Дисперсионный анализ статья. Примеры качественных факторов для различных видов лекарственных форм

Дисперсионный анализ – статистический метод, предназначенный для оценки влияния различных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов.

Первоначально (1918г.) дисперсионный анализ был разработан английским математиком – статистиком Р.А. Фишером для обработки результатов агрономических опытов по выявлению условий получения максимального урожая различных сортов сельскохозяйственных культур.

При постановке опыта необходимо соблюдение условий:

    Каждый вариант опыта необходимо проводить на нескольких единицах наблюдения (групп животных, участков поля и т.п.)

    Распределение единиц наблюдения между вариантами опыта должно быть случайным, а не преднамеренным.

В дисперсионном анализе используется F -критерий (критерий Р.А. Фишера), представляющий отношение двух дисперсий:

где d факт, d ост – факторная (межгрупповая) и остаточная (внутригрупповая) дисперсии на одну степень свободы соответственно.

Факторная и остаточная дисперсии являются оценками дисперсии совокупности, рассчитываются по выборочным данным с учетом числа степеней свободы вариации.

Факторная (межгрупповая) дисперсия объясняет вариацию результативного признака под влиянием изучаемого фактора.

Остаточная (внутригрупповая) дисперсия объясняет вариацию результативного признака, обусловленную влиянием прочих факторов (за исключением влияния изучаемого фактора).

В сумме факторная и остаточная дисперсии дают общую дисперсию, выражающую влияние всех факторных признаков на результативный.

Порядок проведения дисперсионного анализа:

1. Опытные данные заносятся в расчетную таблицу и определяются суммы и средние значения в каждой группе изучаемой совокупности, а также общая сумма и среднее значение по всей совокупности (табл.1).

Таблица 1

Значение результативного признака для i-й единицы

в j-й группе, x ij

Число наблюдений, f j

Средние (групповые и общая), х j

x 11 , x 12 , …, х 1 n

х 21 , х 22 , …, х 2 n

х m 1 , х m 2 , …, х mn

Общее количество наблюдений n рассчитывается как сумма числа наблюдений f j в каждой группе:

Если во всех группах число элементов одинаковое, то общая средняя находится из групповых средних как простая средняя арифметическая:

Если же число элементов в группах разное, то общая средняя рассчитывается по формуле средней арифметической взвешенной:

2. Определяется общая дисперсия D общ как сумма квадратов отклонений индивидуальных значений результативного признака от общей средней :

3. Рассчитывается факторная (межгрупповая) дисперсия D факт как сумма квадратов отклонений групповых средних от общей средней , умноженных на число наблюдений:

4. Определяется величина остаточной (внутригрупповой) дисперсии D ост как разность между общей D общ и факторной D факт дисперсиями:

5. Рассчитываются число степеней свободы факторной
дисперсии как разница между числом группm и единицей:

6. Определяется число степеней свободы для остаточной дисперсии
как разница между количеством индивидуальных значений признакаn и числом групп m :

7. Рассчитывается величина факторной дисперсии на одну степень свободы d факт как отношение факторной дисперсии D факт к числу степеней свободы факторной дисперсии
:

8. Определяется величина остаточной дисперсии на одну степень свободыd ост как отношение остаточной дисперсии D ост к числу степеней свободы остаточной дисперсии
:

9. Определяется расчетное значение F-критерия F -расч как отношение факторной дисперсии на одну степень свободыd факт к остаточной дисперсии на одну степень свободы d ост :

10. По таблице F-критерия Фишера с учетом принятого в исследовании уровня значимости, а также с учетом степеней свободы для факторной и остаточной дисперсий находят теоретическое значение F табл .

5%-ному уровню значимости соответствует 95%-ный уровень вероятности, 1%-ному – 99%-ный уровень вероятности. В большинстве случаев используют 5%-ный уровень значимости.

Теоретическое значение F табл при заданном уровне значимости определяют по таблицам на пересечении строки и столбца, соответствующим двум степеням свободы дисперсий:

по строке – остаточной;

по столбцу – факторной.

11. Результаты расчетов оформляются в таблицу (табл.2).

Применение статистики в этой заметке будет показано на сквозном примере. Предположим, что вы - руководитель производства в компании Perfect Parachute («Идеальный парашют»). Парашюты изготавливаются из синтетических волокон, поставляемых четырьмя разными поставщиками. Одной из основных характеристик парашюта является его прочность. Вам необходимо убедиться, что все поставляемые волокна обладают одинаковой прочностью. Чтобы ответить на этот вопрос, следует разработать схему эксперимента, в ходе которого измеряется прочность парашютов, сотканных из синтетических волокон разных поставщиков. Информация, полученная в ходе этого эксперимента, позволит определить, какой поставщик обеспечивают наибольшую прочность парашютов.

