Дифракционная картина отличается от интерференционной тем. Интерференция и закон сохранения энергии

В этой статье рассматривается такое явление физики, как интерференция: что такое, когда возникает и как применяется. Также подробно рассказывается о смежном понятии волновой физики - дифракции.

Виды волн

Когда в книге или в разговоре возникает слово «волна», то, как правило, сразу представляется море: синий простор, безмерная даль, одна за другой на берег набегают соленые валы. Житель степей представит себе другой вид: безбрежный простор травы, она колышется под ласковым ветерком. Кто-то еще вспомнит волны, рассматривая складки тяжелой портьеры или трепетание флага в солнечный день. Математик подумает о синусоиде, любитель радио - об электромагнитных колебаниях. Все они имеют различную природу и относятся к разным видам. Но неоспоримо одно: волна - это состояние отклонения от равновесия, превращения какого-то «гладкого» закона в колебательный. Именно для них применимо такое явление, как интерференция. Что такое и как она возникает, рассмотрим чуть позже. Сначала разберёмся, какими бывают волны. Перечислим следующие виды:

  • механические;
  • химические;
  • электромагнитные;
  • гравитационные;
  • спиновые;
  • вероятностные.

С точки зрения физики, волны переносят энергию. Но случается, что перемещается и масса. Отвечая на вопрос о том, что такое интерференция в физике, следует отметить, что она характерна для волн абсолютно любой природы.

Признаки различия волн

Как ни странно, но единого определения волны не существует. Их виды настолько разнообразны, что только типов классификации более десятка. По каким же признакам различают волны?

  1. По способу распространения в среде (бегущие или стоячие).
  2. По характеру самой волны (колебательные и солитоны отличны именно по этому признаку).
  3. По типу распределения в среде (продольные, поперечные).
  4. По степени линейности (линейные или нелинейные).
  5. По свойствам среды, в которой они распространяются (дискретные, непрерывные).
  6. По форме (плоские, сферические, спиральные).
  7. По особенностям физической среды распространения (механические, электромагнитные, гравитационные).
  8. По направлению колебания частиц среды (волны сжатия или сдвига).
  9. По времени, которое требуется на возбуждение среды (одиночные, монохроматические, волновой пакет).

И к любому типу этих возмущений среды применима интерференция. Что такое особенное содержится в этом понятии и почему именно это явление делает наш мир таким, какой он есть, расскажем после приведения характеристик волны.

Характеристики волны

Вне зависимости от типа и вида волн, у них всех есть общие характеристики. Вот список:

  1. Гребень - это своего рода максимум. Для волн сжатия это место наибольшей плотности среды. Представляет собой наибольшее положительное отклонение колебания от состояния равновесия.
  2. Ложбина (в некоторых случаях долина) - это обратное гребню понятие. Минимум, наибольшее отрицательное отклонение от состояния равновесия.
  3. Временная периодичность, или частота - это время, за которое волна пройдет от одного максимума к другому.
  4. Пространственная периодичность, или длина волны - это расстояние между соседними пиками.
  5. Амплитуда - это высота пиков. Именно данное определение понадобится, чтобы разобраться, что такое интерференция волн.

Мы очень подробно рассмотрели волну, ее характеристики и различные классификации, ибо понятие «интерференция» невозможно объяснить без четкого понимания такого явления, как возмущение среды. Напоминаем, что интерференция имеет смысл только для волн.

Взаимодействие волн

Теперь мы вплотную подошли к понятию «интерференция»: что такое, когда возникает и как ее определить. Все перечисленные выше виды, типы и характеристики волн относились к идеальному случаю. Это были описания «сферического коня в вакууме», то есть неких теоретических конструкций, невозможных в реальном мире. Но на практике все пространство вокруг пронизано различными волнами. Свет, звук, тепло, радио, химические процессы - это среды. И все эти волны взаимодействуют. Надо отметить одну особенность: чтобы они могли повлиять друг на друга, у них должны быть схожие характеристики.

Волны звука никоим образом не смогут интерферировать со светом, а радиоволны никак не взаимодействуют с ветром. Конечно, влияние все равно есть, но оно настолько мало, что его действие просто не учитывается. Другими словами, при объяснении, что такое интерференция света, предполагается, что один фотон влияет на другой при встрече. Итак, подробнее.

Интерференция

Для многих видов волн действует принцип суперпозиции: встречаясь в одной точке пространства, они взаимодействуют. Обмен энергией отображается на изменении амплитуды. Закон взаимодействия следующий: если встречаются в одной точке два максимума, то в конечной волне интенсивность максимума увеличивается вдвое; если встречаются максимум и минимум, то итоговая амплитуда обращается в ноль. Это и есть наглядный ответ на вопрос о том, что такое интерференция света и звука. По сути, это явление наложения.

Интерференция волн с разными характеристиками

Описанное выше событие представляет встречу двух одинаковых волн в линейном пространстве. Однако две встречные волны могут иметь разные частоты, амплитуды, длины. Как представить итоговую картину в таком случае? Ответ кроется в том, что результат будет не совсем похож на волну. То есть строгий порядок чередования максимумов и минимумов будет нарушен: в какой-то момент амплитуда будет максимальной, в следующий - уже меньше, потом встретятся максимум и минимум и результат обратится в ноль. Однако, какими бы сильными ни были различия двух волн, амплитуда все равно рано или поздно повторится. В математике принято говорить о бесконечности, но в реальности силы трения и инерция могут остановить само существование результирующей волны до того, как картина пиков, долин и равнин повторится.

Интерференция волн, встречающихся под углом

Но, помимо собственных характеристик, у реальных волн может различаться положение в пространстве. Например, при рассмотрении вопроса о том, что такое интерференция звука, это необходимо учитывать. Представьте: идет мальчик и дует в свистульку. Он посылает звуковую волну впереди себя. А мимо него проезжает другой мальчик на велосипеде и звенит в звонок, чтобы пешеход посторонился. В месте встречи этих двух звуковых волн они пересекаются под некоторым углом. Как рассчитать амплитуду и форму конечного колебания воздуха, который долетит, например, до ближайшей торговки семечками бабушки Маши? Тут в силу вступает векторная составляющая звуковой волны. И складывать или вычитать в данном случае надо не только величины амплитуды, но и векторы распространения этих колебаний. Надеемся, что бабушка Маша при этом не будет сильно кричать на шумящих ребят.

Интерференция света с разной поляризацией

Бывает и так, что в одной точке встречаются фотоны разной поляризации. В этом случае тоже следует учитывать векторную составляющую электромагнитных колебаний. Если они не взаимно перпендикулярны или один из пучков света имеет круговую или эллиптическую поляризацию, то взаимодействие вполне возможно. На этом принципе строится несколько способов определения оптической чистоты кристаллов: в перпендикулярно поляризованных пучках не должно быть никакого взаимодействия. Если картина искажается, то кристалл неидеален, он изменяет поляризацию пучков, а значит, выращен неправильно.

Интерференция и дифракция

Взаимодействие двух пучков света приводит к их интерференции, в итоге наблюдатель видит ряд светлых (максимумов) и темных (минимумов) полос или колец. А вот взаимодействие света и вещества сопровождается другим явлением - дифракцией. Оно основано на том, что свет разной длины волны иначе преломляется средой. Например, если длина волны 300 нанометров, то угол отклонения составляет 10 градусов, а если 500 нанометров - уже 12. Таким образом, когда на призму из кварца падает свет от солнечного луча, красный преломляется не так, как фиолетовый (их длины волн различаются), и наблюдатель видит радугу. Это ответ на вопрос о том, что такое интерференция и дифракция света и чем они отличаются. Если направить на ту же призму монохроматическое излучение от лазера, никакой радуги не будет, так как нет фотонов различной длины волны. Просто луч отклонится от первоначального направления распространения на некоторый угол, и все.

