Действия над положительными действительными числами. Метод координат в пространстве

Действительные числа

Множество действительных чисел состоит из множества рациональных и иррациональных чисел.

Обозначается множество действительных чисел R. Так же множество действительных чисел можно обозначить промежутком (-?; +?)

Замечание 1

Вспомним, что любое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной десятичной периодической дроби, а любое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби, значит будет верно следующее утверждение:

Множество конечных и бесконечных десятичных дробей составляют множество действительных чисел.

Геометрическая модель действительных чисел

Геометрической моделью действительных чисел является координатная прямая. Это связано с тем, что каждая точка числовой имеет координату, которая будет являться действительным числом.

Сравнение действительных чисел

Для того чтобы сравнить действительные числа , можно воспользоваться или геометрической моделью действительных чисел или провести сравнение аналитически.Рассмотрим данные способы.

Для того чтоюы сравнить два действительных числа, достаточно найти разность этих чисел и сравнить ее с нулем. Если разность будет положительна, то первое число(уменьшаемое разности) будет больше второго числа(вычитаемого разности); если же разность будет отрицательна, то наоборот

Пример 1

Сравнить числа $\frac{18}{5}$ и $4$.

Решение. Для сравнения этих чисел составим и вычислим их разность

$\frac{18}{5} - 4 =\ \frac{18}{5}-\ \frac{20}{5}=-\frac{2}{5}$

для вычисления разности мы приводили данные числа к общему знаменателю, в данном случае общий знаменатель равен $5$. После этого используя правило вычитания дробей с одинаковым знаменателем мы вычли из числителя первой дроби числитель второй дроби, а знаменатель оставили прежним.

Теперь обратим вниманеи, что разность этих чисел получилась отрицательна, значит первое число(уменьшаемое) меньше второго(вычитаемого), т. е.

$\frac{18}{5}$ ‹ 4

Для того чтобы сравнить числа с помощью числовой прямой, надо определить местоположение точек, координаты которых будут соответствовать сравниваемым действительным числам. То число, которое больше будет располагаться на координатной прямой правее, то, которое меньше левее

Пример 2

Сравнить числа $\frac{18}{5}$ и 4 с помощью координатной прямой

Решение. Для сравнения этих чисел сначала определим местоположение точек, координаты которых будут соответствовать сравниваемым действительным числам, т е числам $\frac{18}{5}$ и $4$.

Для этого сначала преобразуем неправильную дробь $\frac{18}{5}$ путем выделения целой части, тогда получим

\[\frac{18}{5}=3\frac{3}{5}\]

Теперь на координатной прямой отметим точки, координаты которых будут соответственно равны $3\frac{3}{5}$ и $4$.

Рисунок 1.

Теперь становится очевидно, что точка с координатой 4 лежит правее чем точка с координатой $3\frac{3}{5}$ , значит число 4 больше чем $3\frac{3}{5}$ .

Мы видим, что вне зависимости от выбранного способа сравнения результат получен одинаковый.

С действительными числами можно осуществлять все арифметические операции: сложение, вычитание, умножение и деление. На практике часто, для того чтобы не допустить ошибку перед тем, как производить действия надо определить знаки исходных чисел, т.е. определить положительными или отрицательным является каждое из чисел

Сложение действительных чисел

Для того чтобы найти сумму действительных чисел с одинаковыми знаками, надо сложить модули этих чисел и перед полученной суммой поставить из общий знак.

Например, найдем сумму чисел $375$ и $863$. Очевидно, что оба числа положительны, тогда $375+863=/375/+/863/=1238$.Полученная сумма будет иметь знак $«+»$, т к оба числа имели этот общий знак, т.е. были положительны

Теперь найдем сумму чисел $-375$ и $-863$. Оба числа отрицательны, значит сумма будет так же иметь знак $«-»$

$-375+(-863)= - (/375/+/863/)= -1238$

Для того чтобы найти сумму чисел с разными знаками, надо из числа большего по модуля вычесть число меньшее по модулю и перед получившейся разностью поставить знак числа большего по модулю.