Многие приложения связаны с экспериментами, в которых рассматривается несколько групп или уровней одного фактора. Некоторые факторы, например, температура обжига керамики, могут иметь несколько числовых уровней (т.е. 300°, 350°, 400° и 450°). Другие факторы, например, местоположение товаров в супермаркете, могут иметь категориальные уровни (например, первый поставщик, второй поставщик, третий поставщик, четвертый поставщик). Однофакторные эксперименты, в ходе которых экспериментальные единицы случайным образом распределяются по группам или уровням фактора, называются полностью рандомизированными.

Использование F -критерия для оценки разностей между несколькими математическими ожиданиями

Если числовые измерения фактора в группах являются непрерывными и выполняются некоторые дополнительные условия, для сравнения математических ожиданий нескольких групп применяется дисперсионный анализ (ANOVA - An alysis o f Va riance). Дисперсионный анализ, использующий полностью рандомизированные планы, называется однофакторной процедурой ANOVA. В некотором смысле термин дисперсионный анализ является неточным, поскольку при этом анализе сравниваются разности между математическими ожиданиями групп, а не между дисперсиями. Однако сравнение математических ожиданий осуществляется именно на основе анализа вариации данных. В процедуре ANOVA полная вариация результатов измерений подразделяется на межгрупповую и внутригрупповую (рис. 1). Внутригрупповая вариация объясняется ошибкой эксперимента, а межгрупповая - эффектами условий эксперимента. Символ с обозначает количество групп.

Рис. 1. Разделение вариации в полностью рандомизированном эксперименте

Скачать заметку в формате или , примеры в формате

Предположим, что с групп извлечено из независимых генеральных совокупностей, имеющих нормальное распределение и одинаковую дисперсию. Нулевая гипотеза заключается в том, что математические ожидания генеральных совокупностей одинаковы: Н 0: μ 1 = μ 2 = … = μ с . Альтернативная гипотеза гласит, что не все математические ожидания одинаковы: Н 1 : не все μ j одинаковы j = 1, 2, …, с).

На рис. 2 представлена истинная нулевая гипотеза о математических ожиданиях пяти сравниваемых групп при условии, что генеральные совокупности имеют нормальное распределение и одинаковую дисперсию. Пять генеральных совокупностей, связанных с разными уровнями фактора, идентичны. Следовательно, они накладываются одна на другую, имея одинаковые математическое ожидание, вариацию и форму.

Рис. 2. Пять генеральных совокупностей имеют одинаковое математическое ожидание: μ 1 = μ 2 = μ 3 = μ 4 = μ 5

С другой стороны, предположим, что на самом деле нулевая гипотеза является ложной, причем четвертый уровень имеет наибольшее математическое ожидание, первый уровень - чуть меньшее математическое ожидание, а остальные уровни - одинаковые и еще меньшие математические ожидания (рис. 3). Обратите внимание на то, что за исключением величины математических ожиданий все пять генеральных совокупностей идентичны (т.е. имеют одинаковую изменчивость и форму).

Рис. 3. Наблюдается эффект условий эксперимента: μ 4 > μ 1 > μ 2 = μ 3 = μ 5

При проверке гипотезы о равенстве математических ожиданий нескольких генеральных совокупностей полная вариация разделяется на две части: межгрупповую вариацию, обусловленную разностями между группами, и внутригрупповую, обусловленную разностями между элементами, принадлежащими одной группе. Полная вариация выражается полной суммой квадратов (SST – sum of squares total). Поскольку нулевая гипотеза заключается в том, что математические ожидания всех с групп равны между собой, полная вариация равна сумме квадратов разностей между отдельными наблюдениями и общим средним (среднее средних) , вычисленным по всем выборкам. Полная вариация:

где - общее среднее, X ij - i -e наблюдение в j -й группе или уровне, n j - количество наблюдений в j -й группе, n - общее количество наблюдений во всех группах (т.е. n = n 1 + n 2 + … + n c ), с - количество изучаемых групп или уровней.