Применение явления интерференции на практике

Возможностей получить практическую пользу из этого сугубо теоретического явления очень много. Здесь будут перечислены лишь основные из них:

  1. Исследование качества кристаллов. Чуть выше мы рассказывали об этом.
  2. Выявление погрешностей линз. Часто они должны быть отшлифованы в идеальной сферической форме. Наличие каких-либо дефектов обнаруживают именно с помощью явления интерференции.
  3. Определение толщины пленок. В некоторых видах производства очень много значит постоянная толщина пленки, например пластиковой. Определить ее качество позволяет именно явление интерференции вместе с дифракцией.
  4. Просветление оптики. Очки, линзы фотоаппаратов и микроскопов покрывают тонкой пленкой. Таким образом, электромагнитные волны определенной длины просто отражаются и накладываются сами на себя, уменьшая помехи. Чаще всего просветление делается в зеленой части оптического спектра, так как именно эту область человеческий глаз воспринимает лучше всего.
  5. Изучение космоса. Зная законы интерференции, астрономы способны разделить спектры двух близко расположенных звезд и определить их составы и расстояние до Земли.
  6. Теоретические исследования. Когда-то именно с помощью явления интерференции удалось доказать волновую природу элементарных частиц, таких как электроны и протоны. Этим была подтверждена гипотеза корпускулярно-волнового дуализма микромира и положено начало квантовой эре.

Надеемся, что с данной статьёй ваши познания о наложении когерентных (испускаемых источниками, имеющими постоянную разность фаз и одинаковую частоту) волн значительно расширились. Это явление и называется интерференцией.

Интерференция – это наложение двух или нескольких волн, приводящее к устойчивому во времени усилению колебаний в одних точках пространства и ослаблению – в других.

Интерферировать могут только когерентные волны – это волны, имеющие одинаковую частоту и постоянную во времени разность фаз. Амплитуда результирующего колебания равна нулю в тех точках пространства, в которые волны с одинаковыми амплитудами и частотой приходят со сдвигом по фазе колебаний на p или на половину периода колебаний. При одинаковом законе колебаний двух источников волн различие на половину периода колебаний будет при условии, что разность Dl (разность хода интерферирующих волн) расстояний l 1 и l 2 от источников волн до этой точки равна половине длины волны:

или нечетному числу полуволн (рис. 84, а ):

.

Это условие интерференционного минимума.

Интерференционные максимумы наблюдаются в точках пространства, в которые волны приходят с одинаковой фазой колебаний (рис. 84, б ). При одинаковом законе колебаний двух источников для выполнения этого условия разность хода Dl должна равняться целому числу волн:

Куда исчезает энергия двух волн в местах интерференционных минимумов? Если рассматривать только одно место встречи двух волн, то на такой вопрос нельзя дать правильный ответ. Распространение волн не является совокупностью независимых процессов колебаний в отдельных точках пространства. Сущность волнового процесса заключается в передаче энергии колебаний от одной точки пространства к другой и т.д. При интерференции волн в местах интерференционных минимумов энергия результирующих колебаний действительно меньше суммы энергий двух интерферирующих волн. Зато в местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн ровно на столько, на сколько уменьшилась энергия в местах интерференционных минимумов. При интерференции волн энергия колебаний перераспределяется в пространстве, но при этом закон сохранения энергии выполняется.

Отклонение направления распространения волн от прямолинейного у границы преграды называется дифракцией волн . Дифракция волн происходит при встрече с преградой любой формы и любых размеров. Обычно при больших по сравнению с длиной волны размерах препятствия или отверстия в преграде дифракция волн мало заметна. Наиболее отчетливо дифракция проявляется при прохождении волн через отверстие с размерами порядка длины волны или при встрече с препятствиями таких же размеров. При достаточно больших расстояниях между источником волн, преградой и местом наблюдения волн дифракционные явления могут иметь место и при больших размерах отверстия или преграды.

Причиной дифракции является интерференция. Это объясняется принципом Гюйгенса-Френеля : каждая точка среды, до которой дошла волна, становится источником вторичных волн, которые интерферируют в следующих точках пространства.

Стоячие волны

Пусть волна бежит вдоль оси абсцисс, доходит до препятствия, расположенного в начале координат, и без потерь энергии начинает двигаться вдоль оси абсцисс справа налево, встречаясь и складываясь с волной, бегущей слева направо. Здесь возможны два случая.

1) Волна отражается в точке О в той же фазе, в которой она к ней пришла (рис. 85, а ). В этом случае уравнение бегущей слева направо волны имеет вид

,

а для отраженной волны уравнение запишется так:

.

Сложив оба уравнения, получим:

.

Преобразовав сумму косинусов в произведение, получим

.

Здесь величина не зависит от времени, следовательно, это амплитуда нового колебания всех точек волны. Выражение же, стоящее под знаком косинуса во втором множителе, не зависит от координаты.

Итак, в результате сложения бегущей и отраженной волн мы получили новую волну, у которой фаза не зависит от координаты, зато от координаты зависит амплитуда колебаний. Такая волна называется стоячей волной .

У стоячей волны есть точки, где амплитуда колебаний равна нулю. Эти точки называются узлами стоячей волны (рис. 85, б ). Найдем их координаты, полагая .

Но косинус равен нулю, если его аргумент равен нечетному числу p/2 , следовательно

,

откуда получаем, что координаты узлов определяются из условия

.

У стоячей волны есть такие точки, где амплитуда стоячей волны вдвое больше амплитуды бегущей волны. Эти точки называются пучностями стоячей волны. Очевидно, что мы получим координаты пучностей, положив , для чего необходимо, чтобы выполнялось условие

откуда следует, что координаты пучностей удовлетворяют соотношению:

2) Волна отражается в точке О в противоположной фазе по сравнению с бегущей волной (рис. 86). В этом случае уравнение волны, бегущей слева направо, запишется в прежнем виде, а уравнение отраженной волны примет вид:

.

Сложив оба уравнения волны, получим вновь уравнение стоячей волны, в чем читатель сам легко убедится. Но амплитуда стоячей волны в этом случае будет иметь вид:

.

Нетрудно отсюда получить, что в данном случае вместо узлов возникнут пучности, а вместо пучностей – узлы стоячей волны.



Звуковые волны

Раздел физики, занимающийся изучением звуковых явлений, называется акустикой , а явления, связанные с возникновением и распространением звуковых волн – акустическими явлениями .

Процесс распространения сжатия или разряжения в газе происходит в результате столкновений молекул газа, поэтому скорость звука в газе примерно равна скорости движения молекул. Средняя скорость теплового движения молекул уменьшается с понижением температуры газа, поэтому уменьшается с понижением температуры газа и скорость распространения звука. Например, в водороде при понижении температуры от 300 до 17 К скорость звука уменьшается от 1300 до 320 м/с. По современным измерениям скорость звука в воздухе при нормальных условиях равна 331 м/с.

Связь между атомами и молекулами в жидкостях и твердых телах значительно более жесткая, чем в газах. Поэтому скорость распространения звуковых волн в жидкостях и твердых телах значительно больше скорости звука в газах. Так скорость звука в воде равна 1500 м/с, а в стали – 6000 м/с.

Любые звуки человек характеризует в соответствии со своим восприятием по уровню громкости.