Например, найдем сумму чисел $-657$ и $343$. Сначала вычислим модули данных чисел

Теперь согласно правилу произведем дальнейший расчет

$657-343=314$, тогда

$-657+ 343= - 314$

При вычисления произведения чисел необходимо придерживаться следующих правил:

    при умножении и делении положительных чисел полученное число будет положительным

    Например, найдем произведение $\sqrt{13}\cdot \sqrt{7}$

    Оба числа положительны, значит и произведение этих чисел будет положительным. Действительно $\sqrt{13}\cdot \sqrt{7}=\sqrt{91}$

    при умножении и делении отрицательных чисел полученное число будет положительным

    Например, найдем произведение $-\frac{3}{4}\cdot \left(-\frac{6}{8}\right)=\frac{18}{32}=\frac{9}{16}$

    при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

    Вычислим частное $\frac{16}{5}$ и $(-4)$

    $\frac{16}{5}$ : (-4)= = $\frac{16}{5\cdot 4}=-\frac{4}{5}$

1. Понятие иррационального числа. Бесконечные десятичные непериодические дроби. Множество действительных чисел.

2. Арифметические действия над действительными числами. Законы сложения и умножения.

3. Расширение действительных положительных чисел до множества действительных чисел. Свойства множества действительных чисел.

4. Приближенные числа.Правила округления действительных чисел и действия с приближенными числами. Вычисления с помощью микрокалькулятора.

5. Основные выводы

Действительные числа

Одним из источников появления десятичных дробей является деле­ние натуральных чисел, другим - измерение величин. Выясним, на­пример, как могут получиться десятичные дроби при измерении дли­ны отрезка.

Пусть х - отрезок, длину которого надо измерить, е - единичный отрезок. Длину отрезка х обозначим буквой X , а длину отрезка е - буквой Е . Пусть отрезок х состоит из n отрезков, равных е ₁ и отрезка х ₁, который короче отрезка е (рис. 130), т.е. n Е < X < (n + 1) ∙Е . Числа n и n + 1 есть приближенные значения длины от­резка х при единице длины Е с недос­татком и с избытком с точностью до 1.


Чтобы получить ответ с большей точностью, возьмем отрезок е ₁ - деся­тую часть отрезка е и будем уклады­вать его в отрезке х ₁. При этом возможны два случая.

1) Отрезок е₁ уложился в отрезке х ₁ точно n раз. Тогда длина n от­резка х выражается конечной десятичной дробью: X = (n + n ₁\10) ∙Е= n, n ₁∙Е. Например, X = 3,4∙Е.

2) Отрезок х ₁ оказывается состоящим из n отрезков, равных е ₁, и отрезка х ₂, который короче отрезка е ₁. Тогда n , n ₁∙Е < X < n , n n ₁′∙Е , где n , n ₁ и n , n n ₁′ - приближенные значения длины отрезка х с не­достатком и с избытком с точностью до 0,1.

Ясно, что во втором случае процесс измерения длины отрезка х можно продолжать, взяв новый единичный отрезок е ₂ - сотую часть отрезка е .

На практике этот процесс измерения длины отрезка на каком-то этапе закончится. И тогда результатом измерения длины отрезка бу­дет либо натуральное число, либо конечная десятичная дробь. Если же представить этот процесс измерения длины отрезка в идеале (как и делают в математике), то возможны два исхода:

1)На k-том шагу процесс измерения окончится. Тогда длина от­резках выразится конечной десятичной дробью вида n , n ₁… n k.

2) Описанный процесс измерения длины отрезка х продолжается бесконечно. Тогда отчет о нем можно представить символом n , n ₁… n k..., который называют бесконечной десятичной дробью.

Как убедиться в возможности второго исхода? Для этого доста­точно произвести измерение длины такого отрезка, для которого известно, что его длина выражена, например, рациональным числом 5 . Если бы оказалось, что в результате измерения длины такого отрезка получается конечная десятичная дробь, то это означало бы, что число 5 можно представить в виде конечной десятичной дро­би, что невозможно: 5 = 5,666....

Итак, при измерении длин отрезков могут получаться бесконеч­ные десятичные дроби. Но всегда ли эти дроби периодические? От­вет на этот вопрос отрицателен: существуют отрезки, длины кото­рых нельзя выразить бесконечной периодической дробью (т.е. по­ложительным рациональным числом) при выбранной единице дли­ны. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.

Теорема . Если единицей длины является длина стороны квадра­та, то длина диагонали этого квадрата не может быть выражена по­ложительным рациональным числом.

Доказательство . Пусть длина стороны квадрата выражается числом 1. Предположим противное тому, что надо доказать, т.е., что длина диагонали АС квадрата АВСВ выражается несократимой дро­бью . Тогда по теореме Пифагора, выполнялось бы равенство

1²+ 1² = . Из него следует, что m² = 2n². Значит, m² - четное число, тогда и число m - четно (квадрат нечетного числа не может быть чет­ным). Итак, m = 2р. Заменив в равенстве m² = 2n² число m на 2р, получаем, что 4р² = 2n², т.е. 2р² = n². Отсюда следует, что n² четно, сле­довательно, n - четное число. Таким образом, числа m и n четны, значит, дробь можно сократить на 2, что противоречит предположению о ее несократимости. Установленное противоречие доказывает, что если единицей длины является длина стороны квадрата, то длину диагонали этого квадрата нельзя выразить рациональным числом.

