Дипольный электрический момент системы зарядов. Электрические свойства молекул и дипольный момент

Часто возникает необходимость найти характеристики электрического поля, создаваемого системой зарядов, локализованных в небольшой области пространства. Примером такой системы зарядов могут служить атомы и молекулы, состоящие из электрически заряженных ядер и электронов. Если требуется найти поле на расстояниях, которые значительно больше размеров области расположения частиц, то нет необходимости пользоваться точными, но громоздкими формулами, достаточно ограничится более простыми приближенными выражениями.
 Пусть электрическое поле создается набором точечных зарядов q k (k = 1, 2, …, N) , расположенных в пределах небольшой области пространства, характерные размеры которой обозначим l (рис. 285).

Рис. 285
 Для расчета характеристик электрического поля, в некоторой точке A , находящейся на расстоянии r , значительно превышающем l , все заряды системы можно «объединить» и рассматривать систему зарядов как точечный заряд Q , величина которого равна сумме зарядов исходной системы

 Этот заряд можно мысленно расположить в любой точке области расположения системы зарядов q k (k = 1, 2, …, N) , так как при l << r , изменение положения в пределах малой области незначительно повлияет на изменение поля в рассматриваемой точке.
 В рамках такого приближения напряженность и потенциал электрического поля определяются по известным формулам

 Если суммарный заряд системы равен нулю, то указной приближение является слишком грубым, приводящим к выводу об отсутствии электрического поля.
 Более точное приближение можно получить, если мысленно собрать отдельно положительные и отрицательные заряды рассматриваемой системы. Если их «центры» смещены друг относительно друга, то электрическое поле такой системы может быть описано как поле двух точечных зарядов, равных по величине и противоположных по знаку, смещенных друг относительно друга. Более точную характеристику системы зарядов в этом приближении мы дадим немного позднее, после изучения свойств электрического диполя.
Электрическим диполем называется система, состоящая из двух точечных зарядов одинаковых по величине и противоположных по знаку, расположенных на малом расстоянии друг от друга.
 Рассчитаем характеристики электрического поля, создаваемого диполем, состоящего из двух точечных зарядов +q и −q , расположенных на расстоянии a друг от друга (рис. 286).

рис. 286
 Сначала найдем потенциал и напряженность электрического поля диполя на его оси, то есть на прямой, проходящей через оба заряда. Пусть точка A , находится на расстоянии r от центра диполя, причем будем считать, что r >> a . В соответствии с принципом суперпозиции потенциал поля в данной точке описывается выражением

На последнем шаге мы пренебрегли вторым малой величиной (a/2) 2 по сравнению с r 2 . Величину вектора напряженности электрического поля также можно вычислить на основании принципа суперпозиции

Напряженность поля можно вычислить, используя соотношение между потенциалом и напряженностью поля E x = −Δφ/Δx . В данном случае вектор напряженности направлен вдоль оси диполя, поэтому его модуль рассчитывается следующим образом


Обратите внимание, что поле диполя ослабевает быстрее поля точечного заряда, так потенциал поля диполя убывает обратно пропорционально квадрату расстояния, а напряженность поля − обратно пропорционально кубу расстояния.
 Аналогичным, но более громоздким, способом можно найти потенциал и напряженность поля диполя в произвольной точке, положение которой определим с помощью полярных координат: расстояния до центра диполя r и угла θ (рис. 287).

рис. 287
 По принципу суперпозиции потенциал поля в точке A равен

Учитывая, что r >> a , формулу (6) можно упростить с помощью приближений

в этом случае получаем

 Вектор напряженности электрического поля E удобно разложить на две составляющие: радиальную E r , направленную вдоль прямой, соединяющей данную точку с центром диполя, и перпендикулярную ей E θ (рис. 288).

рис. 288
 При таком разложении каждая компонента направлена вдоль направления изменения каждой из координат точки наблюдения, поэтому может быть найдена из соотношения, связывающего напряженность поля и изменение потенциала.
 Для того, чтобы найти компоненты вектора напряженности поля, запишем отношение изменения потенциала, при смещении точки наблюдения в направлении соответствующих векторов (рис. 289).

рис. 289
Радиальная составляющая тогда выразится соотношением


 Для расчета перпендикулярной составляющей следует учесть, что величина малого смещения в перпендикулярном направлении выражается через изменение угла следующим образом Δl = rΔθ.
Поэтому величина этой компоненты поля равна


 При выводе последнего соотношения использована тригонометрическая формула для разности косинусов и приближенное соотношение, справедливое при малых Δθ :
sinΔθ ≈ Δθ.
 Полученные соотношения полностью определяют поле диполя в произвольной точке и позволяют построить картину силовых линий этого поля (рис. 290).

рис. 290
 Теперь обратим внимание, что во всех формулах, определяющих потенциал и напряженность поля диполя, фигурирует только произведение величины одного из зарядов диполя на расстояние между зарядами. Поэтому именно это произведение является полной характеристикой электрических свойств и называется дипольным моментом системы. Так как диполь является системой двух точечных зарядов, то он обладает осевой симметрией, осью которой является прямая, проходящая через заряды. Следовательно, для задания полной характеристики диполя следует указать и ориентацию оси диполя. Проще всего это сделать, задавая вектор дипольного момента , величина которого равна дипольному моменту, а направление совпадает с осью диполя

где a − вектор, соединяющий отрицательный и положительный заряды диполя 1 . Такая характеристика диполя весьма удобна и позволяет во многих случая упрощать формулы, придавая им векторный вид. Так, например, потенциал поля диполя в произвольной точке, описываемый формулой (6), может быть записан в векторной форме

 После введения векторной характеристики диполя, его дипольного момента, появляется возможность использовать еще одну упрощающую модель − точечный диполь: систему зарядов, геометрическими размерами которой можно пренебречь, но обладающей дипольным моментом 2 .
Рассмотрим поведение диполя в электрическом поле.

