиц. Разделение частиц осуществляется в приборах, называемых масс-спектрографами.

Источник частиц
Рис. 4.50
К насосу_
Батарея, создающая
ускоряющее [¦
напряжение
На рисунке 4.50 изображена принципиальная схема простейшего масс-спектрографа. Вакуумная камера прибора помещена в магнитное поле (вектор индукции Б перпендикулярен рисунку). Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории R. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.
Циклотрон
Покажем, используя формулу (4.10.2), что время прохождения данной частицей полуокружности не зависит от радиуса полуокружности и от скорости частицы. В самом деле,
т. е. At зависит только от свойств частицы и индукции поля.
Этот факт используется в циклотроне для ускорения заряженных частиц сравнительно небольшим электрическим по-лем в течение ряда циклов.
Циклотрон устроен следующим образом. Два электрода специальной формы - дуанты (напоминают полый цилиндр с крышками, разрезанный вдоль оси) находятся в камере, где поддерживается вакуум (рис. 4.51). Дуанты помещают между полюсами сильного магнита, и к ним подводится переменная разность потенциалов. В центре камеры между дуантами располагают источник заряженных частиц. В тот момент, когда между дуантами существует высокая разность потенциалов, электрическое поле в промежутке между ними ускоряет заряженные частицы.
Ускоренные частицы влетают во внутреннюю часть дуанта, где электрическое поле практически отсутствует. Двигаясь под действием силы Лоренца по окружности, заряженные час- X
"71 Генератор
переменного
напряжения

выходное
устройство Рис. 4.51

в
1
Экран
Электронный прожектор

Электронный луч Рис. 4.52
Ускоряющий анод-. Отклоняющая. система
Фокусирующие катушки тицы через половину оборота снова появляются в щели между дуантами. Те из частиц, которые двигались с подходящей ско-ростью, пройдут через щель как раз в тот момент (через половину периода изменения приложенного к дуантам напряжения), когда там электрическое поле успеет сменить свое направление на противоположное. Такие частицы снова ускоряются, описывают внутри другого дуанта полуокружность еще большего радиуса и снова в надлежащий момент подходят к ускоряющему промежутку и т. д.; но время прохождения полуокружности остается неизменным, так как оно не „зависит от скорости частицы. Остальные частицы ускоряются плохо или совсем не ускоряются. «Благоприятные» частицы описывают внутри циклотрона длинную многовитковую спираль, состоящую из полуокружностей. С помощью циклотронов протоны (ядра атома водорода) ускоряются до энергий в 10- 20 млн эВ.
Циклотроны и другие более мощные ускорители частиц находят широкое применение в ядерной физике и физике элементарных частиц. Изучая столкновения ускоренных частиц с частицами мишени, физики получают возможность исследовать строение микрочастиц, действующие между ними силы, взаимные превращения элементарных частиц. Об этом будет рассказано в дальнейшем.
Еще одно из применений силы Лоренца вам хорошо известно. Это перемещение электронного луча по экрану телевизионных трубок (кинескопов) с помощью магнитного поля, создаваемого особыми катушками (рис. 4.52).? Магнитный щит Земли
Магнитное поле Земли оказывает существенное влияние на поток заряженных частиц из космоса (космические лучи). Оно образует третий «защитный пояс» наряду с атмосферой и ионосферой. Магнитное поле не подпускает к Земле потоки космических частиц, если только их энергия не слишком велика. Лишь в области магнитных полюсов эти частицы беспрепятственно могут вторгаться в атмосферу. На большой высоте магнитное поле невелико, но захватывает громадные области пространства. Действуя на заряженную частицу длительное время, оно существенно изменяет ее траекторию. Вместо прямой линии получается спираль, навивающаяся на линии индукции поля (рис. 4.53). Иногда, правда, если скорость частицы велика, то она не успевает сделать даже одного витка и тогда можно говорить лишь об искривлении траектории.
На летящую вдоль линии индукции частицу сила Лоренца не действует. Вот почему частицы свободно могут приближаться к полюсам, откуда веером расходятся линии магнитной индукции.
Кроме того, магнитное поле Земли удерживает на большой высоте заряженные частицы не слишком больших энергий. Эти ореолы частиц, окружающих земной шар, называются радиационными поясами.

Большое влияние оказывает магнитное поле на движение заряженных частиц в космическом пространстве, частиц на поверхности Солнца и других звезд.
Сила Лоренца используется для расчета движения заряженных частиц в околоземном пространстве, в кинескопах телевизоров, ускорителях элементарных частиц и во многих других устройствах.
Магнитное поле действует только на движущиеся заряды. Поэтому в системе отсчета, движущейся вместе с электронами проводника, магнитная сила на электроны действовать не будет. Как же с точки зрения этой системы отсчета объяснить появление силы, действующей на проводник?