Из доказанной теоремы следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной едини­це длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.

Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональных чисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные непериодические десятичные дроби - это и есть положительные иррациональные числа.

Мы пришли к понятию положительного иррационального числа че­рез процесс измерения длин отрезков. Но иррациональные числа можно получить и при извлечении корней из некоторых рациональных чисел. Так √2 , √7, √24 - это иррациональное числа. Иррациональными являются также lg 5, sin 31, числа π =3,14..., е = 2,7828... и другие.

Множество положительных иррациональных чисел обозначают символом J+.

Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R+. Таким обра­зом, Q+ ∪ J + = R+. При помощи кругов Эйлера эти множества изображены на рисунке 131.

Любое положительное действительное чис­ло может быть представлено бесконечной деся­тичной дробью - периодической (если оно является рациональным), либо непериодической (если оно является иррациональным).

Действия над положительными действительными числами сво­дятся к действиям над положительными рациональными числами.

Сложение и умножение положительных действительных чисел обладает свойствами коммутативности и ассоциативности, а умно­жения дистрибутивно относительно сложения и вычитания.

С помощью положительных действительных чисел можно выра­зить результат измерения любой скалярной величины: длины, пло­щади, массы и т.д. Но на практике часто нужно выразить числом не результат измерения величины, а ее изменение. Причем ее изменение может происходить различно - она может увеличиваться, умень­шаться или оставаться неизменной. Поэтому, чтобы выразить изме­нение величины, кроме положительных действительных чисел нуж­ны иные числа, а для этого необходимо расширить множество R+, присоединив к нему число 0 (нуль) и отрицательные числа.

Объединение множества положительных действительных чисел с множеством отрицательных действительных чисел и нулем есть множество R всех действительных чисел.

Сравнение действительных чисел и действия над ними выполняют­ся по правилам, известным нам из школьного курса математики.

Упражнения

1. Опишите процесс измерения длины отрезка, если отчет о нем представляется дробью:

а) 3,46; б) 3,(7); в) 3,2(6).

2. Седьмая часть единичного отрезка укладывается в отрезке а 13 раз. Конечной или бесконечной дробью будет представлена длина этого отрезка? Периодической или непериодической?

3. Дано множество: {7; 8 ; √8; 35,91; -12,5; -√37; 0; 0,123; 4136}.

Можно ли разбить его на два класса: рациональные и иррациональные?

4. Известно, что любое число можно изобразить точкой на коорди­натной прямой. Исчерпывают ли точки с рациональными координатами всю координатную прямую? А точки с действительными координатами?

99. Основные выводы § 19

При изучении материала данного параграфа мы уточнили многие известные из школьного курса математики понятия, связав их с изме­рением длины отрезка. Это такие понятия, как:

дробь (правильная и неправильная);

равные дроби;

несократимая дробь;

положительное рациональное число;

равенство положительных рациональных чисел;

смешанная дробь;

бесконечная периодическая десятичная дробь;

бесконечная непериодическая десятичная дробь;

иррациональное число;

действительное число.

Мы выяснили, что отношение равенства дробей есть отношение эквивалентности и воспользовались этим, определяя понятие положи­тельного рационального числа. Выяснили также, как связано с изме­рением длин отрезков сложение и умножение положительных рацио­нальных чисел и получили формулы для нахождения их суммы и произведения.

Определение отношения «меньше» на множестве Q+ позволило назвать его основные свойства: оно упорядоченное, плотное, в нем нет наименьшего и наибольшего числа.

Мы доказали, что множество Q+ положительных рациональных чисел удовлетворяет всем тем условиям, которые позволяют его считать расширением множества N натуральных чисел.

Введя десятичные дроби, мы доказали, что любое положительное рациональное число представимо бесконечной периодической десятичной дробью.

Бесконечные непериодические дроби считают записями иррациональных чисел.

Если объединить множества положительных рациональных и иррациональных чисел, то получаем множество положительных действительных чисел: Q+ ∪ J + = R+.

Если к положительным действительным числам присоединить отрицательные действительные числа и нуль, то получаем множество R всех действительных чисел.