рис. 291
 Пусть два точечных заряда, находящиеся на фиксированном расстоянии друг от друга, помещены в однородное электрическое поле. Со стороны поля на заряды действуют силы F = ±qE , равные по величине и противоположные по направлению. Суммарная сила, действующая на диполь равна нулю, однако эти силы приложены к различным точкам, поэтому суммарный момент этих отличен от нуля, а равен

где α − угол меду вектором напряженности поля и вектором дипольного момента. Наличие момента силы, приводит к тому, что дипольный момент системы стремится повернуться по направлению вектора напряженности электрического поля.
 Обратите внимание, что и момент силы, действующий на диполь, полностью определяется его дипольным моментом. Как мы показали ранее, если сумма сил, действующих на систему, равна нулю, то суммарный момент сил не зависит от оси, относительно которой этот момент рассчитывается. Положению равновесия диполя соответствуют как направление по полю α = 0 , так и против него α = π , однако легко показать, что первое положение равновесия устойчиво, а второе нет.
Если электрический диполь находится в неоднородном электрическом поле, то силы, действующие на заряды диполя различны, поэтому результирующая сила отлична от нуля.
 Для упрощения, будем считать, что ось диполя совпадает с направлением вектора напряженности внешнего электрического поля. Совместим ось x системы координат с направлением вектора напряженности (рис. 292).

рис. 292
 Результирующая сила, действующая на диполь, равна векторной сумме сил, действующих на заряды диполя,

 Здесь E(x) − напряженность поля в точке расположения отрицательного заряда, E(x + a) − напряженность в точке положительного заряда. Так как расстояние между зарядами мало, разность напряженностей представлена как произведение скорости изменения напряженности на размер диполя. Таким образом, в неоднородном поле, на диполь действует сила, направлена в сторону возрастания поля, или диполь втягивается в область более сильного поля.
 В заключение вернемся к строгому определению дипольного момента произвольной системы зарядов. Вектор дипольного момента, системы, состоящей из двух зарядов (рис. 293),

рис. 293
может быть записан в виде

Если теперь пронумеровать заряды, то эта формула приобретает вид

где величины зарядов понимаются в алгебраическом смысле, с учетом их знаков. Последняя формула допускает очевидное обобщение (обоснованием которого является принцип суперпозиции) на систему произвольного числа зарядов

 Эта формула определяет дипольный момент произвольной системы зарядов, с ее помощью произвольная система зарядов может быть заменена на точечный диполь (рис. 294).

рис. 294
 Положение диполя внутри области расположения зарядов произвольно, естественно, если электрическое поле рассматривается на расстояниях значительно превышающих размеры системы.

Задания для самостоятельной работы.
1. Докажите, что для произвольной системы зарядов, алгебраическая сумма которых равна нулю, дипольный момент, определяемый по формуле (11), не зависит от выбора системы отсчета.
2. Определите «центры» положительных и отрицательных зарядов системы, по формулам аналогичным, формулам для координат центра масс системы. Если все положительный и все отрицательные заряды собрать в своих «центрах», то получим диполь, состоящий из двух зарядов. Покажите, что его дипольный момент совпадает с дипольным моментом, рассчитанным по формуле (11).
3. Получите двумя способами формулу, выражающую силу взаимодействия точечного диполя и точечного заряда, находящегося на оси диполя: во-первых, найдите силу, действующую на точечный заряд со стороны диполя; во-вторых, найдите силу, действующую на диполь со стороны точечного заряда; в-третьих, убедитесь, что эти силы равны по модулю и противоположны по направлению.

1 Направление вектора дипольного момента, в принципе можно задать и противоположным, но исторически сложилось задание направления дипольного момента от отрицательного к положительному заряду. При таком определении силовые линии как бы являются продолжением вектора дипольного момента.
  2 Очередная, абсурдная на первый взгляд, но удобная абстракция − материальная точка, имеющая два заряда, разнесенных в пространстве.

Энергия системы точечных зарядов. Энергия заряженного проводника.

Даже у отдельного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением так что плотность энергии на расстоянии r от заряда равна

За элемент объема можно принять сферический слой толщиной dr, по площади равный 4πr 2 . Полная энергия будет

Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен, а потенциал обкладки, на которой находится заряд -q , равен. Энергия такой системы

Энергию заряженного конденсатора можно представить в виде

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

Слева силовые линии диполя, справа - пример диполя (молекула воды).

Дипольный момент - векторная физическая величина, характеризующая электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.

Простейшая система зарядов, имеющая ненулевой дипольный момент - это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда н а расстояние между зарядами и направлен от отрицательного заряда к положительному, или:

Где - величина положительного заряда, - вектор с началом в отрицательном заряде и концом в положительном.