Сила воздействия звуковой волны на барабанную перепонку человеческого уха зависит от звукового давления. Звуковое давление – это дополнительное давление, возникающее в газе или жидкости при прохождении звуковой волны. Нижняя граница ощущения звука человеческим ухом соответствует звуковому давлению примерно 10 -5 Па. Верхняя граница звукового давления, при достижении которой возникает ощущение боли в ушах, равна примерно 100 Па. Звуковые волны с большой амплитудой изменения звукового давления воспринимаются человеческим ухом как громкие звуки, с малой амплитудой изменения звукового давления – как тихие звуки.

Звуковые колебания, происходящие по гармоническому закону, воспринимаются человеком как определенный музыкальный тон . Колебания высокой частоты воспринимаются как звуки высокого тона , звуки низкой частоты – как звуки низкого тона . Диапазон звуковых колебаний, соответствующий изменению частоты звуковых колебаний в два раза, называется октавой.

Звуковые колебания, не подчиняющиеся гармоническому закону, воспринимаются человеком как сложный звук, обладающий тембром . При одной высоте тона звуки, издаваемые, например, скрипкой и пианино, отличаются тембром.

Диапазон частот звуковых колебаний, воспринимаемых человеческим ухом, лежит в пределах примерно от 20 до 20000 Гц. Продольные волны в среде с частотой изменения давления менее 20 Гц называются инфразвуком , с частотой более 20000 Гц – ультразвуком .

Ультразвук действует на биологические объекты. При малых интенсивностях он активизирует процессы обмена, повышает проницаемость клеточных мембран, производит микромассаж тканей. При больших интенсивностях разрушает эритроциты, вызывает нарушение функций и гибель микроорганизмов, мелких животных. Разрушая ультразвуком оболочки растительных и животных клеток, извлекают из них биологически активные вещества (ферменты, токсины). В хирургии ультразвук используется для разрушения злокачественных опухолей, распиливания костей и т.д.

Ультразвук издают и воспринимают многие животные. Например, собаки, кошки, мыши слышат ультразвуки с частотой до 100 кГц. Чувствительны к ним и многие насекомые. Некоторые животные используют ультразвук для ориентации в пространстве (ультразвуковая локация). Летучая мышь периодически испускает короткие ультразвуковые сигналы (30-120 кГц) в направлении полета. Улавливая отраженные от предметов сигналы, животное определяет положение предмета и оценивает расстояние до него. Этот способ локации используют также дельфины, которые свободно ориентируются в мутной воде, в темноте. Использование для эхолокации именно ультразвука вполне естественно. Чем меньше длина волны излучения, тем более мелкими могут быть объекты, которые необходимо опознать. В данном случае линейные размеры объекта должны быть больше или, по крайней мере, порядка длины волны звука. Так частоте 80 кГц отвечает длина волны равная 4 мм. Кроме того, с уменьшением длины волны легче реализуется направленность излучения, а это очень важно для эхолокации.

Человек использует ультразвуковую локацию для изучения рельефа морского дна, обнаружения косяков рыбы, айсбергов. В медицине ультразвуковая диагностика применяется, например, для определения опухолей на внутренних органах.

Инфразвуки – низкочастотные упругие волны – сопровождают человека в повседневной жизни. Мощными источниками инфразвука являются грозовые разряды (гром), орудийные выстрелы, взрывы, обвалы, штормы, работа машин, городской транспорт. Постоянно действующие мощные инфразвуки определенных частот (3-10 Гц) вредны для здоровья человека, они могут вызвать ухудшение зрения, нервные расстройства, резонансные колебания внутренних органов, потерю памяти.

Особенность инфразвуков – слабое поглощение их веществом, Поэтому они легко проходят сквозь препятствия и могут распространяться на очень большие расстояния. Это позволяет, например, предсказать приближение стихийного бедствия – шторма, цунами. Многие рыбы, морские млекопитающие и птицы, по-видимому, воспринимают инфразвуки, так как реагируют на приближение шторма.

Звуковые волны, встречаясь с любым телом, вызывают вынужденные колебания. Если частота собственных свободных колебаний тела совпадает с частотой звуковой волны, то условия для передачи энергии от звуковой волны телу оказываются наилучшими – тело является акустическим резонатором. Амплитуда вынужденных колебаний при этом достигает максимального значения – наблюдается акустический резонанс .

Акустическими резонаторами являются, например, трубы духовых инструментов. В этом случае в качестве тела, испытывающего резонансное колебание, выступает воздух в трубе. Способность уха различать звуки по высоте и тембру связана с резонансными явлениями, происходящими в основной мембране. Действуя на основную мембрану, звуковая волна вызывает в ней резонансные колебания определенных волокон, собственная частота которых соответствует частотам гармонического спектра данного колебания. Нервные клетки, связанные с этими волокнами, возбуждаются и посылают нервные импульсы в центральный отдел слухового анализатора, где они, суммируясь, вызывают ощущение высоты и тембра звука.

Световые волны

В световой волне совершают быстрые (n=10 14 Гц ) непрерывные колебания векторы напряженности электрического поля и индукции магнитного поля. Их колебания взаимосвязаны и происходят в направлениях, перпендикулярных лучу (световая волна – поперечная), причем так, что векторы напряженности и индукции взаимно перпендикулярны (рис. 87).

Как показывают опыты, действие света на глаз и другие приемники обусловлено колебаниями электрического вектора , называемого, поэтому, световым . Для плоской синусоидальной волны, распространяющейся со скоростью u в направлении r , колебания светового вектора описываются уравнением

.

Свет, имеющий определенную частоту (или длину волны), называется монохроматическим . Если колебания светового вектора происходят только в одной проходящей через луч плоскости, то свет называют плоскополяризованным . Естественный свет содержит колебания по всем направлениям.

При переходе света из одной среды в другую его частота остается неизменной, а соответствующая ей длина волны меняется, т.к. скорость света в разных средах различна. Скорость света в вакууме с=3 10 8 м/с .

Когерентные световые волны (как и волны любой другой природы) интерферируют . Причем независимые источники света (за исключением лазеров) не могут быть когерентными, ибо в каждом из них свет испускается множеством атомов, излучающих несогласованно. Когерентность можно обеспечить, разделив волну от одного источника на две части и затем сведя их вместе. Излученные одной группой атомов, полученные таким образом две волны будут когерентны и при наложении могут интерферировать. На практике разделение одной волны на две можно осуществить разными способами. В установке, предложенной Т.Юнгом, белый свет проходит через узкое отверстие S (рис. 88, а ), затем с помощью двух отверстий S 1 и S 2 пучок разделяется на два. Эти два пучка, накладываясь друг на друга, образуют в центре экрана белую полосу, а по краям – радужные.Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит отражение волн (рис. 88, б ). Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути. При разности хода, кратной целому числу длин волн:

наблюдается интерференционный максимум.

При разности, кратной нечетному числу полуволн:

,

наблюдается интерференционный минимум. Когда выполняется условие максимума для одной длины световой волны, то оно не выполняется для других длин волн. Поэтому освещаемая белым светом тонкая бесцветная прозрачная пленка кажется окрашенной. При изменении толщины пленки или угла падения световых волн разность хода изменяется, и условие максимума выполняется для света с другой длиной волны.

Яркую, переливающуюся всеми цветами радуги окраску некоторых раковин (перламутр), перьев птиц, на поверхности которых расположены тончайшие, незаметные для глаза прозрачные чешуйки, также можно объяснить интерференцией.