Определение

Множество действительных чисел является объединением множеств рациональных и иррациональных чисел. Буква R является обозначением рассматриваемого множества. Множество R представляется промежутком вида (- ∞ ; + ∞).

Замечание

Стоит заметить, что любое рациональное число всегда может принимать вид бесконечной десятичной периодической дроби, любое иррациональное число бесконечной десятичной непериодической дроби, исходя из вышесказанного следует вывод, что множество, включающее в себя конечные и бесконечные периодические и непериодические десятичные дроби принадлежит множеству R .

Yandex.RTB R-A-339285-1

Геометрическая модель действительных чисел

Координатная прямая непосредственно представляет собой геометрическую модель множества R . Следовательно, каждой точке на координатной прямой всегда можно поставить в соответствие некоторое действительное число.

Сравнение действительных чисел

Сравнение действительных чисел можно производить воспользовавшись либо геометрической моделью, либо их можно сравнивать аналитически. Рассмотрим оба способа сравнения. На координатной прямой расположено в произвольном порядке два числа. Определить, какое из них больше достаточно просто. Большее число всегда находится правее другого.

Аналитически определись какое число является большим или меньшим какого либо числа тоже возможно, для этого достаточно найти разность этих чисел и затем сравнить ее с нулем. Если полученная разность будет иметь положительный знак, то первое число (уменьшаемое разности) будет больше чем второе число (вычитаемое разности); если же разность будет иметь отрицательный знак, то первое число (уменьшаемое разности) будет меньше, чем второе число (вычитаемое разности).

Ниже рассмотрим примеры, демонстрирующие оба способа сравнения:

Пример 1

Сравнить числа f r a c 185 и 4 .

Решение

Для сравнения данных чисел найдем разность этих чисел.

f r a c 185 - 4 = f r a c 185 - f r a c 205 = - f r a c 25 чтобы вычислить данную разность, надо привести данные числа к общему знаменателю, воспользовавшись правилом приведения к общему знаменателю. Проделав данную операцию, видим, что знаменатель в данном примере равен 5. После этого опираясь на правило вычитания дробей с одинаковым знаменателем, вычтем из числителя первой дроби числитель второй дроби, а знаменатель оставим прежним. Обратим внимание, что разность приведенных чисел является отрицательной, значит первое число (уменьшаемое) меньше второго (вычитаемого), т. е. f r a c 185 < 4 .

Пример 2

Сравнить числа f r a c 185 и 4 с помощью координатной прямой.

Решение

Чтобы сравнить данные числа, следует определить геометрическое место точек этих чисел на координатной прямой. Т.е. сравниваемые действительные числа будут соответствовать определенным координатам на координатной прямой, а именно числам f r a c 185 и 4 . Для начала преобразуем неправильную дробь frac185 в смешанное число т.е. выделим целую часть, следовательно, получим 3 f r a c 35 .

Далее на координатной прямой отметим точки, координаты которых будут равны 3 f r a c 35 и 4 . f r a c 185 содержит в себе 3 целых, значит данное число расположено левее 4. Как уже известно, меньшее число лежит левее, исходя из этого напрашивается вывод, что f r a c 185 < 4 .

Можно сделать вывод, что вне зависимости от внешнего вида сравнения действительных чисел можно реализовать все арифметические операции, а именно сложение, вычитание, умножение и деление. Однако перед выполнением действий с действительными числами следует учитывать исходные знаки данных чисел т.е. определить является каждое число положительными или отрицательными.

Сложение действительных чисел

Чтобы сложить два действительных числа с одинаковыми знаками следует сначала сложить их модули и затем перед суммой поставить их общий знак. Например:

(+ 8) + (+ 2) = + 10 ; (- 5) + (- 4) = - 9 .

Чтобы сложить два действительных числа с разными знаками следует для начала обратить внимание на знак числа, если знак одного из чисел отрицательный, тогда это число следует вычитать из другого, если положительный – сложить с другим. Далее нужно сложить либо вычесть данные числа и поставить знак большего модуля. Например

(+ 2) + (- 7) = - 5 ; (+ 10) + (- 4) = + 6 .

Вычитание действительных чисел

Вычитание действительных чисел можно представить в виде сложения: a - b = a + (- b) , то есть, чтобы вычесть из числа а число b, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.

Например: (+ 5) - (- 7) = (+ 3) + (+ 7) = 12 ; (+ 6) - (+ 4) = (+ 6) + (- 4) = + 2 .

