Детерминированные и стохастические экономические модели. Факторы способствующие выработке эффективных стратегических управленческих решений

Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.

Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели - например - прибыль.

Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.

Детерминированные и стохастические системы

Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.

Стохастические системы - системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.

В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.

Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.

Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем - способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы изолированны от внешней среды (с точностью принятой в модели).

Хорошо и плохо организованные системы

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

Математические модели в экономике и программировании

1. Детерминированные и вероятностные математические модели в экономике. Преимущества и недостатки

Методы исследования экономических процессов базируются на использовании математических - детерминированных и вероятностных - моделей, представляющих изучаемый процесс, систему или вид деятельности. Такие модели дают количественную характеристику проблемы и служат основой для принятия управленческого решения при поисках оптимального варианта. Насколько обоснованы эти решения, являются ли они лучшими из возможных, учтены ли и взвешены все факторы, определяющие оптимальное решение, каков критерий, позволяющий определить, что данное решение действительно наилучшее, - таков круг вопросов, имеющих большое значение для руководителей производства, и ответ на которые можно найти с помощью методов исследования операций [Чесноков С. В. Детерминационный анализ социально-экономических данных. - М.: Наука, 1982, стр. 45].

Одним из принципов формирования системы управления является метод кибернетических (математических) моделей. Математическое моделирование занимает промежуточное положение между экспериментом и теорией: нет необходимости строить реальную физическую модель системы, ее заменит математическая модель. Особенность формирования системы управления заключается в вероятностном, статистическом подходе к процессам управления. В кибернетике принято, что любой процесс управления подвержен случайным, возмущающим воздействиям. Так, на производственный процесс оказывают влияния большое количество факторов, учесть которые детерминированным образом невозможно. Поэтому считается, что на производственный процесс воздействуют случайные сигналы. В силу этого планирование работы предприятия может быть только вероятностным.

По этим причинам часто, говоря о математическом моделировании экономических процессов, имеют в виду именно вероятностные модели.

Опишем каждый из типов математических моделей.

Детерминированные математические модели характеризуются тем, что описывают связь некоторых факторов с результативным показателем как функциональную зависимость, т. е. в детерминированных моделях результативный показатель модели представлен в виде произведения, частного, алгебраической суммы факторов, или в виде любой другой функции. Данный вид математических моделей наиболее распространен, поскольку, будучи достаточно простыми в применении (по сравнению вероятностными моделями), позволяет осознать логику действия основных факторов развития экономического процесса, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Вероятностные математические модели принципиально отличаются от детерминированных тем, что в вероятностных моделях взаимосвязь между факторами и результирующим признаком вероятностная (стохастическая): при функциональной зависимости (детерминированные модели) одному и тому же состоянию факторов соответствует единственное состояние результирующего признака, тогда как в вероятностных моделях одному и тому же состоянию факторов соответствует целое множество состояний результирующего признака [Толстова Ю. Н. Логика математического анализа экономических процессов. - М.: Наука, 2001, с. 32-33].

Преимущество детерминированных моделей в простоте их применения. Основной недостаток - низкая адекватность реальной действительности, т. к., как было отмечено выше, большинство экономических процессов носит вероятностный характер.

Достоинством вероятностных моделей является то, что они, как правило, больше соответствуют реальной действительности (более адекватны), чем детерминированные. Однако, недостатком вероятностных моделей является сложность и трудоемкость их применения, так что во многих ситуациях достаточно бывает ограничиться детерминированными моделями.

2. Постановка задачи линейного программирования на примере задачи о пищевом рационе

Впервые постановка задачи линейного программирования в виде предложения по составлению оптимального плана перевозок; позволяющего минимизировать суммарной километраж, была дана в работе советского экономиста А. Н. Толстого в 1930 году.

Систематические исследования задач линейного программирования и разработка общих методов их решения получили дальнейшее развитие в работах российских математиков Л. В. Канторовича, В. С. Немчинова и других математиков и экономистов. Также методам линейного программирования посвящено много работ зарубежных и, прежде всего, американских ученых.

Задача линейного программирования состоит в максимизации (минимизации) линейной функции.

при ограничениях

причем все

Замечание. Неравенства могут быть и противоположного смысла. Умножением соответствующих неравенств на (-1) можно всегда получить систему вида (*).

Если число переменных системы ограничений и целевой функции в математической модели задачи равно 2, то её можно решить графически.

Итак, надо максимизировать функцию к удовлетворяющей системе ограничений.

Обратимся к одному из неравенств системы ограничений.