Интерференционные методы нашли широкое применение в ряде областей науки и техники. Картина интерференции очень чувствительна к факторам, изменяющим разность хода лучей. На этом основано высокоточное измерение длин, плотностей, показателей преломления, качества полировки поверхностей и т.д. Одно из применений – просветление оптики. Для уменьшения света, отраженного поверхностями стеклянных оптических приборов (например, линз), на эти поверхности наносится специальная прозрачная тончайшая пленка. Толщина ее подбирается так, чтобы отражающиеся от обеих поверхностей лучи определенной длины волны в основном гасились за счет интерференции. Без пленки на каждой линзе теряется до 10% энергии света.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называется дифракцией света . Вследствие малой длины волны света, дифракционная картина четкая, если преграды или отверстия имеют малый размер (сравнимый с длиной волны). Дифракция света всегда сопровождается интерференцией (принцип Гюйгенса-Френеля). На основании этого можно получить при освещении непрозрачного диска на экране в центре его тени светлое пятно, а от круглого отверстия – в центре темное пятно. Картина дифракции в белом свете – цветная.

Явление дифракции света используется в спектральных приборах. Одним из основных элементов таких приборов является дифракционная решетка . Дифракционная решетка представляет собой совокупность параллельных узких прозрачных для света щелей, разделенных непрозрачными промежутками (рис. 89). Лучшие решетки имеют до 2000 штрихов на 1 мм поверхности. При этом общая длина решетки 100-150 мм. Такие решетки обычно получают нанесением на стеклянную пластину с помощью специальных машин ряда параллельных штрихов – царапин. Неповрежденные участки играют роль щелей, а царапины, рассеивающие свет, играют роль непрозрачных промежутков. Если непрозрачные штрихи (царапины) нанести на полированную металлическую поверхность, то получится так называемая отражательная дифракционная решетка. Сумма с ширины а щели и промежутка b между щелями называется периодом или постоянной решетки:

Рассмотрим основные моменты элементарной теории дифракционной решетки. Пусть на решетку падает плоская монохроматическая волна длины l (рис. 90). Вторичные источники в щелях создают световые волны, распространяющиеся по всем направлениям. Найдем условие, при котором идущие от щелей волны усиливают друг друга. Рассмотрим для этого волны, распространяющиеся в направлении, определяемом углом j . Разность хода между волнами от краев соседних щелей равна длине отрезка АС . Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга. Из треугольника АВС можно найти длину катета АС :

Максимумы будут наблюдаться под углом j , определяемым условием

,

где k =0, 1, 2,… Эти максимумы называются главными.

Нужно иметь в виду, что при выполнении условия максимумов усиливаются не только волны, идущие от левых (по рисунку) краев щелей, но и волны, идущие от всех других точек щелей. Каждой точке в первой щели соответствует точка во второй щели на расстоянии с . Поэтому разность хода испущенных этими точками вторичных волн равна , и эти волны взаимно усиливаются.

За решеткой помещается собирающая линза, в фокальной плоскости которой расположен экран. Линза фокусирует лучи, идущие параллельно, в одной точке, в которой и происходит сложение волн и их взаимное усиление.

Так как положение максимумов (кроме центрального, соответствующего k =0) зависит от длины волны, то решетка разлагает белый свет в спектр (рис. 91). Чем больше l , тем дальше располагается тот или иной максимум, соответствующий данной длине волны, от центрального максимума. Каждому значению k соответствует свой спектр.

С помощью дифракционной решетки можно производить очень точные измерения длины волны. Если период решетки известен, то определение длины волны сводится к измерению угла j , соответствующего направлению на максимум.

Если рассматривать под микроскопом крылья бабочек, то можно заметить, что они состоят из большого числа элементов, размер которых имеет порядок величины длины волны видимого света. Таким образом, крыло бабочки представляет собой своеобразную дифракционную решетку. Радужная полоска видна и в глазах стрекоз и других насекомых. Она образуется благодаря тому, что их сложные глаза состоят из большого числа отдельных «глазков» – фасеток, т.е. тоже являются «живыми» дифракционными решетками.

Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий.

Сложение волн, распространяющихся в среде, определяется сложением в разных точках пространства соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается тогда, когда их частоты одинаковы и направле­ния электрических векторов совпадают.

В этом случае для амплитуды напряженности электрического поля:

где Δφ – разность фаз слагаемых волн (колебаний).

В зависимости от типа источников света результат сложения волн может быть принципиально различным.

Рассмотрим сложение волн, идущих от обычных ис­точников света (лампа, пламя, Солнце и т. п.). Каждый такой ис­точник представляет совокупность огромного количества излу­чающих атомов. Отдельный атом излучает электромагнитную волну приблизительно в течение 10 -8 с, причем излучение есть со­бытие случайное, поэтому и разность фаз Δφ при­нимает случайные значения. При этом среднее по излучениям всех атомов значение созΔφ равно нулю. Вместо (1) получаем усредненное равенство для тех точек пространства, где складыва­ются две волны, идущие от двух обычных источников света:

Так как интенсивность волны пропорциональна квадрату амп­литуды,то из (2) имеем условие сложения интенсивностей I1 и I2 волн:

I = I1 + I2 (3)

Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется до­статочно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это на­блюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в от­дельности.

Если Δφ остается неизменной во времени, наблюдается интер­ференция света. Интенсивность результирующей волны принима­ет в разных точках пространства значения от минимального до не­которого максимального.

Интерференция света возникает от согласованных, когерент­ных источников, которые обеспечивают постоянную во времени разность фаз Δφ у слагаемых волн в различных точках. Волны, от­вечающие этому условию, называют когерентными.

Интерференция могла бы быть осуществлена от двух синусо­идальных волн одинаковой частоты, однако на практике создать такие световые волны невозможно, поэтому когерентные волны получают, «расщепляя» световую волну, иду­щую от источника.

Произведение геометрического пути волны на показатель прелом­ления среды, т. е. хn, называют оптической длиной пути , а разность этих путей

δ = х 1 n 1 - х 2 n 2 (4)

- оптической разностью хода волн .

Связь между разностью фаз и оптической разностью хода интерферирующих волн:

Используя законы сложения колебаний и соотно­шение (5), получаем условия максимума и минимума ин­тенсивности света при интерференции - соответственно:

(min) ,

где k = 0, 1, 2, ….

Таким образом, максимум при интерференциинаблюдается в тех точках, для которых оптическая разность хода равна целому числу волн (четному числу полуволн), минимум – в тех точках, для которых оптическая разность хода равна нечетному числу полуволн.

Интерференцию света используют в интерферометрах – приборах для измерения с высокой точностью длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

На рис. 1 изображена принципиальная схема интерферометра Майкелъсона, который относится к группе двухлучевых. так как световая волна в нем раздваивается и обе ее части, прой­дя разный путь, интерферируют.

Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тон­ким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова.

Луч 2 доходит до зеркала I, отражается, преломляется в пластине А и частично выходит из пластины - луч 2". Луч 3 из точки О идет к зеркалу II, отражается, возвращается к пластине А, где частично от­ражается, - луч 3". Лучи 2" и 3", попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована.

Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую длину путей сделать одинаковой, на пути луча 3 устанавливают прозрачную пластину В, аналогичную А, для компен­сации двух путей, пройденных лучом 2 через пластину А. В этом случае наблюдается максимум интерференции.

Если одно из зеркал сдвинуть на расстояние λ/4, то разность хода лучей станет λ/2, что соответствует минимуму, произойдет смещение интерференционной картины на 0,5 полосы.

Если зеркало от первоначального положения переместить на расстояние

λ /2, то оптическая разность хода интерферирующих лучей изменится на λ , что соответствует максимуму, произойдет смещение интерференци­онной картины на целую полосу. Такая связь между перемещением зер­кала и изменением интерференцион­ной картины позволяет измерять длину волны по перемещению зерка­ла и, наоборот, перемещение по дли­не волны.