Межгрупповая вариация , называемая обычно межгрупповой суммой квадратов (SSA – sum of squares among groups), равна сумме квадратов разностей между выборочным средним каждой группы j и общим средним , умноженных на объем соответствующей группы n j :

где с - количество изучаемых групп или уровней, n j - количество наблюдений в j -й группе, j - среднее значение j -й группы, - общее среднее.

Внутригрупповая вариация , называемая обычно внутригрупповой суммой квадратов (SSW – sum of squares withing groups), равна сумме квадратов разностей между элементами каждой группы и выборочным средним этой группы j :

где Х ij - i -й элемент j -й группы, j - среднее значение j -й группы.

Поскольку сравнению подвергаются с уровней фактора, межгрупповая сумма квадратов имеет с – 1 степеней свободы. Каждый из с уровней обладает n j – 1 степенями свободы, поэтому внутригрупповая сумма квадратов имеет n – с степеней свободы, и

Кроме того, общая сумма квадратов имеет n – 1 степеней свободы, поскольку каждое наблюдение Х ij сравнивается с общим средним , вычисленным по всем n наблюдениям. Если каждую из этих сумм разделить на соответствующее количество степеней свободы, возникнут три вида дисперсии: межгрупповая (mean square among - MSA), внутригрупповая (mean square within - MSW) и полная (mean square total - MST):

Несмотря на то что основное предназначение дисперсионного анализа - сравнить математические ожидания с групп, чтобы выявить эффект условий эксперимента, его название обусловлено тем, что главным инструментом является анализ дисперсий разного типа. Если нулевая гипотеза является истинной, и между математическими ожиданиями с групп нет существенных различий, все три дисперсии - MSA, MSW и MST - являются оценками дисперсии σ 2 , присущей анализируемым данным. Таким образом, чтобы проверить нулевую гипотезу Н 0: μ 1 = μ 2 = … = μ с и альтернативную гипотезу Н 1 : не все μ j одинаковы j = 1, 2, …, с ), необходимо вычислить статистику F -критерия, представляющую собой отношение двух дисперсий, MSA и MSW. Тестовая F -статистика в однофакторном дисперсионном анализе

Статистика F -критерия подчиняется F -распределению с с – 1 степенями свободы в числителе MSA и n – с степенями свободы в знаменателе MSW . При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F F U , присущего F -распределению с с – 1 n – с степенями свободы в знаменателе. Таким образом, как показано на рис. 4, решающее правило формулируется следующим образом: нулевая гипотеза Н 0 отклоняется, если F > F U ; в противном случае она не отклоняется.

Рис. 4. Критическая область дисперсионного анализа при проверке гипотезы Н 0

Если нулевая гипотеза Н 0 является истинной, вычисленная F -статистика близка к 1, поскольку ее числитель и знаменатель являются оценками одной и той же величины - дисперсии σ 2 , присущей анализируемым данным. Если нулевая гипотеза Н 0 является ложной (и между математическими ожиданиями разных групп существует значительная разница), вычисленная F -статистика будет намного больше единицы, поскольку ее числитель, MSA, помимо естественной изменчивости данных, оценивает эффект условий эксперимента или разности между группами, в то время как знаменатель MSW оценивает лишь естественную изменчивость данных. Таким образом, процедура ANOVA представляет собой F -критерий, в котором при заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F -статистика больше верхнего критического значения F U , присущего F -распределению с с – 1 степенями свободы в числителе и n – с степенями свободы в знаменателе, как показано на рис. 4.

Для иллюстрации однофакторного дисперсионного анализа вернемся к сценарию, изложенному в начале заметки. Цель эксперимента - определить, имеют ли парашюты, сотканные из синтетического волокна, полученного от разных поставщиков, одинаковую прочность. В каждой из групп соткано по пять парашютов. Группы разделены по поставщикам- Поставщик 1, Поставщик 2, Поставщик 3 и Поставщик 4. Прочность парашютов измеряется с помощью специального устройства, испытывающего ткань на разрыв с двух сторон. Сила, необходимая для разрыва парашюта, измеряется по особой шкале. Чем выше сила разрыва, тем прочнее парашют. Excel позволяет провести анализ F -статистики одним кликом. Пройдите по меню Данные Анализ данных , и выберите строку Однофакторный дисперсионный анализ , заполните открывшееся окно (рис. 5). Результаты эксперимента (сила разрыва), некоторые описательные статистики и результаты однофакторного дисперсионного анализа представлены на рис. 6.