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Диэлектрики и их классификация. Определение вектора поляризации и диэлектрической восприимчивости. Поляризация полярных и неполярных диэлектриков.

Диэлектрик (изолятор) - вещество, плохо проводящее электрический ток.

Основное свойство диэлектрика - способность поляризоваться во внешнем электрическом поле.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей под воздействием внешнего электрического поля, других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации называют просто поляризацией.



Диэлектрическая восприимчивость (поляризуемость) вещества - физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость χ ε - коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:

, где ε 0 - электрическая постоянная; произведение ε 0 χ ε называется абсолютной диэлектрической восприимчивостью .

В случае вакуума χ ε = 0 .

У диэлектриков, как правило, она положительна. Диэлектрическая восприимчивость измеряется в ничём (безразмерная величина).

Ряд диэлектриков проявляют особые физические свойства. К ним относятся пьезоэлектрики (которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности, или наоборот), пироэлектрики (поляризация в отсутствие внешних воздействий), сегнетоэлектрики (обладающие в определённом интервале температур собственным дипольным моментом), и.т.д.

µ = δ l

Рис. 2.23. Схема образования диполя в гетероядерной молекуле АВ

2.3. Полярность связи. Дипольный момент молекулы

При образовании ковалентной химической связи между разными атомами (гетероядерные молекулы) электронная плотность распределяется не симметрично относительно ядер. В молекуле она сдвинута в сторону ато-

тельных зарядов электронов не совпадают. Возникает система разных по знаку, но одинаковых по величине электриче-

ских зарядов (δ+ иδ− ) –электрический диполь (рис. 2.23).

Мерой полярности связи (характеристикой диполя) является диполь-

ный момент µ – произведение величины зарядаδ на расстояние между центрами тяжести положительных и отрицательных зарядов (длина диполяl ).

Единицей измерения дипольного момента в системе СИ [Кл м] чаще

используется внесистемная единица Дебай (D ): 1D = 3,33 10-30 Кл м.

В гетероядерных молекулах связь всегда полярна, но если число атомов в молекуле три и более, то возникающая при этом система распределения зарядов может привести к тому, что молекула в целом не будет являться диполем – центры тяжести положительных и отрицательных зарядов совпадают. Как правило, это связано с симметричным строением молекулы.

Если молекулу, даже если она не является диполем, поместить в электрическое поле напряженностью Е , происходит разделение центров тяжести зарядов в результате смещения электронов относительно ядер, и смещения атомов относительно друг друга в молекуле. При этом молекула приобретает наведенный (индуцированный) дипольный момент. Способность молекул приобретать в электрическом поле дипольный момент на-

зывается поляризуемостью.

Дипольный момент наведенного диполя пропорционален напряженности электрического поля: µи = α ε 0 E , гдеα – коэффициент поляризуе-

мости (поляризуемость) атома или молекулы, ε 0 – электрическая постоянная.

Молекула

Дипольный мо-

Дипольный момент

Строение

мент связи, D

молекулы, D

молекулы

3 . ХИМИЧЕСКАЯ СВЯЗЬ В ТВЕРДЫХ ВЕЩЕСТВАХ

И ЖИДКОСТЯХ

3.1. Агрегатные состояния

Вещества в зависимости от внешних условий (температура и давление) и их химического состава могут существовать в трех основных агрегатных состояниях: газообразном, жидком и твердом. При достаточно низких температурах вещества находятся в твердом состоянии, а при относительно высоких – в жидком и газообразном.

При нагревании происходит, как правило, последовательный переход веществ из твердого в жидкое и газообразное состояние (плавление и испарение), а при охлаждении протекают обратные процессы (конденсация и кристаллизация). Эти переходы осуществляются при определенной температуре (температуре фазового перехода), при этом скачкообразно изменяется молярный объем вещества и энтропия (энергетическая характеристика степени разупорядоченности системы), поглощается или выделяется тепловая энергия (энтальпия фазового перехода). Температура перехода из одного состояния в другое зависит от химической природы вещества и давления. Конкретные значения температур фазовых переходов для различных веществ лежат в широких пределах (табл. 3.1). Необходимо отметить, что при определенных условиях возможен фазовый переход твердое состояние – газ (сублимация-кристаллизация).

Таблица 3 . 1

Температуры (° С ), энтальпия (∆ Н 0 , кДж/моль) и энтропии (∆ S 0 , Дж/моль К) фазо-

вых переходов некоторых веществ при атмосферном давлении

Тип кристалла

Фазовый переход

Плавление -

Кипение –

кристаллизация

конденсация

t пл ,° С

∆ Н 0 пл,

∆ S 0пл ,

t кип, ° С

∆ Н 0 исп,

∆ S 0 исп,

Молекулярный

C6 Н6

S(β )

Ковалентный

MgF2

Металлический

Жидкое и твердое агрегатные состояния относят к конденсированному состоянию вещества . Оно отличается от газообразного тем, что энергия взаимодействия между частицами, образующими вещество, сравнима по величине или превышает энергию их теплового движения. Это приводит к тому, что среднее расстояние между частицами (между центрами частиц) в газе при нормальных условиях составляет величину ~ 10 их диаметров, тогда как в конденсированном состоянии оно сравнимо с их диаметром. Молярный объем любого газа при нормальных условиях равен 22,4 л/моль, тогда как молярные объемы твердых веществ и жидкостей примерно в 103 раз меньше (0,01–0,05 л/моль).