Интерферометр Майкельсона применяют для измерения пока­зателя преломления. На пути лучей 2 и 3 устанавливают одинако­вые кюветы К (показаны штриховыми линиями на рис. 1), од­на из которых наполнена веществом с показателем преломления n1, а другая - с n2.

Интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой.

Интерференционный рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.

С использованием интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, способствовавших созданию специальной теории относительности.

Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа , используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов (Рис.2).

Луч света, как и в интерферометре, в точке А раздваивается, один луч проходит через прозрачный микрообъект М, а другой - вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит, в частности, от соотношения длины волны и разменов неоднородностей. Различают с некоторой степенью услов­ности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн.

Объяснение и приближенный расчет дифракции света можно осуществить, используя принцип Гюйгенса - Френеля.

Согласно Гюйгенсу, каждая точка волновой поверхности, ко­торой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 3); S1 и S2 волновые поверхности соответственно в моменты t1 и t 2 .

Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции В таком обобщенном виде эти идеи получили название принципа Гюйгенса - Френеля.

Рассмотрим дифракцию на щели в параллельных лучах (рис. 4).

На узкую длинную щель, расположенную в плоской непроз­рачной преграде МN, нормально падает плоскопараллельный пу­чок монохроматического света. АВ = а - ширина ще­ли; L- собирающая линза, в фокальной плоскости которой рас­положен экран Э для наблюдения дифракционной картины.

Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптиче­ской оси линзы. Дифракция света на щели существенно изменяет явление.

Будем считать, что все лучи пучка света исходят от одного удаленного источника и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозмож­ном направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. показаны только вторичные волны, распространяющиеся под углом α к направлению падающего пучка и нормали к решетке. Линза соберет эти волны в точке О" экрана, где и будет наблюдаться их интерференция. (Положение точ­ки О" получают как пересечение с фокальной плоскостью побочной оси СО" линзы, проведенной под углом α)

Чтобы узнать результат интерференции вторичных волн, прод­елаем следующие построения. Проведем перпендикуляр АD к направлению пучка вторичных волн. Оптические пути всех вторичных волн от АD до О" будут одинаковыми, поскольку линза не вносит добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к

АD , будет сохранена и в точке О".

Разобьем ВD на отрезки, равные λ/2. В случае, показанном на рис.4, получено три таких отрезка: | ВВ 2 | = |В 2 В 1 | = |В 1 D| = λ/2. Проведя из точек В 2 и В 1 прямые, параллельные АО, разделим АВ на равные зоны Френеля: | АА 1 | = |А 1 А 2 | = |А 2 В|. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет λ/2. Например, вторичная волна, идущая от точки А 2 в выбранном направлении проходит до точки О" расстояние на λ/2 больше, чем волна, идущая от точки А1, и т. д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как отличаются по фазе на π.

Число зон, укладывающихся в щели, зависит от длины волны λ и угла α . Если щель АВ можно разбить при построении на нечетное число зон Френеля, а ВD - на нечетное число отрезков, равных λ/2, то в точке О" наблюдается максимум интенсивности света:

ВD = a sin α = ± (2k + 1)(λ/2); k = 1,2, ... . (7)

Направление, соответствующее углу α = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.

Если щель АВ можно разбить на четное число зон Френеля, наблюдается минимум интенсивности света:

a sin α = ± 2k (λ/2) = ± k λ ; k = 1, 2, ... . (8)

Таким образом, на экране Э получится система светлых (мак­симум) и темных (минимум) полос, центрам которых соответствуют условия (7) и (8), симметрично расположенных влево и вправо от центральной (α = 0), наиболее яркой, полосы. Интенсивность I остальных максимумов быстро убывает по мере удале­ния от центрального максимума (рис. 5).

Если щель освещать белым светом, то на экране Э образуется система цветных полос, лишь центральных максимум будет сохранять цвет падающего света, так как при α = 0 усиливается свет всех длин волн.

Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей поступление светового потока, но перераспределителем этого потока в пространстве.

Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей. Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места - щели - будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Суммарную ширину щели а и промежутка b между щелями называют постоянной или периодом дифракционной решетки:

с = а+ b (9)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 6). Выберем некоторое направление вторичных волн под углом α относительно нормали к решет­ке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода δ = А"В". Такая же разность хода будет для вторичных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие А"В" = ± k λ, или

c sin α = ± k λ (10)

где k=0,1,2, ... - порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, α = 0). Равенство (10) является основной формулой дифракционной решетки .

Голография – метод записи и восстановления изображения, основанный на интерференции и дифракции.

При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и таким образом пропадает значительная часть информации о предмете.

Голография позволяет регистрировать и воспроизводить более полную информацию об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используют как вспомогательные устройства, и сигнальную , которая по­является при рассеянии (отражении) части опорной волны пред­метом и содержит соответствующую информацию о нем.

Интерференционную картину, образованную сложением г.гнальной и опорной волн и зафиксированную на светочувст­вительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.

На рис. 7 показана голограмма плоской волны. В этом случае на голограмме фик­сируется плоская сигнальная волна I, попадающая под углом α1 на фотопластинку Ф .

Опорная волна II падает нормально, поэтому во всех точках фото­пластинки одновременно ее фаза одинакова. Фазы сигнальной волны вследствие ее наклонного падения различны в разных точках светочувствительного слоя. Из этого следует, что разность фаз между лучами опорной и сигнальной волн зависит от места встречи этих лучей на фотопластинке и, согласно условиям макси­мумов и минимумов интерференции, получен­ная голограмма будет состоять из темных и светлых полос.

При восстановлении изображения можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инф­ракрасными и рентгеновскими), можно восстановить видим светом. Так как условия отражения и поглощения электромаг­нитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать ее как метод внутривидения, или интроскопии (визуальное наблю­дение объектов, явлений и процессов в оптически непрозрачных телах и средах, а также в условиях плохой видимости).

Особо интересные и важные перспективы открываются в связи с ультразвуковой голографией. Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым све­том. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожидать, что в будущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.

Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Один из первых способов построения голографического микроскопа основан на том, что изображение предмета получается увеличенным, если голограм­му, записанную с плоской опорной волной, осветить расходящей­ся сферической волной.

В развитие голографии внес вклад советский физик Ю. Н. Денисюк, разработавший метод цветной голографии.

Сейчас трудно оценить все возможности применения гологра­фии: кино, телевидение, запоминающие устройства и т. д. Несом­ненно лишь, что голография является одним из величайших изо­бретений XX в.



Интерференция и дифракция волн. Эффект Доплера.

При одновременном распространении нескольких волн смещение частиц среды представляет собой векторную сумму смещений, которые имели бы место при распространении каждой волны в отдельности. Иначе говоря, волны просто накладываются одна на другую, не искажая друг друга. Этот экспериментальный факт был известен еще Леонардо да Винчи, который заметил, что круги волн на воде от разных источников проходят один сквозь другой и распространяются дальше, не претерпев никаких изменений. Утверждение о независимом распространении нескольких волн носит название принципа суперпозиции для волнового движения.Мы уже рассматривали распространение в одном направлении двух одинаково поляризованных монохроматических волн с близкими частотами. В результате наложения таких волн получается почти синусоидальная волна с периодически меняющейся в пространстве амплитудой. «Моментальная фотография» такой волны выглядит как следующие друг за другом группы волн, а вызываемое волной колебание в какой-либо фиксированной точке имеет характер биений.



Когерентные волны.