С геометрической точки зрения все точки, удовлетворяющие этому неравенству, должны либо лежать на прямой , либо принадлежать одной из полуплоскостей, на которые разбивается плоскость этой прямой. Для того чтобы выяснить это, надо проверить какая из них содержит точку ().

Замечание 2. Если , то проще взять точку (0;0).

Условия неотрицательности также определяют полуплоскости соответственно с пограничными прямыми . Будем считать, что система неравенств совместна, тогда полуплоскости, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты которых являются решением данной системы - это множество допустимых решений. Совокупность этих точек (решений) называется многоугольником решений. Он может быть точкой, лучом, многоугольником, неограниченной многоугольной областью. Таким образом, задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция принимает максимальное (минимальное) значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху (снизу). При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим прямую (где h - некоторая постоянная). Чаще всего берется прямая . Остается выяснить направление движения данной прямой. Это направление определяется градиентом (антиградиентом) целевой функции.

Вектор в каждой точке перпендикулярен прямой , поэтому значение f будет возрастать при перемещении прямой в направлении градиента (убывать в направлении антиградиента). Для этого параллельно прямой проводим прямые, смещаясь в направлении градиента (антиградиента).

Эти построения будем продолжать до тех пор, пока прямая не пройдет через последнюю вершину многоугольника решений. Эта точка определяет оптимальное значение.

Итак, нахождение решения задачи линейного программирования геометрическим методом включает следующие этапы:

Строят прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств.

Находят полуплоскости, определяемые каждым из ограничений задачи.

Находят многоугольник решений.

Строят вектор .

Строят прямую .

Строят параллельные прямые в направлении градиента или антиградиента, в результате чего находят точку, в которой функция принимает максимальное или минимальное значение, либо устанавливают неограниченность сверху (снизу) функции на допустимом множестве.

Определяют координаты точки максимума (минимума) функции и вычисляют значение целевой функции в этой точке.

Задача о рациональном питании (задача о пищевом рационе)

Постановка задачи

Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков - не менее b1 единиц; углеводов - не менее b2 единиц; жиров - не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) - какие-то определённые числа; первый индекс указывает номер продукта, второй - номер элемента (белки, углеводы, жиры).

Стохастическая модель описывает ситуацию, когда присутствует неопределенность. Другими словами, процесс характеризуется некоторой степенью случайности. Само прилагательное «стохастический» происходит от греческого слова «угадывать». Поскольку неопределенность является ключевой характеристикой повседневной жизни, то такая модель может описывать все что угодно.

Однако каждый раз, когда мы ее применяем, будет получаться разный результат. Поэтому чаще используются детерминированные модели. Хотя они и не являются максимально приближенными к реальному положению вещей, однако всегда дают одинаковый результат и позволяют облегчить понимание ситуации, упрощают ее, вводя комплекс математических уравнений.

Основные признаки

Стохастическая модель всегда включает одну или несколько случайных величин. Она стремится отразить реальную жизнь во всех ее проявлениях. В отличие от стохастическая не имеет цели все упростить и свести к известным величинам. Поэтому неопределенность является ее ключевой характеристикой. Стохастические модели подходят для описания чего угодно, но все они имеют следующие общие признаки:

  • Любая стохастическая модель отражает все аспекты проблемы, для изучения которой создана.
  • Исход каждого из явлений является неопределенным. Поэтому модель включает вероятности. От точности их расчета зависит правильность общих результатов.
  • Эти вероятности можно использовать для прогнозирования или описания самих процессов.

Детерминированные и стохастические модели

Для некоторых жизнь представляется чередой для других - процессов, в которых причина обуславливает следствие. На самом же деле для нее характерна неопределенность, но не всегда и не во всем. Поэтому иногда трудно найти четкие различия между стохастическими и детерминированными моделями. Вероятности являются достаточно субъективным показателем.

Например, рассмотрим ситуацию с подбрасыванием монетки. На первый взгляд кажется, что вероятность того, что выпадет «решка», составляет 50%. Поэтому нужно использовать детерминированную модель. Однако на деле оказывается, что многое зависит от ловкости рук игроков и совершенства балансировки монетки. Это означает, что нужно использовать стохастическую модель. Всегда есть параметры, которые мы не знаем. В реальной жизни причина всегда обуславливает следствие, но существует и некоторая степень неопределенности. Выбор между использованием детерминированной и стохастической моделей зависит от того, чем мы готовы поступиться - простотой анализа или реалистичностью.

В теории хаоса

В последнее время понятие о том, какая модель называется стохастической, стало еще более размытым. Это связано с развитием так называемой теории хаоса. Она описывает детерминированные модели, которые могут давать разные результаты при незначительном изменении исходных параметров. Это похоже на введение в расчет неопределенности. Многие ученые даже допустили, что это уже и есть стохастическая модель.