Пример. Расчет средних размеров пространства, занимаемого одной частицей при атмосферном давлении.

Газ Жидкость, кристалл

V =a 3 – объем пространстваa – ребро куба

d – средний диаметр частицы

газа при нормальных

условиях

занимает

V ν = 22,4 л/моль и содержит 6,02 1023 молекул (число Авогадро).

3,7 10-26 м3 ,a = 3 V = 3 3,7 10− 26 = 3,3 10-9 м= 33А.

6,02 1023

Размер молекулы азота (две длины связи) d N2 3 Ǻ.

Жидкость.

жидкого брома

(Br2 )

занимает

51,2 cм3 .

М =160 г/моль

молярная масса

ρ =3,12 г/см3 – плотность жидкого брома,V ν – молярный объем жидкого брома.

Средний размер пространства, занимаемого одной частицей:

8,5 10-29 м3

A= 3 V= 3

8,5 10− 29 = 4,4 10-10

м = 4,4 А.

1023

Размер молекулы брома (две длины связи) d Br2 4,56 Ǻ.

Кристалл. 1

моль металлического серебра занимает объем

10,3 cм3 .

М =108 г/моль – молярная масса серебра,ρ =10,50 г/см3 – плотность серебра,V ν – молярный объем серебра.

Средний размер пространства, занимаемого одной частицей:

1,7 10-29 м3 ,a = 3 V = 3 1,7 10− 29

2,6 10-10

м = 2,6 А.

1023

Размер атома серебра (два металлических радиуса) d Ag 2,68 Ǻ.

В газах частицы находятся в броуновском движении, при этом отсутствуют ближний и дальний порядок в положении частиц. Газ не имеет собственного объема и, соответственно, формы. В жидкостях броуновское движение осложнено наличием более или менее устойчивого ближнего порядка в положении частиц относительно друг друга за счет возникновения химических связей между отдельными частицами. Жидкость имеет собственный объем, но из-за слабого межмолекулярного взаимодействия под действием силы тяжести принимает форму сосуда, в котором она находится. В твердом состоянии вещества энергия взаимодействия между частицами намного превышает энергию теплового движения, что приводит к фиксированию положений частиц в пространстве, вокруг которых они совершают колебательные и вращательные движения. Это определяет наличие у твердых тел собственной формы и объема и большое сопротивление сдвигу.

Сравнение энергетических характеристик фазовых переходов свидетельствует о существенно меньшей перестройке вещества при плавлении, чем при испарении. Как видно из табл. 3.1, для всех кристаллов с различным типом химической связи теплота (энтальпия) плавления много меньше теплоты испарения. Энтропия фазового перехода, характеризующая изменение степени упорядоченности системы, также для плавления много меньше, чем для испарения.

В газообразном состоянии, где присутствуют слабо или совсем не взаимодействующие между собой молекулы вещества, химическая связь внутри них рассматривается с использованием моделей «классической» ковалентной связи.

При рассмотрении конденсированного состояния вещества химическая связь описывается с использованием моделей ковалентной, ионной и металлической связи. При этом необходимо принимать во внимание близкое расположение частиц, образующих систему. Это обстоятельство в ряде случаев (жидкости, молекулярные кристаллы) обусловливает необходимость учитывать существенный вклад межмолекулярного взаимодействия в энергию химических связей.

Необходимо отметить, что целый ряд веществ может не иметь одного из агрегатных состояний. Чаще всего это относится к жидкому и газообразному состояниям. Данное обстоятельство связано с соотношением между энергией, необходимой для перевода вещества из одного агрегатного состояния в другое, и энергией, достаточной для разрыва внутримолекулярных химических связей. Например, во многих нерастворимых в воде гидроксидах металлов при нагревании раньше протекает реакция дегидратации (Cu(OH)2 → CuO + H2 O), а затем происходит плавление вещества.

3.2.Межмолекулярное взаимодействие

Как было отмечено выше, в конденсированном состоянии вещества на величину энергии химической связи существенно влияют межмолекулярные взаимодействия. Они связаны с электростатическим взаимодействием зарядов, возникающих в результате нарушения симметрии распределения электронной плотности в молекулах.

3.2.1.Межмолекулярные взаимодействия (силы Ван-дер-Ваальса)

В конденсированных фазах (жидкость, твердое тело) расстояние между молекулами соизмеримо с размерами самих молекул. На таких малых расстояниях проявляют себя силы электростатического взаимодействия диполей, как постоянных, так и наведенных. При этом энергия системы понижается.

Межмолекулярные взаимодействия характеризуются отсутствием обмена электронами между частицами, отсутствием специфичности и насыщаемости. Энергия межмолекулярного взаимодействия сравнительно невелика, однако она вносит существенный вклад в энергетическое состояние системы, определяя в значительной степени физические и химические свойства вещества.

На сравнительно больших расстояниях r между молекулами, когда электронные оболочки не перекрываются, действуют только силы притяжения. При этом возможны три механизма возникновения сил притяжения.

1. Ориентационный эффект (диполь – дипольное взаимодействие). Если молекулы полярны, то проявляется электростатическое взаимодействие двух постоянных диполей. Полярные молекулы ориентируются относительно друг друга противоположно заряженными частями, энергия притяжения прямо пропорциональна дипольным моментам (µ i 2 ) и обратно пропорциональна расстоянию между ними (r 6 ). Повышение температуры ослабляет это взаимодействие, так как тепловое взаимодействие стремится

нарушить взаимную ориентацию молекул.