Особый интерес представляет случай сложения так называемых когерентных волн, волн от согласованных источников. Простейшим примером когерентных волн являются монохроматические волны одинаковой частоты с постоянной разностью фаз. Для истинно монохроматических волн требование постоянной разности фаз будет лишним, так как они являются бесконечно протяженными в пространстве и во времени и две такие волны одинаковой частоты всегда имеют постоянную разность фаз. Но реальные волновые процессы, даже близкие к монохроматическим, всегда имеют конечную протяженность. Для того чтобы такие квазимонохроматические волны, представляющие собой последовательности отрезков синусоидальных волн, были когерентными, требование постоянной разности фаз является обязательным. Строго говоря, понятие когерентности волн является более сложным, чем описано выше. Подробнее мы познакомимся с ним при изучении оптики.вызываемая этими волнами картина колебаний является стационарной, в каждой точке происходят колебания с не зависящейот времени амплитудой. Разумеется, в разных точках амплитуды колебаний будут различаться.Пусть, например, два когерентных источника, находящиеся на расстоянии друг от друга, создают сферические волны, интерференция которых наблюдается в точке (рис. 201). Рис. 201. К интерференции волн от двух точечных источников

Если расстояния от источников до точки наблюдения велики по сравнению с расстоянием между источниками, то амплитуды обеих волн в точке наблюдения будут практически одинаковыми. Одинаковыми будут и направления смещений точек среды, вызываемых этими волнами в месте наблюдения.Результат интерференции в точке будет зависеть от разности фаз между волнами, приходящими в эту точку. Если источники совершают колебания в одинаковой фазе, то разность фаз волн в точке зависит только от разности хода волн от источников до точки наблюдения. Если эта разность хода равна целому числу длин волн, то волны приходят в точку в фазе и, складываясь, дают колебание с удвоенной амплитудой. Если же разность хода равна нечетному числу полуволн, то волны приходят в точку Р в противофазе и «гасят» друг друга амплитуда результирующего колебания равна нулю. При промежуточных значениях разности хода амплитуда колебаний в точке наблюдения принимает определенное значение в промежутке между указанными предельными случаями. Каждая точка среды характеризуется определенным значением амплитуды колебаний, которое не меняется со временем. Распределение этих амплитуд в пространстве называется интерференция и он ной картин ой.Гашение колебаний в одних местах и усиление в других при интерференции волн не связаны, вообще говоря, с какими-либо превращениями энергии колебаний. В точках, где колебания от двух волн гасят друг друга, энергия волн отнюдь не превращается в другие виды, например в теплоту. Все сводится лишь к перераспределению потока энергии в пространстве, так что минимумы энергии колебаний в одних местах компенсируются максимумами в других в полном соответствии с законом сохранения энергии.Для наблюдения устойчивой интерференционной картины не обязательно иметь два независимых когерентных источника. Вторую, когерентную с исходной волну можно получить в результате отражения исходной волны от границы среды, в которой происходит распространение волн. В этом случае интерферируют падающая и отраженная волны.



Стоячая волна.

Если плоская монохроматическая волна падает по нормали на плоскую границу раздела двух сред, то в результате отражения от границы возникает также плоская волна, распространяющаяся в обратном направлении. Аналогичное явление происходит при отражении распространяющейся в струне волны от закрепленного или свободного конца струны. При равенстве амплитуд падающей и отраженной волн в результате интерференции образуется стоячая волна. В стоячей волне, как и вообще при интерференции волн, каждая точка среды совершает гармоническое колебание с некоторой амплитудой, которая, в отличие от случая бегущей волны, в разных точках среды имеет разные значения (рис. 202).

Точки, в которых амплитуда колебаний струны максимальна, называются пучностями стоячей волны. Точки, в которых амплитуда колебаний равна нулю, называются узлами. Расстояние между соседними узлами равно половине длины бегущей волны. График зависимости амплитуды стоячей волны от показан на рис. 202. На этом же рисунке штриховой линией показано положение струны в некоторый момент времени.Колебания всех точек струны, лежащих между двумя любыми ближайшими узлами, происходят в одинаковой фазе. Колебания точек струны, лежащих по разные стороны узла, происходят в противофазе. Фазовые соотношения в стоячей волне хорошо видны из рис. 202. Совершенно аналогично рассматривается стоячая волна, возникающая при отражении от свободного конца струны.



Стоячая волна и маятник.

Находящиеся в узлах стоячей волны частицы струны вообще не движутся. Поэтому через узловые точки не происходит передачи энергии. Стоячая волна, по существу, уже не является волновым движением, хотя и получается в результате интерференции двух бегущих навстречу волн одинаковой амплитуды. То, что стоячая волна уже фактически не волна, а скорее просто колебания, можно увидеть и из энергетических соображений.В бегущей волне кинетическая и потенциальная энергии в каждой точке колеблются в одинаковой фазе. В стоячей волне, как видно, например, из рис. 202, колебания кинетической и потенциальной энергий сдвинуты по фазе так же, как и при колебаниях маятника в тот момент, когда все точки струны одновременно проходят через равновесное положение, кинетическая энергия струны максимальна, а потенциальная энергия равна нулю, ибо струна в этот момент не деформирована.Волновые поверхности. Наглядное представление о распространении монохроматических волн в упругой среде или на поверхности воды дает картина волновых поверхностей. Все точки среды, лежащие на одной волновой поверхности, имеют в данный момент одну и ту же фазу колебания. Другими словами, волновая поверхность это поверхность постоянной фазы.Уравнение волновой поверхности можно получить, приравнивая фазу в уравнении волны постоянной величине. Например, для плоской волны, описываемой уравнениемуравнение волновой поверхности получаем, приравнивая аргумент косинуса произвольной константе.Видно, что для фиксированного момента времени уравнение это уравнение плоскости, перпендикулярной оси. С течением времени эта плоскость перемещается со скоростью и вдоль оси параллельно самой себе.Для сферической волны, описываемой уравнениемповерхность постоянной фазы задастся уравнениемВолновая поверхность в этом случае это сфера, центр которой совпадает с центром волны, а радиус растет с постоянной скоростью.



Фронт волны.

Следует различать понятия волновой поверхности и фронта волны. Волновая поверхность введена для монохроматической, строго говоря, бесконечно протяженной волны, при распространении которой все точки среды совершают гармонические колебания. Разумеется, это понятие можно применить и к более общему случаю стационарного волнового процесса, при котором все точки среды совершают периодические (но не обязательно гармонические) колебания по закону произвольная периодическая функция своего аргумента. Волновые поверхности в этом случае имеют точно такой же вид, как и в монохроматической волне.Понятие фронта волны относится к нестационарному волновому процессу распространения возмущения. Пусть вся среда находится в покое и в некоторый момент времени включается источник колебаний, от которого в среде начинает распространяться возмущение. Фронт волны это поверхность, которая отделяет точки среды, пришедшие в движение, от тех точек, до которых возмущение еще не дошло. Очевидно, что в однородной изотропной среде фронт волны от плоского источника колебаний представляет собой плоскость, а фронт волны от точечного источника - сферу.При распространении волн в однородной среде нахождение волновых поверхностей не представляет труда. Но при наличии в среде неоднородностей, преград, границ раздела и нахождение волновых поверхностей усложняется.Принцип Гюйгенса. Простой прием построения волновых поверхностей был предложен Гюйгенсом. Принцип Гюйгенса позволяет находить волновую поверхность в некоторый момент времени, если известно ее положение в предшествующий момент. Для этого каждую точку волновой поверхности в момент времени следует рассматривать как источник вторичных волн (рис. 203). Волновая поверхность каждой вторичной волны спустя промежуток времени представляет собой в однородной среде сферу радиуса. Искомая волновая поверхность в момент времени это геометрическая огибающая волновых поверхностей вторичных волн. Принцип Гюйгенса можно применять и для нахождения фронта волны в случае нестационарного волнового процесса.