Для науки представляют огромную ценность полученные знания, которые в последствие могут найти своё практическое применение. Новые открытия не только расширяют исследовательские горизонты, но и ставят новые вопросы, проблемы.

Выделим основные открытия Ампера в области электромагнетизма:

1. Взаимодействия проводников с током

Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены и отталкиваются, если токи в них противонаправлены.

Закон Ампера гласит:

Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

F – сила взаимодействия двух параллельных проводников,

I1, I2 – величины токов в проводниках,

∆ℓ − длина проводников,

r – расстояние между проводниками.

Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесённого через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а, именно, количество заряда, переносимое через поперечное сечение проводника. На основании этого определения не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путём: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока – 1 А (1 ампер).

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой 2∙10-7 Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

2. Закон действия магнитного поля на проводник с током

Закон действия магнитного поля на проводник с током выражается, прежде всего, в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля. Угол поворота витка прямопропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током на некоторую постоянную, при неизменных условиях, величину.

I – сила тока,

М – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре (рис.1).

После открытия действия магнитного поля на проводник с током, Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 2), созданный в 1834 г. русским электротехником Б. С. Якоби.

Рассмотрим упрощённую модель двигателя, которая состоит из неподвижной части, с закреплёнными на ней магнитами – статор. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов. Если подключить двигатель к источнику постоянного тока в цепь с вольтметром, то при замыкании цепи, рамка с током придёт во вращение.

В 1269 г. французский естествоиспытатель Пьер Мари Кур написал труд под названием "Письмо о магните". Основной целью Пьера Мари Кура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки не известно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось её разогнать до скорости 4,5 км/ч.

Необходимо упомянуть ещё об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведёт себя подобно постоянному магниту, а это значит – можно сконструировать электромагнит – устройство, мощность которого можно регулировать.

Именно Амперу пришла идея о том, что комбинацией проводников и магнитных стрелок можно создать устройство, которое предаёт информацию на расстояние. Идея телеграфа возникла в первые же месяцы после открытия электромагнетизма. Однако широкое распространение электромагнитный телеграф приобрёл после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется "Азбука Морзе" (рис. 3).

Математик Гаусс, когда познакомился с исследованиями Ампера, предложил создать оригинальную пушку (рис. 4), работающую на принципе действия магнитного поля на железный шарик – снаряд.

Необходимо обратить внимание на то, в какую историческую эпоху были сделаны эти открытия. В первой половине XIX века Европа семимильными шагами шла по пути промышленной революции – это благодатное время для научно-исследовательских открытий и быстрого внедрения их в практику. Ампер, несомненно, внёс весомый вклад в этот процесс, дав цивилизации электромагниты, электродвигатели и телеграф, которые до сих пор находят широкое применение.

Выделим основные открытия Лоренца.

Лоренц установил, что магнитное поле действует на движущуюся в нём частицу, заставляя её двигаться по дуге окружности:

Поскольку сила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику как отношение заряда к массе – удельный заряд .

Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь-то электрон, протон или любая другая частица. Таким образом, учёные получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия и бета-частицы – электроны. В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. На этом принципе разработан Большой адронный коллайдер. Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

Для того чтобы охарактеризовать влияние учёного на технический прогресс вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, её скорости и заряда. Таким образом, получаем возможность классифицировать заряжённые частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках и остаётся только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряжённых частиц. Именно по такой схеме работает масс-анализатор. Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

Это ещё не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью учёных и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B ,

Выражение для силы Ампера можно записать в виде:

Эту силу называют силой Лоренца . Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции . Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Период обращения частицы в однородном магнитном поле равен

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R .

Угловая скорость движения заряженной частицы по круговой траектории

называется циклотронной частотой . Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах - ускорителях тяжелых частиц (протонов, ионов). Принципиальная схема циклотрона приведена на рис. 1.18.3.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов ). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте . Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах - устройствах, с помощью которых можно измерять массы заряженных частиц - ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20 Ne и 22 Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S , проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей , в котором частицы движутся в скрещенных однородных электрическом и магнитном полях . Электрическое поле создается между пластинами плоского конденсатора, магнитное поле - в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B .

Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле . Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = m υ / qB" . Измеряя радиусы траекторий при известных значениях υ и B" можно определить отношение q / m . В случае изотопов (q 1 = q 2) масс-спектрометр позволяет разделить частицы с разными массами.

Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10 -4 .

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ + вектора а шаг спирали p - от модуля продольной составляющей υ || (рис. 1.18.5).

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы , то есть полностью ионизированного газа при температуре порядка 10 6 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 1.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке ).

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 1.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что северный магнитный полюс Земли сейчас находится вблизи северного географического полюса и постепенно перемещается. Природа земного магнетизма до сих пор не изучена.