2. Индукционный эффект (взаимодействие диполь – наведенный диполь).

Неполярные молекулы под действием поля полярной молекулы поляризуются, возникает индуцированный диполь. Индуцированный дипольный момент прямо пропорционален поляризуемости молекул (µ и α µ д ). Энергия притяжения таких молекул прямо пропорциональна дипольным моментам (α µ д 2 ) и обратно пропорциональна расстоянию между ними (r 6 ). Так как наведение диполей происходит при любом пространственном расположении молекул, индукционный эффект от температуры не зависит.

3. Дисперсионный эффект (взаимодействие мгновенных диполей).

В отличие от ориентационного и индукционного взаимодействия дисперсионный эффект имеет объяснение только в рамках квантовой механики. Его возникновение можно представить следующим образом: в процессе движения электронов распределение зарядов внутри атомов может стать несимметричным, что приводит к образованию «мгновенных диполей», которые притягиваются друг к другу. Более того, при сближении молекул движение электронов перестает быть независимым и возникает «самосогласованная» система взаимодействующих мгновенных диполей. Энергия притяжения прямо пропорциональна поляризуемостям молекул (α i ) и обратно пропорциональна расстоянию между ними (r 6 ).

Дисперсионный эффект, как наиболее универсальный, проявляется при взаимодействии как полярных, так и неполярных молекул. Причем для неполярных молекул и молекул с небольшим дипольным моментом он является основным.

Индукционный и ориентационный эффекты играют существенную роль при взаимодействии полярных молекул. Для молекул с большим значением дипольного момента основным является ориентационный эффект. Индукционный эффект обычно невелик и становится значительным лишь тогда, когда полярные молекулы сосуществуют с сильно поляризующимися молекулами (табл. 3.2).

На малых расстояниях между молекулами, когда их электронные оболочки сильно перекрываются, электростатическое отталкивание ядер и электронов становится больше их взаимного притяжения. Энергия отталкивания гораздо сильнее зависит от расстояния (r 12 ), чем энергия притяжения. На больших расстояниях межмолекулярное взаимодействие определяется силами притяжения, а на малых силами отталкивания.

Таблица 3 . 2

Относительный вклад каждой составляющей в энергию межмолекулярного взаимодействия для различных молекул

Ориентацион-

Индукционное

Дисперсион-

µ , Кл м

α , м3

Молекула

зуемость

× 1030

< 0,01

3.2.2.Водородная связь

Особым типом межмолекулярного взаимодействия является водородная связь. Она возникает между молекулами, которые содержат в своей структуре атом водорода и малый по размерам атом элемента с большим значением электроотрицательности (кислород, фтор, азот и др.). Поскольку разница в электроотрицательностях водорода и этих элементов велика, то связь сильно поляризована, на атомах возникают сравнительно большие отрицательные и положительные заряды. В то же время небольшой размер этих атомов позволяет им близко подходить друг к другу при ди- поль-дипольном взаимодействии. Поэтому энергия ориентационного взаимодействия значительно больше (примерно на порядок), чем в других случаях. Кроме того, энергия связи существенно увеличивается за счет частичного образования ковалентной составляющей связи между взаимодействующими атомами соседних молекул по донорно-акцепторному механизму. 1s -орбиталь водорода частично оголена благодаря сильной поляризации связи (это еще не Н+ , но уже и не Н0 ), а на электроотрицательном атоме имеются неподеленные электронные пары.

Оба эти фактора приводят к увеличению энергии связи по сравнению с энергией межмолекулярного взаимодействия. Энергия водородной связи составляет величину порядка 100 кДж/моль, энергия межмолекулярного взаимодействия (силы Ван-дер-Ваальса) – 10-20 кДж/моль.

При конденсации молекул, способных к образованию водородных связей, их взаимное расположение будет определяться как направлением в пространстве атомов водорода внутри молекулы, так и направлением в пространстве электронных орбиталей электроотрицательного атома, связанного с атомом водорода соседней молекулы.

Водородная связь определяет многие физические и химические свойства веществ, в частности увеличивается температура плавления и кипения, изменяется плотность вещества. Особую роль водородная связь играет в биохимии, органические молекулы (в том числе и полимеры), содержащие H-O, H-N связи, образуют большое число водородных связей.

Примеры. Вода H2 O.

В конденсированном состоянии каждая молекула воды может иметь четыре водородные связи: две между атомом кислорода (функции донора) и атомами водорода двух соседних молекул воды; еще две – за счет двух атомов водорода (функция акцептора). В кристаллическом состоянии образуется правильная алмазоподобная структура. В узлах располагаются большие атомы кислорода, которые связаны между собою через атом водорода. В жидком состоянии часть водородных связей разорвана (рис.3.1).

Оδ −

Рис. 3.1. Схема образования тетраэдрической пространственной структуры воды вкристаллическом и жидком состояниях: - ковалентная связь,- водородная связь

Фтористый водород HF.

В газообразном состоянии при невысоких температурах, за счет образования водородных связей, образуются ассоциаты (HF)2 , (HF)6. . В конденсированном состоянии, в частности в твердом, HF образует зигзагообразные цепи (рис. 3.2).