Рис. 203. Построение волновой поверхности по принципу Гюйгенса.В первоначальной формулировке Гюйгенса этот принцип представлял собой по существу лишь удобный рецепт для нахождения волновых поверхностей, ибо он не объяснял, например, то, почему положение волновой поверхности дает именно передняя огибающая вторичных волн и каков смысл задней огибающей поверхности, показанной на рис. 203 штриховой линией. Обоснование принципа Гюйгенса было дано Френелем на основе учета интерференции вторичных волн. С применением принципа Гюйгенса-Френеля мы встретимся при изучении оптики.Легко видеть, что в простых случаях распространения плоской или сферической волны в однородной среде принцип Гюйгенса приводит к правильным результатам плоская волна остается плоской, а сферическая сферической. Принцип Гюйгенса позволяет найти закон отражения и преломления плоской волны на бесконечной плоской границе раздела двух однородных сред.Волны в неоднородной среде. С помощью принципа Гюйгенса можно объяснить, почему происходит поворот волновой поверхности при распространении волн в неоднородной среде. Пусть, например, плотность среды р возрастает в направлении оси у(рис. 204)

таким образом, что скорость распространения волн и уменьшается вдоль у по линейному закону. Если в какой-то момент времени волновая поверхность представляет собой плоскость, то спустя малый промежуток времени, в момент, эта волновая поверхность, как видно из рис. 204, поворачивается и занимает новое положение. Спустя следующий малый промежуток времени она занимает положение.Описанные явления удобно наблюдать при распространении волн на поверхности и звуковых волн в воздухе. Преломление Рис. 204. Поворот волновой звука, вызванное неоднородностью поверхности в неоднородной среде атмосферного воздуха, приводит к ряду интересных явлений. Жители прибрежных поселков часто слышат голоса из лодок, находящихся очень далеко. Так бывает, когда температура воздуха наверху выше, чем на поверхности воды, внизу воздух имеет большую плотность. Это значит, что скорость звука внизу, у поверхности воды, меньше, чем вверху. Тогда звуковая волна, которая должна была бы под углом уходить вверх, преломляется в сторону воды и распространяется вдоль ее поверхности. Вдоль поверхности воды образуется своего рода волновод, по которому звук может распространяться на большие расстояния без заметного ослабления.Аналогичный узкий волновод может существовать и в океанских глубинах при определенном сочетании температур и солености слоев воды. В результате образуется тонкий слой, в котором скорость акустических волн меньше, чем в слоях выше или ниже его. Звуковая энергия в таком канале распространяется, по существу, в двух, а не в трех измерениях и поэтому может быть обнаружена на больших расстояниях от источника.



Дифракция волн.

Применение принципа Гюйгенса к распространению волн в среде при наличии преград позволяет качественно объяснить явление дифракции загибание волн в область геометрической тени. Рассмотрим, например, плоскую волну, падающую на плоскую стенку с прямыми краями (рис. 205). Для простоты будем считать, что падающий на стенку участок волны полностью поглощается, так что отраженной волны нет. На рис. 205 показаны построенные по принципу Гюйгенса волновые поверхности позади преграды. Видно, что волны действительно загибаются в область тени.Но принцип Гюйгенса ничего не говорит об амплитуде колебаний в волне за преградой. Ее можно найти, рассматривая интерференцию волн, приходящих в область геометрической тени. Распределение амплитуд колебаний позади преграды называется дифракционной картиной. Непосредственно за преградой амплитуда колебаний очень мала. Чем дальше от преграды, тем заметнее становится проникновение колебаний в область геометрической тени.Полный вид дифракционной картины позади преграды зависит от соотношения между длиной волны, размером преграды и расстоянием от преграды до точки наблюдения. Если длина волны больше размеров препятствия, то волна его почти не замечает. Если длина волны Я одного порядка с размером преграды, то дифракция проявляется даже на очень малом расстоянии и волны за преградой лишь чуть-чуть слабее, чем в свободном волновом поле с обеих сторон. Если, наконец, длина волны много меньше размеров препятствия, то дифракционную картину можно наблюдать только на большом расстоянии от преграды, величина которого зависит.

Рис. 205. Дифракция плоской волны.Волна от движущегося источника. Принцип Гюйгенса позволяет найти вид фронта волны для нестационарного волнового процесса, возникающего при движении источника колебаний в неподвижной среде. Здесь возможны два существенно различных случая: скорость источника меньше скорости распространения волн в среде и и, наоборот. Пусть источник начинает двигаться из точки О по прямой с постоянной скоростью у, постоянно возбуждая колебания. В первом случае, когда, вопрос о форме фронта волны и его положении решается очень просто фронт будет сферическим, а центр его совпадает с положением источника в начальный момент времени, так как след от всех последующих возмущений окажется внутри этой сферы (рис. 206).Действительно, будем рассматривать создаваемые движущимся источником возмущения через равные промежутки времени. Точки дают положения источника в момент времени. Каждая из этих точек может рассматриваться как центр сферической волны, испущенной источником в тот момент, когда он находится в этой точке. На рис. 206 изображены положения фронтов этих волн в момент времени, когда источник находится в точке. Так как, то фронт каждой последующей волны целиком лежит внутри фронта предыдущей.


Рис. 206. Волновые поверхности при движении источника со скоростью, меньшей скорости волнРис. 207. Волновые поверхности при движении источника со скоростью, равной скорости волиЕсли скорость источника равна скорости распространения волн в среде, то, как показано на рис. 207, фронты всех волн, испущенных в точках, соприкасаются в точке, где находится в данный момент источник. Если на фронте каждой волны возникает некоторое уплотнение среды, то непосредственно перед движущимсяисточником, где фронты всех волн соприкасаются, уплотнение может быть значительным.Конус Маха. Особенно интересен случай, когда скорость источника больше скорости распространения волн в среде. Источник опережает созданные им волны. Положение фронтов волн, испущенных в точках, для того момента времени, когда источник находится в точке, показано на рис. 208.

Огибающая этих фронтов представляет собой поверхность кругового конуса, ось которого совпадает с траекторией источника, вершина в каждый момент времени совпадает с источником, а угол между образующей и осью определяется, как ясно из рис. 208, соотношением.Такой фронт волны получил название конуса Маха. С такой формой фронта волны приходится сталкиваться во всех случаях движения тел со сверхзвуковой скоростью - снарядов, ракет, реактивных самолетов. В тех случаях, когда уплотнение среды на фронте волны значительно, фронт волны можно сфотографировать.

Рис. 209. Конус Маха и фронт звуковой волны при движении источника со скоростью, меньшей скорости волиНа рис. 209, сделанном по фотографии, показаны конус Маха пули, движущейся со сверхзвуковой скоростью, и фронт звуковой волны, созданной пулей при ее движении в стволе с дозвуковой скоростью. Снимок сделан в тот момент, когда пуля обгоняет фронт звуковой волны.Аналогом конуса Маха в оптике является черенковское излучение,возникающее при движении заряженных частиц в веществе со скоростью, превышающей скорость света в этой среде.



Эффект Доплера.

Из рис. 206 видно, что при движении источника монохроматических волн длина излучаемых по разным направлениям волн различна и отличается от длины волны, которую испускал бы неподвижный источник. Если считать промежуток времени равным периоду колебаний, то сферы на рис. 206 можно рассматривать как последовательные гребни или впадины волн, а расстояние между ними как длину волны, излучаемой в соответствующем направлении. Видно, что длина волны, излучаемой по направлению движения источника, уменьшается, а в противоположном направлении - увеличивается. Понять, как это происходит, помогает рис. 210 источник начинает очередной период излучения волны, находясь в точке,и, двигаясь в том же направлении, что и волна, заканчивает период, находясь в точке. В результате длина излученной волны оказывается меньше, чем, на величину.