Лотар Брейер изящно объяснил все с помощью поэтических образов. Он писал: «Горный ручеек, бьющееся сердце, эпидемия оспы, столб восходящего дыма - все это является примером динамического феномена, который, как кажется, иногда характеризуется случайностью. В реальности же такие процессы всегда подчинены определенному порядку, который ученые и инженеры еще только начинают понимать. Это так называемый детерминированный хаос». Новая теория звучит очень правдоподобно, поэтому многие современные ученые являются ее сторонниками. Однако она все еще остается мало разработанной, и ее достаточно сложно применить в статистических расчетах. Поэтому зачастую используются стохастические или детерминированные модели.

Построение

Стохастическая начинается с выбора пространства элементарных исходов. Так в статистике называют перечень возможных результатов изучаемого процесса или события. Затем исследователь определяет вероятность каждого из элементарных исходов. Обычно это делается на основе определенной методики.

Однако вероятности все равно являются достаточно субъективным параметром. Затем исследователь определяет, какие события представляются наиболее интересными для решения проблемы. После этого он просто определяет их вероятность.

Пример

Рассмотрим процесс построения самой простой стохастической модели. Предположим, мы кидаем кубик. Если выпадет «шесть» или «один», то наш выигрыш составит десять долларов. Процесс построения стохастической модели в этом случае будет выглядеть следующим образом:

  • Определим пространство элементарных исходов. У кубика шесть граней, поэтому могут выпасть «один», «два», «три», «четыре», «пять» и «шесть».
  • Вероятность каждого из исходов будет равна 1/6, сколько бы мы ни подбрасывали кубик.
  • Теперь нужно определить интересующие нас исходы. Это выпадение грани с цифрой «шесть» или «один».
  • Наконец, мы может определить вероятность интересующего нас события. Она составляет 1/3. Мы суммируем вероятности обоих интересующих нас элементарных событий: 1/6 + 1/6 = 2/6 = 1/3.

Концепция и результат

Стохастическое моделирование часто используется в азартных играх. Но незаменимо оно и в экономическом прогнозировании, так как позволяют глубже, чем детерминированные, понять ситуацию. Стохастические модели в экономике часто используются при принятии инвестиционных решений. Они позволяют сделать предположения о рентабельности вложений в определенные активы или их группы.

Моделирование делает финансовое планирование более эффективным. С его помощью инвесторы и трейдеры оптимизируют распределение своих активов. Использование стохастического моделирования всегда имеет преимущества в долгосрочной перспективе. В некоторых отраслях отказ или неумение его применять может даже привести к банкротству предприятия. Это связано с тем, что в реальной жизни новые важные параметры появляются ежедневно, и если их не может иметь катастрофические последствия.

Prev Next

Функциональная департаментализация

Функциональная департаментализация - это процесс деления организации на отдельные подразделения, каждое из которых имеет четко определенные функции и обязанности. Она более характерна для малопродуктовых сфер деятельности: для...

Эффективное осуществление контроля

Контроль должен быть своевременным и гибким, ориентированным на решение поставленных организацией задач и соответствующим им. Непрерывность контроля может быть обеспечена специально разработанной системой мониторинга хода реализации...

Факторы способствующие выработке эффективных стратегических управленческих решений.

Анализ непосредственного окруж:ения организации предполагает прежде всего анализ таких факторов, как покупатели, поставщики, конкуренты, рынок рабочей силы. При анализе внутренней среды основное внимание обращается на кадры,...

Обработка данных экспертизы

Разработка сценариев возможного развития ситуации требует соответствующей обработки данных, в том числе математической. В частности, обязательная обработка данных, полученных от экспертов, требуется при коллективной экспертизе, когда...

Внешние общественные взаимоотношения

Традиционное управление проектами долгое время основывалось на классической модели вход-процесс-выход с обратной связью для контроля выхода. Динамичные руководители обнаружили также, что открытие каналов связи в обоих направлениях создает мощный...

Стратегия инноваций

Высокий уровень конкуренции на подавляюшем большинстве современных рынков сбыта повышает интенсивность конкурентной борьбы, в которой нередко побеждает тот, кто может предложить потребителю более совершенную продукцию, дополнительные...

Различия между провозглашаемыми и глубинными интересами

Основным мотивом, приводящим к созданию организации, нередко считается получение прибыли. Однако единственный ли это интерес? В некоторых случаях не менее важными для руководителя организации являются определенная...