ЛЕКЦИЯ № 9. ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

ВВЕДЕНИЕ

Материал данной лекции посвящен изучению электрических свойств таких важных материалов как диэлектрики.

Диэлектрические материалы широко распространены в нашей жизни, как в быту, так и в технике, такая ситуация объясняется уникальностью свойств этих веществ.

Диэлектрики – это вещества, которые при обычных условиях практически не проводят электрический ток. В диэлектриках нет свободных носителей заряда. Удельное сопротивление диэлектриков . Для сравнения у металлов .

Главное поле приложения диэлектриков – изоляционные материалы в различных электротехнических устройствах. Основные требования, которым должны удовлетворять все изоляционные материалы – это высокая степень защиты от утечки электрического тока по частям технического устройства. Выполнение этого требования необходимо для обеспечения безопасной работы техники и человека, а также для повышения эффективности работы устройства.

На лекции будет показано, что особые свойства всех диэлектриков, обусловлены их внутренним строением, а именно электрической природой взаимодействия молекул, составляющих диэлектрик.

1. ДИПОЛЬ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

1.1. Дипольный момент электрического диполя

Все молекулы диэлектрика электрически нейтральны. Тем не менее, молекулы обладают электрическими свойствами. В первом приближении молекулу можно рассматривать как электрический диполь.

Рассмотрим простую систему зарядов, которая имеет большое значение в электростатике – электрический диполь.

Электрический диполь – это совокупность двух равных по абсолютной величине разноименных зарядов , находящихся на расстоянии , которое значительно меньше расстояния до рассматриваемых точек поля .

Прямая , соединяющая центры зарядов, называется осью диполя.

Плечо диполя – это вектор, направленный от отрицательного заряда к положительному, и равный по величине расстоянию между зарядами.

Рис.1

Величина, характеризующая электрические свойства диполя, называется электрическим дипольным моментом.

Электрический дипольный момент – это векторная физическая величина, равная произведению модуля заряда диполя на его плечо

Замечание.

1) Дипольный электрический момент всегда сонаправлен с плечом диполя, то есть

2) Размерность дипольного момента в системе СИ – кулон, умноженный на метр.

а) Рассмотрим точку А , лежащую на продолжении оси диполя. Найдем напряженность электростатического поля, создаваемого в данной точке электрическим диполем:


Рис.2

Как видно из рис.2 напряженность поля диполя в точке направлена по оси диполя и по модулю равна:

Тогда на основании формулы для напряженности электростатического поля, создаваемого точечным зарядом: , можно записать:

где – расстояние от центра диполя до рассматриваемой точки А. По определению диполя , поэтому

б) Напряженность поля диполя в точке на перпендикуляре, восстановленном к оси диполя из его середины.

Так как точка равноудалена от зарядов, то

, (1)

где – расстояние от точки до середины диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор , получим

, (2)

откуда

(3)

Подставив (1) в (3), получим

Вектор имеет направление, противоположное вектору электрического момента диполя, то есть

1.3. Электрический диполь в однородном электростатическом поле.

Рассмотрим поведение электрического диполя в однородном электрическом поле. Во внешнем электрическом поле на концы диполя действует пара сил, которая стремится повернуть диполь таким образом, чтобы электрический момент диполя развернулся вдоль направления поля (рис.3).


Рис.3

Электрическое поле действует на положительный и отрицательный заряды диполя с силой равной по величине, но противоположной по направлению (рис. 3)

Такие две силы называются парой сил, они создают вращающий момент относительной точки 0, лежащей посередине на оси диполя. Под действием этого момента электрический диполь поворачивается вдоль поля так, что его дипольный момент будет сонаправлен с напряженностью внешнего электрического поля:

Общий (результирующий) момент, действующий на электрический диполь со стороны внешнего электростатического поля,равен:

Как известно из механики, момент сил всегда направлен по оси вращения. В нашем случае вектор вращающего момента направлен от нас перпендикулярно плоскости рисунка и проходит через середину диполя. Величина вращающего момента равна:

2. ВЕКТОР ПОЛЯРИЗАЦИИ. СВЯЗЬ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ

И ДИЭЛЕКТРИЧЕСКОЙ ВОСПРИИМЧИВОСТИ ДИЭЛЕКТРИКА

Диэлектрики – это вещества, плохо проводящие электрический ток, так как в диэлектриках все электроны связаны с ядрами атомов.

Если заменить положительные заряды ядер молекул суммарным зарядом , находящимся в «центре тяжести» положительных зарядов, а заряд всех электронов – суммарным отрицательным зарядом , находящимся в «центре тяжести» отрицательных зарядов, то молекулы диэлектриков можно рассматривать как электрические диполи.

Различают три типа диэлектриков.

1) Диэлектрики с неполярными молекулами , симметричные молекулы которых в отсутствии внешнего электрического поля имеют нулевой дипольный момент (например ).

2) Диэлектрики с полярными молекулами , молекулы которых вследствие асимметрии имеют ненулевой дипольный момент даже в отсутствии внешнего электрического поля (например ).

3) Ионные диэлектрики (например ). Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков.

При помещении диэлектриков во внешнее электрическое поле происходит поляризация диэлектрика – каждая молекула становится электрическим диполем,приобретает электрический дипольный момент и, самое главное, ориентируется (поворачивается вдоль поля) во внешнем электрическом поле.