Неподвижный приемник, регистрирующий эти волны, будет принимать колебания с частотой, отличной от частоты колебанийЭта формула справедлива как в случае приближения источника к неподвижному приемнику, так и в случае удаления. При приближении скорость источника берется с положительным знаком, при удалении с отрицательным.Если источник движется с дозвуковой скоростью, то при приближении частота принимаемого звука выше, а при удалении ниже, чем при неподвижном источнике. Такое изменение высоты звука легко заметить, слушая звук гудка проносящегося мимо поезда или автомобиля. Если скорость приближения источника звука к приемнику стремится к скорости звука, то согласно длина волны стремится к нулю, а частота к бесконечности.Если и больше и, то сначала мимо приемника промчится источник и только потом придут созданные им при приближении звуковые волны. Эти волны будут приходить в обратной последовательности по сравнению с тем, как они излучались волны, излученные раньше, придут позже. В этом смысл отрицательного значения частоты, получаемого из формулы.Изменение частоты колебаний, регистрируемых приемником, происходит и в том случае, когда источник волн неподвижен в среде, а движется приемник. Если, например, приемник приближается к источнику со скоростью, то его скорость относительно гребней волнравна. Поэтому регистрируемая им частота колебаний равнаЭта формула справедлива и при удалении приемника от неподвижного источника, только скорость упр нужно взять с отрицательным знаком. Если приемник удаляется от источника со сверхзвуковой скоростью, то он догоняет ранее испущенные волны и регистрирует их в обратной последовательности.Явление изменения частоты принимаемых волн при движении источника или приемника относительно среды называется эффектом Доплера.



Акустические волны.

Для человеческого уха спектр слышимых звуков простирается от. Но эти пределы доступны только очень молодым людям. С возрастом чувствительность к верхней области спектра утрачивается. Воспринимаемый на слух диапазон значительно больше того сравнительно узкого диапазона частот, в котором заключены звуки человеческой речи.Некоторые существа могут производить и слышать звуки далеко за пределами воспринимаемого человеком диапазона частот. Летучиемыши и дельфины используют ультразвук (частота которого лежит выше верхней границы слышимых звуков) как своего рода «радар» (или «сонар») для эхолокации, для определения положения предметов. Ультразвук широко применяется в технике.Акустические колебания с частотами ниже нижней границы слышимых звуков называются инфразвуком. Они, как правило, вызывают у людей неприятные, тревожные ощущения.

В каких пределах может изменяться амплитуда при сложении двух монохроматических волн одинаковой частоты в зависимости от разности их фаз?

Опишите вид интерференционной картины, создаваемой двумя когерентными точечными источниками.

Почему плохо слышно, когда человек кричит против ветра? Конечно, встречный ветер уменьшает скорость звука, но ведь это уменьшение очень незначительно и само по себе не может объяснить наблюдаемого эффекта: скорость звука в воздухе около 340 м/с, а скорость ветра обычно не превышает 10-15 м/с. Для объяснения эффекта нужно принять во внимание, что вблизи земли скорость ветра меньше, чем наверху.

Как явления интерференции согласуются с законом сохранения энергии? Почему в тех случаях, когда длина волны много меньше размеров преграды, дифракционную картину можно наблюдать только на очень больших расстояниях от преграды?

В каком случае сдвиг частоты звуковых колебаний в эффекте Доплера проявляется сильнее: при движении источника звука или при движении приемника с такой же скоростью?

Применимы ли формулы для сдвига частоты при эффекте Доплера в случае движения источника или приемника звука со сверхзвуковой скоростью?

Приведите известные вам примеры применения ультразвука в технике.

Разглядывая сияющее голографическое изображение, большинство из нас вряд ли вспоминает физические термины «дифракция» и «интерференция световых волн» .


Но именно благодаря изучению этих понятий появилась возможность создавать голограммы.

Что такое дифракция света?

Слово «дифракция» образовано от латинского «diffractus» , что означает в дословном переводе «огибание волнами препятствия» . Как известно, имеет волновую природу, и его лучи подчиняются волновым законам. Дифракцией в физике называют оптические явления, возникающие, когда световые волны распространяются в оптически неоднородной среде с непрозрачными включениями.

Волновая природа света определяет его поведение при огибании препятствий. Если препятствие во много раз больше длины световой волны, свет не огибает его, образуя зону тени. Но в случаях, когда размеры препятствий соразмерны с длиной волны, возникает явление дифракции. В принципе, любое отклонение от геометрических оптических законов можно отнести к дифракции.

Интерференция волн

Если мы установим перед источником света непрозрачный экран и проделаем в нём точечное отверстие, то проникающие через эту точку лучи света на следующем экране, расположенном параллельно первому, отобразятся в виде концентрических колец с чередованием светлых и тёмных окружностей. Это явление в физике называют дифракцией Френеля, по имени учёного, который впервые обнаружил его и описал.

Изменив форму отверстия и сделав его щелеобразным, мы получим на втором экране другую картину. Световые лучи расположатся в виде ряда светлых и тёмных полосок, как на магазинном штрих-коде. Дифракцию света на щелеобразном отверстии впервые описал немецкий физик Фраунгофер, именем которого она называется до сих пор.


Объяснить разложение световой волны на светлые и тёмные участки учёные смогли при помощи понятия интерференции. Несколько источников волновых колебаний, если частоты их колебаний когерентны (одинаковы либо кратны друг другу), могут усиливать излучение друг друга, но могут и ослаблять, в зависимости от совпадения фаз колебаний. При огибании препятствий и возникновении вторичных волн вступает в действие их интерференция. На участках, где фазы волн совпадают, наблюдается повышенная освещённость (яркие светлые полоски либо окружности), а там, где не совпадают – освещённость снижена (тёмные участки).

Дифракционная решётка

Если взять прозрачную пластинку и нанести на неё ряд параллельных непрозрачных чёрточек на одинаковом расстоянии друг от друга, то мы получим дифракционную решётку. При пропускании через неё плоского светового фронта образуется дифракция на непрозрачных штрихах. Вторичные волны, взаимно ослабляясь и усиливаясь, образуют дифракционные минимумы и максимумы, что легко обнаружить на экране, поставленном за решёткой.

При этом происходит не только отклонение световых лучей, но и разложение белого света на цветовые спектральные составляющие. В природе нужная для маскировки окраска крыльев бабочек, оперения птиц, змеиной чешуи часто образуется благодаря использованию дифракционных и интерференционных оптических явлений, а не из-за пигментов.

Голограммы

Принцип голограммы был изобретён в 1947 году физиком Д. Габором, который впоследствии получил за его изобретение Нобелевскую премию. Трёхмерное, т.е. объёмное изображение объекта можно снять и записать, а затем воспроизвести, если использовать лазерные лучи. Одна из световых волн называется опорной и испускается источником, а вторая – объектной и отражается от записываемого объекта.

На фотопластинке либо другом материале, предназначенном для записи, фиксируется сочетание светлых и тёмных полос и пятен, которые отображают интерференцию электромагнитных волн в этой зоне пространства. Если на фотопластинку направляют свет с длиной волны, соответствующей характеристикам опорной волны, то происходит его преобразование в световую волну, по характеристикам близкую к объектной. Таким образом, в световом потоке получается объёмное изображение зафиксированного объекта.


Сегодня неподвижные голограммы можно записывать и воспроизводить даже в домашних условиях. Для этого нужен лазерный луч, фотопластина и каркас, который надёжно удерживает в неподвижности эти приспособления, а также объект записи. Для домашней голограммы отлично подойдёт луч лазерной указки со снятой фокусирующей линзой.