Метод обобщенных линейных критериев

Один из широко используемых методов сравнительной оценки многокритериальных объектов принятия управленческих решений в практике управления - метод обобщенных линейных критериев. В этом методе предполагается определение весовых...

Экспертные кривые

Экспертные кривые отражают оценку динамики прогнозируемых значений показателей и параметров экспертами. Формируя экспертные кривые, эксперты определяют критические точки, в которых тенденция изменения значений прогнозируемых показателей и...

Сопровождение управленческого процесса

Если на менеджера, управляющего подразделением организации или организацией в целом, обрушивается шквал проблем, относительно которых необходимо принять своевременные и эффективные решения, положение становится трудным. Менеджер должен...

Метод матриц взаимовлияний

Метод матриц взаимовлияний, разработанный Гордоном и Хелмером, предполагает определение на основании экспертных оценок потенциального взаимовлияния событий рассматриваемой совокупности. Оценки, связывающие все возможные комбинации событий по...

Разработка сценариев возможного развития ситуации

Разработка сценариев начинается с содержательного описания и определения перечня наиболее вероятных сценариев развития ситуации. Для решения этой задачи может быть использован метод мозговой атаки...

Сетевая организация

Повышение нестабильности внешней среды и жесткая конкуренция на рынках сбыта, необходимость достаточно быстрой смены (в среднем 5 лет) поколений производимой продукции, информационно-компьютерная революция, оказавшая существенное влияние...

Эффективный руководитель

Эффективный руководитель должен проявлять свою компетентность в умении решать возникающие проблемы стратегического и тактического характера, в планировании, финансовом управлении и контроле, межличностном общении, профессиональном развитии и...

Ресурсное обеспечение

Особую роль при определении как целей, стоящих перед организацией, так и задач и заданий по реализации поставленных целей играет ресурсное обеспечение. При этом при формировании стратегии и...

Структура системы управления персоналом

Делегирование большего объема полномочий предполагает и больший объем ответственности каждого работника на своем рабочем месте. В таких условиях все большее значение придается системам стимулирования и мотивации деятельности...

Искусство принятия решения

На завершающей стадии решающее значение приобретает искусство принятия решения. Однако не следует забывать, что выдающийся художник создает свои произведения, опираясь на блестяще отточенную и совершенную технику....

Многокритериальные оценки, требования к системам критериев

При разработке управленческих решений важно правильно оценить сломсившуюся ситуацию и альтернативные варианты решений с целью выбора наиболее эффективного решения, соответствующего целям организации и ЛПР. Правильная оценка...

Решения в условиях неопределенности и риска

Поскольку, как уже говорилось выше, процесс принятия решений всегда связан с тем или иным предположением руководителя об ожидаемом развитии событий и принятое решение нацелено в будущее, оно...

Общие правила, согласно которым может быть осуществлено сравнение объектов экспертизы, характеризую…

Альтернативный вариант (объект) а- недоминируем, если не существует альтернативного варианта о, превосходящего (не уступающего) а. по всем компонентам (частным критериям). Естественно, что наиболее предпочтительный среди сравниваемых...

Идеи управления организацией Файоля

Значительный прорыв в науке об управлении связан с работами Анри Файоля (1841 -1925). В течение 30 лет Файоль возглавлял крупную французскую металлургическую и горнодобывающую компанию. Он принял...

Принцип учета и согласования внешних и внутренних факторов развития организации

Развитие организации определяется как внешними, так и внутренними факторами. Сгратегические решения, принятые на основании учета влияния только внешних или только внутренних факторов, будут неизбежно страдать недостаточной...

Возникновение науки об управленческих решениях и ее связь с другими науками об управлении

Разработка управленческих решений является важным процессом, связывающим основные функции управления: планирование, организацию, мотивацию, контроль. Именно решения, принимаемые руководителями любой организации, определяют не только эффективность ее деятельности, но...

Формирование перечня критериев, характеризующих объект принятия управленческого решения

Перечень критериев, характеризующих сравнительную предпочтительность объектов принятия управленческого решения, должен удовлетворять ряду естественных требований. Как уже говорилось выше, само понятие критерий тесно связано с...

Главное правило делегирования полномочий

Мы хотим подчеркнуть важное правило, которое должно соблюдаться при делегировании полномочий. Делегируемые полномочия, как и задачи, которые ставятся перед работником, должны быть четко определены и однозначно...

Основная задача сценария - дать ключ к пониманию проблемы.

При анализе конкретной ситуации переменные, ее характеризующие, принимают соответствующие значения - те или иные градации вербально-числовых шкал каждое из переменных. Определяются все значения парных взаимодействий между...