Соответственно трем видам диэлектриков различают три вида поляризации.

1) Электронная поляризация диэлектрика с неполярными молекулами происходит за счет деформации электронных орбит, в результате чего возникает дипольный момент у атомов или молекул диэлектрика.


2) Ориентационная, или дипольная поляризация присуща диэлектрикам с полярными молекулами, при этом происходит ориентация уже имеющихся дипольных моментов молекул по полю (эта ориентация тем сильнее, чем больше напряженность внешнего поля и чем ниже температура).


3) Ионная поляризация свойственна диэлектрикам с ионными кристаллическими решетками – смещение подрешетки положительных ионов вдоль поля, а отрицательных ионов против поля приводит к возникновению дипольных моментов.

Для количественной характеристики поляризации диэлектрика вводят вектор поляризации (поляризованность ).

Поляризованность – это векторная физическая величина равная отношению суммарного дипольного электрического момента всего диэлектрика к объему этого диэлектрика:

Размерность вектора поляризованности диэлектрика легко определить из этой формулы:

Заметим, что размерность поляризованности в Интернациональной системе единиц совпадает с размерностью поверхностной плотности зарядов . Этот факт имеет очень важное значение , смысл которого будет вскрыть ниже.

Поляризация диэлектрика – это процесс ориентации электрических диполей молекул вещества.

Из опыта следует, что для большого класса диэлектриков поляризация линейно зависит от напряженности электрического поля в диэлектрике:

(4)

Формула (4) справедлива только для изотропных диэлектриков, то есть диэлектриков, чьи свойства одинаковы по всем направлениям, находящихся в электростатических полях с не слишком большой напряженностью. Величина (каппа) называется диэлектрической восприимчивостью, она характеризует свойства диэлектриков. Диэлектрическая восприимчивость это безразмерная, положительная величина.

Итак, оказывается, что свойства одного и того же вещества относительно электрического поля характеризуются двумя величинами – диэлектрической проницаемостью и диэлектрической восприимчивостью . Следовательно, между этими величинами должна существовать связь.

Для установления количественных соотношений между диэлектрической восприимчивостью и диэлектрической проницаемостью внесем в однородное электрическое поле диэлектрик в форме прямого параллелепипеда, площадь боковых граней которой S и ширина (рис.4).

Под действием внешнего поля диэлектрик поляризуется, т.е. происходит ориентация молекул диэлектрика, так что положительные заряды молекулы смещаются по полю, а отрицательные заряды молекулы смещаются против поля. В результате этого на одной грани диэлектрика будет избыток связанных положительных зарядов, на другой – связанных отрицательных. Внутри диэлектрика связанные заряды компенсируются и можно считать, что внутри диэлектриков зарядов нет.

Появление связанных зарядов на боковых поверхностях диэлектриков приводит к тому, что в диэлектрике возникает дополнительное электростатическое поле, создаваемое связанными зарядами. Обозначим напряженность электростатического поля связанных зарядов . Электрическое поле связанных зарядов всегда направлено против внешнего электрического поля и ослабляет его. Напряженность результирующего электростатического поля поле внутри диэлектрика по принципу суперпозиций равна векторной сумме напряженностей внешнего поля и напряженности поля связанных зарядов:

.

В скалярной форме это равенство имеет вид: .

Рис.4

Найдем величину напряженности поля связанных зарядов. Диэлектрик в электрическом поле можно рассматривать как конденсатор, внутри которого находится вакуум. Поверхностная плотность зарядов на обкладках такого конденсатора равна поверхностной плотности связанных зарядов на гранях диэлектрика . Напряженность электрического поля такого конденсатора, как известно равна:

В нашем случае , тогда и

Теперь определим полный дипольный момент диэлектрической пластинки толщиной и площадью грани . Для этого используем определение вектора поляризованности диэлектрика:

И зарядом равным: раз, то есть справедливо равенство:

Сравнивая две полученные формулы для напряженности внешнего электростатического поля, можно сделать очевидный вывод, что связь между диэлектрической проницаемостью и диэлектрической восприимчивостью имеет вид:

ЗАКЛЮЧЕНИЕ

В заключение лекции, посвященной диэлектрикам, надо еще раз подчеркнуть огромное практическое значение этих материалов в технике. Используя знания, полученные на лекции, можно количественно и качественно изучать процессы влияния диэлектриков на внешние электрические поля.

Практическое значение влияния диэлектрических веществ на электрическое поле, как вы видели, лежит в основе явлений на границе раздела двух диэлектрических сред, широко применяемых в диэлектрических антеннах.

С другой стороны, диэлектрики занимают большое место в конструировании конденсаторов различных типов для увеличения их электрической емкости. Этим вопросом мы будем заниматься уже на следующей лекции, посвященной проблемам поведения проводников в электростатическом поле.


Дипольный момент электрический, векторная величина, характеризующая асимметрию распределения положительных и отрицательных зарядов в электрически нейтральной системе. Два одинаковых по величине заряда +q и -q образуют электрический диполь с дипольный момент m = q l, где l - расстояние между зарядами. Для системы из n зарядов q i радиусы-векторы которых r i , В и молекулярных системах центры положительных зарядов q А совпадают с положениями (радиусы-векторы r A), а электронное распределение описывается плотностью вероятности r(r ).