Рис. 5. Окно Однофакторный дисперсионный анализ Пакета анализа Excel

Рис. 6. Показатели прочности парашютов, сотканных из синтетических волокон, полученных от разных поставщиков, описательные статистики и результаты однофакторного дисперсионного анализа

Анализ рисунка 6 показывает, что между выборочными средними наблюдается некоторая разница. Средняя прочность волокон, полученных от первого поставщика, равна 19,52, от второго - 24,26, от третьего - 22,84 и от четвертого - 21,16. Можно ли назвать эту разницу статистически значимой? Распределение силы разрыва продемонстрировано на диаграмме разброса (рис. 7). На ней ясно видны разности как между группами, так и внутри них. Если бы объем каждой группы был больше, для их анализа можно было бы применить диаграмму «ствол и листья», блочную диаграмму или график нормального распределения.

Рис. 7. Диаграмма разброса прочности парашютов, сотканных из синтетических волокон, полученных от четырех поставщиков

Нулевая гипотеза утверждает, что между средними показателями прочности нет существенных различий: Н 0: μ 1 = μ 2 = μ 3 = μ 4 . Альтернативная гипотеза заключается в том, что существует по крайней мере один поставщик, у которого средняя прочность волокон отличается от других: Н 1 : не все μ j одинаковы (j = 1, 2, …, с ).

Общее среднее (см. рис. 6) =СРЗНАЧ(D12:D15) = 21,945; для определения также можно усреднить все 20 исходных чисел: =СРЗНАЧ(A3:D7). Значения дисперсий рассчитываются Пакетом анализа и отражаются в табличке Дисперсионный анализ (см. рис. 6): SSA = 63,286, SSW = 97,504, SST = 160,790 (см. колонку SS таблицы Дисперсионный анализ рисунка 6). Средние значения вычисляются путем деления этих сумм квадратов на соответствующее количество степеней свободы. Поскольку с = 4, а n = 20, получаем следующие значения степеней свободы; для SSA: с – 1 = 3; для SSW: n – c = 16; для SST: n – 1 = 19 (см. колонку df ). Таким образом: MSA = SSA / (с – 1) = 21,095; MSW = SSW / (n – c ) = 6,094; MST = SST / (n – 1 ) = 8,463 (см. колонку MS ). F -статистика = MSA / MSW = 3,462 (см. колонку F ).

Верхнее критическое значение F U , характерное для F -распределения, определяется по формуле =F.ОБР(0,95;3;16) = 3,239. Параметры функции =F.ОБР(): α = 0,05, числитель имеет три степени свободы, а знаменатель - 16. Таким образом, вычисленная F -статистика, равная 3,462, превышает верхнее критическое значение F U = 3,239, нулевая гипотеза отклоняется (рис. 8).

Рис. 8. Критическая область дисперсионного анализа при уровне значимости, равном 0,05, если числитель имеет три степени свободы, а знаменатель -16

р -значение, т.е. вероятность того, что при истинной нулевой гипотезе F -статистика не меньше 3,46, равно 0,041 или 4,1% (см. колонку р-Значение таблицы Дисперсионный анализ рисунка 6). Поскольку эта величина не превышает уровень значимости α = 5%, нулевая гипотеза отклоняется. Более того, р -значение свидетельствует о том, что вероятность обнаружить такую или большую разность между математическими ожиданиями генеральных совокупностей при условии, что на самом деле они одинаковы, равна 4,1%.

Итак. Между четырьмя выборочными средними существует разница. Нулевая гипотеза заключалась в том, что все математические ожидания четырех генеральных совокупностей равны между собой. В этих условиях мера полной изменчивости (т.е. полная вариация SST) прочности всех парашютов вычисляется путем суммирования квадратов разностей между каждым наблюдением X ij и общим средним . Затем полная вариация разделялась на два компонента (см. рис. 1). Первый компонент представлял собой межгрупповую вариацию SSA, а второй - внутригрупповую SSW.

Чем объясняется изменчивость данных? Иначе говоря, почему все наблюдения не одинаковы? Одна из причин заключается в том, что разные фирмы поставляют волокна разной прочности. Это частично объясняет, почему группы имеют разные математические ожидания: чем сильнее эффект условий эксперимента, тем больше разность между математическими ожиданиями групп. Другой причиной изменчивости данных является естественная изменчивость любого процесса, в данном случае - производства парашютов. Даже если бы все волокна приобретались у одного и того же поставщика, их прочность была бы неодинаковой при прочих равных условиях. Поскольку этот эффект проявляется в каждой из групп, он называется внутригрупповой вариацией.