Этап оперативного управления ходом реализации принятых решений и планов

После этапа передачи информации о принятых решениях и их согласования наступает этап оперативного управления ходом реализации принятых решений и планов. На этом этапе осуществляется контроль за ходом...

Классификация основных методов прогнозирования

Технологическое прогнозирование подразделяется на изыскательское (иногда его называют еще поисковым) и нормативное. В основе изыскательского прогнозирования лежит ориентация на представляющиеся возмож:ности, установление тенденций развития ситуаций на...

Строительство плотины для водохранилища

Несколько лет тому назад хорошо известная строительная компания стремилась обеспечить необходимые условия для проекта строительства Главной водозадерживающей плотины в Бихаре (Индия). В то...

Безусловно, каждый бизнесмен при планировании производства стремится к тому, чтобы оно было рентабельным, приносило прибыль. Если же удельный вес затрат сравнительно велик, о рентабельной деятельности организации говорить…

  • Принятие решения ЛПР

    Результаты экспертиз по сравнительной оценке альтернативных вариантов решений либо единственного решения, если разработка альтернативных вариантов не предусматривалась, поступают к ЛПР. Они служат основной базой для принятия…

  • Разработка оценочной системы

    В процессе выработки управленческого рещения больщое значение имеет адекватная оценка ситуации, различных ее аспектов, учитывать которые необходимо при принятии решений, приводящих к успеху. Для адекватной оценки…

  • Определение зарплаты и льгот

    Производительная работа персонала на предприятии во многом зависит от проводимой руководством предприятия политики мотивации и стимулирования работников. Большое значение имеет при этом формирование структуры заработной …

  • Стратегическое планирование и целенаправленная деятельность организации

    Реализация управленческих функций организации осуществляется в значительной степени с использованием стратегического и тактического планирования, специально разрабатываемых программ и проектов и четко отслеживаемого хода их выполнения. Стратегическому…

  • Контроль подразделяется на предварительный, текущий и заключительный.

    Предварительный контроль осуществляется до начала работ. На этом этапе контролируются правила, процедуры и линия поведения, чтобы убедиться, что работа развивается в правильном направлении. На этом этапе контролируются,…

  • Цели организации реализуются во внешней среде.

    При анализе состояния внешней среды и ожидаемой динамики изменений обычно рассматриваются экономические, технологические, конкурентные, рыночные, социальные, политические, международные факторы. При анализе внешней среды обрашают внимание…

  • Prev Next

    МАТЕМАТИЧЕСКИЕ МОДЕЛИ

    2.1. Постановка задачи

    Детерминированные модели описывают процессы в детерминированных системах.

    Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

    Если задан входной сигнал такой системы, известны ее характеристикаy = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

    Существует два подхода к исследованию физических систем: детерминированный и стохастический.

    Детерминированный подход основан на применении детерминированной математической модели физической системы.

    Стохастический подход подразумевает использование стохастической математической модели физической системы.

    Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

    2.2. Случайные факторы (шумы)

    Внутренние факторы

    1) температурная и временная нестабильность электронныхкомпонентов;

    2) нестабильность питающего напряжения;

    3) шум квантования в цифровых системах;

    4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

    5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

    6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

    7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

    Внешние факторы

    1) внешние электрические и магнитные поля;

    2) электромагнитные бури;

    3) помехи, связанные с работой промышленности и транспорта;

    4) вибрации;

    5) влияние космических лучей, тепловое излучение окружающих объектов;

    6) колебания температуры, давления, влажности воздуха;

    7) запыленность воздуха и т. д.

    Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

    Следовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью являетсяидеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

    Детерминированная модель допустима в следующих случаях:

    1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

    2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

    В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

    Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

    В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

    2.3. Суть стохастической модели

    Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

    1) математическое ожидание (среднее значение):

    2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

    3) среднее квадратичное отклонение:

    (2.3)

    4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

    5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

    (2.5)

    преобразование Фурье.

    Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

    Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

    , (2.6)

    где
    аддитивный случайный процесс – входной шум.

    В нелинейных системах присутствуют мультипликативные шумы .

    Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

    2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

    При разработке стохастической модели важное значение имеет определение характера случайного процесса
    . Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

    В некоторых задачах характер распределения
    априорно известен.

    В большинстве случаев, когда случайный процесс
    представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
    обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
    заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

    Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

    1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

    2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

    3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

    4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

    5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

    Впроцессе моделирования часто возникает задача –определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
    .Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

    При построении гистограммы диапазон значений случайной величины
    разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

    При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

    Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

    Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
    и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
    ).

    Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.