В этом случае дипольный момент Вектор дипольный момент направлен от центра тяжести отрицательных зарядов к центру тяжести положительных. В хим. литературе дипольный момент молекулы иногда приписывают противоположное направление. Часто вводят представление о дипольный момент отдельных хим. связей, векторная сумма которых дает дипольный момент молекулы. При этом дипольный момент связи определяют двумя положительными зарядами ядер атомов, образующих связь, и распределением отрицательного (электронного) заряда.

Дипольный момент химической связи обусловлен смещением электронного облака в сторону одного из атомов. Связь называют полярной, если соответствующий дипольный момент существенно отличается от нуля. Возможны случаи, когда отдельные связи в . а суммарный дипольный момент молекулы равен нулю; такие молекулы наз. неполярными (напр., молекулы СО 2 и CCl 4). Если же дипольный момент молекулы отличен от нуля, молекула наз. полярной. Напр., молекула Н 2 О полярна; суммирование дипольных моментов двух полярных связей ОН также дает отличный от нуля дипольный момент, направленный по биссектрисе НОН.

Порядок величины дипольный момент молекулы определяется произведением заряда (1,6.10 - 19 Кл) на длину химической связи (порядка 10 - 10 м), т. е. составляет 10 - 29 Кл.м. В справочной литературе дипольный момент молекул приводят в дебаях (Д или D), по имени П. Дебая; 1 Д = 3,33564.10 - 30 Кл.м.

Спектроскопические методы определения дипольного момента молекул основаны на эффектах расщепления и сдвига спектральных линий в электрическом поле (эффект Штарка). Для линейных молекул и молекул типа симметричного волчка известны точные выражения, связывающие дипольный момент со штарковским расщеплением линий . Этот метод дает наиб. точные значения величины дипольный момент (до 10 - 4 Д), причем экспериментально определяется не только величина, но и направление вектора дипольный момент Важно, что точность определения дипольный момент почти не зависит от его абсолютной величины. Это позволило получить весьма точные значения очень малых дипольный момент ряда молекул . которые нельзя надежно определить другими методами. Так, дипольный момент равен 0,085 b 0,001 Д, 0,364 b 0,002 Д, пропина 0,780 b 0,001 Д, толуола 0,375 b 0,01 Д, азулена 0,796 b 0,01 Д. Область применения метода микроволновой спектроскопии ограничена, однако, небольшими молекулами, не содержащими тяжелых элементов. Направление вектора дипольный момент молекулы может быть определено экспериментально и по эффекту Зеемана второго порядка.

Другая группа методов определения дипольных моментов основана на измерениях диэлектрической проницаемости ε вещества. Этими методами измерены дипольные моменты молекул более 10 тыс. веществ. Переход от измеряемого значения ε газа, чистой жидкости или разбавленного раствора, то есть макроскопической характеристики диэлектрика, к величине дипольного момента основан на теории поляризации диэлектриков. Считается, что при наложении электрического поля на диэлектрик его полная поляризация Р (средний дипольный момент единицы объема) складывается из наведенной, или индуцированной, поляризации Р м и ориентационной поляризации Р ор и связана с m ур-нием Ланжевена - Дебая:

где М - мол. масса, d - плотность, a - поляризуемость молекулы, N A - число Авогадро, k - постоянная Больцмана, Т - абсолютная температура. Измерения диэлектрической проницаемости проводят в постоянном поле или при низких частотах, обеспечивающих полную ориентацию молекул по полю. При наиболее распространенном варианте метода - измерениях в разбавленных растворах неполярных растворителей - предполагается аддитивность поляризаций растворенного вещества и растворителя.

Сопоставление дипольных моментов полярных молекул некоторых органических соединений, полученных разными методами, показано в таблице.

Важнейшая область применения данных о дипольных моментах молекул - структурные исследования, установление конформации молекул, конформационного и изомерного состава вещества, его зависимости от температуры. Величины дипольного момента молекул позволяют судить о распределении электронной плотности в и зависимости этого распределения от характера отдельных заместителей. В общем случае структурная интерпретация дипольный момент требует сравнения экспериментальных величин со значениями, полученными квантово-механическим расчетом либо при помощи аддитивной векторной схемы с использованием дипольных моментов отдельных связей и атомных групп. Последние находят либо по интенсивностям колебательных полос поглощения, либо путем векторного разложения дипольный момент некоторых симметричных молекул. Расчеты с использованием векторной аддитивной схемы могут учитывать различные проявления стереохимической нежесткости, например, затрудненное или свободной внутреннее вращение молекулы. Высокосимметричные молекулярные структуры, обладающие центром инверсии, двумя взаимно перпендикулярными осями вращения или осями, перпендикулярными плоскости симметрии, не должны иметь дипольный момент. По наличию или отсутствию дипольного момента молекулы можно в отдельных случаях выбрать для нее ту или иную структуру без каких-либо теоретических расчетов. Так, равенство нулю экспериментального дипольный момент димера аминооксидибутилборана (формула I) служит доказательством того, что он существует в виде устойчивой кресловидной конформации, обладающей центром инверсии. Наоборот, наличие дипольный момент у тиантрена (формула II, X = S) и селенантрена (II, X = Se), равных 1,57 Д и 1,41 Д соотв., исключает для них центросимметричную структуру, в частности плоскую.