Умножение действительных чисел

Чтобы умножить (разделить) два действительных числа необходимо умножить (разделить) их модули. И затем перед результатом поставить знак по приведенному в таблице правилу знаков ниже.

При умножении и делении действительных чисел желательно помнить пословицу: «Друг моего друга - мой друг, враг моего врага - мой друг, друг моего врага - мой враг, враг моего друга - мой враг».

Например:

(+ 2) (+ 7) = + 14 ; (- 2) (+ 6) = - 12 ; (- 2) (- 8) = 16 ;

Свойства арифметических действий над действительными числами (основные законы алгебры)

В алгебре существуют так называемые основные законы алгебры. Они практически всегда принимаются за истину (случаи ложности данных законов не рассматриваем) и сформулированы в виде следующих свойств-тождеств:

  1. a + b = b + a ;
  2. (a + b) + c = a + (b + c) ;
  3. a + 0 = a ;
  4. a + (- a) = 0 ;
  5. a b = b a ;
  6. (a b) c = a (b c) ;
  7. a (b + c) = a b + a c ;
  8. a · 1 = a ;
  9. a · 0 = 0 ;
  10. a · 1 a = 1 , (a ≠ 0) .

Свойства 1 и 5 выражают переместительный закон (коммутативность) сложения и умножения соответственно;

Cвойства 2 и 6 выражают сочетательный закон (ассоциативность);

Cвойство 7 - распределительный закон (дистрибутивность) умножения относительно сложения;

Cвойства 3 и 8 указывают на наличие нейтрального элемента для сложения и умножения соответственно;

Cвойства 4 и 10 – на наличие нейтрализующего элемента соответственно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Но всегда ли эти дроби периодические? Ответ на этот вопрос отрицателен: существуют отрезки, длины которых нельзя выразить бесконечной периодической дробью (т.е. положительным рациональным числом) при выбранной единице длины. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.


Если единицей длины является длина стороны квадрата, то длина диагонали этого квадрата не может быть выражена положительным рациональным числом.


Из данного утверждения следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной единице длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.


Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональных чисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные периодические десятичные дроби - это и есть положительные иррациональные числа.


Множество положительных иррациональных чисел обозначают символом J+.


Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R+.


Любое положительное действительное число может быть представлено бесконечной десятичной дробью - периодической (если оно является рациональным) либо непериодической (если оно является иррациональным).


Действия над положительными действительными числами сводятся к действиям над положительными рациональными числами. В связи с этим для каждого положительного действительного числа вводят его приближенные значения по недостатку и по избытку.


Пусть даны два положительных действительных числа a и b , an и bn - соответственно их приближения по недостатку, a¢n и b¢n - их приближения по избытку.


Суммой действительных чисел a и b a + b n удовлетворяет неравенству an + bn a + b < a¢n + b¢n.


Произведением действительных чисел a и b называется такое действительное число a × b , которое при любом натуральном n удовлетворяет неравенству an × bn a b × b¢n.


Разностью положительных действительных чисел a и b называется такое действительное число с , что a = b + с.


Частным положительных действительных чисел a и b называется такое действительное число с , что a = b × с.


Объединение множества положительных действительных чисел с множеством отрицательных действительных чисел и нулем есть множество R всех действительных чисел.


Сравнение действительных чисел и действия над ними выполняются по правилам, известным из школьного курса математики.


Задача 60. Найти три первых десятичных знака суммы 0,333… + 1,57079…


Решение. Возьмем десятичные приближения слагаемых с четырьмя десятичными знаками:


0,3333 < 0,3333… < 0,3334


1,5707 < 1,57079… < 1,5708.


Складываем: 1,9040 ≤ 0,333… + 1,57079… < 1,9042.


Следовательно, 0,333… + 1,57079…= 1,904…


Задача 61. Найти два первых десятичных знака произведения a × b , если а = 1,703604… и b = 2,04537…


Решение. Берем десятичные приближения данных чисел с тремя десятичными знаками:


1,703 < a <1,704 и 2,045 < b < 2,046. По определению произведения действительных чисел имеем:


1,703 × 2,045 ≤ a × b < 1,704 × 2,046 или 3,483 ≤ ab < 3,486.


Таким образом, a × b = 3,48…


Упражнения для самостоятельной работы


1. Запишите десятичные приближения иррационального числа π = 3,1415… по недостатку и по избытку с точностью до:


а) 0,1; б) 0,01; в) 0,001.


2. Найдите первые три десятичных знака суммы a + b , если:


а) а = 2,34871…, b = 5,63724…; б) а = , b = π; в) а = ; b = ; г) а = ; b = .