Разности между выборочными средними называются межгрупповой вариацией SSA. Часть внутригрупповой вариации, как уже указывалось, объясняется принадлежностью данных разным группам. Однако даже если бы группы были совершенно одинаковыми (т.е. нулевая гипотеза была бы истинной), межгрупповая вариация все равно существовала. Причина этого заключается в естественной изменчивости процесса производства парашютов. Поскольку выборки разные, их выборочные средние отличаются друг от друга. Следовательно, если нулевая гипотеза является истинной, как межгрупповая, так и внутригрупповая изменчивость представляют собой оценку изменчивости генеральной совокупности. Если нулевая гипотеза является ложной, межгрупповая гипотеза будет больше. Именно этот факт лежит в основе F -критерия для сравнения разностей между математическими ожиданиями нескольких групп.

После выполнения однофакторного дисперсионного анализа и обнаружения значительной разницы между фирмами остается неизвестным, какой же из поставщиков существенно отличается от остальных. Нам известно лишь, что математические ожидания генеральных совокупностей не равны. Иначе говоря, по крайней мере одно из математических ожиданий существенно отличается от других. Чтобы определить, какой из поставщиков отличается от других, можно воспользоваться процедурой Тьюки , использующей попарное сравнение между поставщиками. Эта процедура была разработана Джоном Тьюки. Впоследствии он и К. Крамер независимо друг от друга модифицировали эту процедуру для ситуаций, в которых объемы выборок отличаются друг от друга.

Множественное сравнение: процедура Тьюки-Крамера

В нашем сценарии для сравнения прочности парашютов использовался однофакторный дисперсионный анализ. Обнаружив значительные различия между математическими ожиданиями четырех групп, необходимо определить, какие именно группы отличаются друг от друга. Хотя существует несколько способов решить эту задачу, мы опишем лишь процедуру множественного сравнения Тьюки-Крамера. Этот метод является примером процедур апостериорного сравнения (post hoc comparison), поскольку проверяемая гипотеза формулируется после анализа данных. Процедура Тьюки-Крамера позволяет одновременно сравнить все пары групп. На первом этапе вычисляются разности X j – X j , где j ≠ j , между математическими ожиданиями с(с – 1)/2 групп. Критический размах процедуры Тьюки-Крамера вычисляется по формуле:

где Q U - верхнее критическое значение распределения стьюдентизированного размаха, имеющего с степеней свободы в числителе и n – с степеней свободы в знаменателе.

Если объемы выборок не одинаковы, критический размах вычисляется для каждой пары математических ожиданий отдельно. На последнем этапе каждая из с(с – 1)/2 пар математических ожиданий сравнивается с соответствующим критическим размахом. Элементы пары считаются значимо различными, если модуль разности |X j – X j | между ними превышает критический размах.

Применим процедуру Тьюки-Крамера к задаче о прочности парашютов. Поскольку компания, производящая парашюты, имеет четыре поставщика, следует проверить 4(4 – 1)/2 = 6 пар поставщиков (рис. 9).

Рис. 9. Попарные сравнения выборочных средних

Поскольку все группы имеют одинаковый объем (т.е. все n j = n j ), достаточно вычислить только один критический размах. Для этого по таблице Дисперсионного анализа (рис. 6) определим величину MSW = 6,094. Затем найдем величину Q U при α = 0,05, с = 4 (число степеней свободы в числителе) и n – с = 20 – 4 = 16 (число степеней свободы в знаменателе). К сожалению, я не нашел соответствующей функции в Excel, так что воспользовался таблицей (рис. 10).

Рис. 10. Критическое значение стьюдентизированного размаха Q U

Получаем:

Поскольку лишь 4,74 > 4,47 (см. нижнюю таблицу рис. 9), статистически значимая разница существует между первым и вторым поставщиком. Все остальные пары имеют выборочные средние, которые не позволяют говорить о их различии. Следовательно, средняя прочность парашютов, сотканных из волокон, приобретенных у первого поставщика, значимо меньше, чем у второго.

Необходимые условия однофакторного дисперсионного анализа

При решении задачи о прочности парашютов мы не проверяли, выполняются ли условия, при которых можно использовать однофакторный F -критерий. Как же узнать, можно ли применять однофакторный F -критерий при анализе конкретных экспериментальных данных? Однофакторный F -критерий можно применять, только если выполняются три основных предположения: экспериментальные данные должны быть случайными и независимыми, иметь нормальное распределение, а их дисперсии должны быть одинаковыми.

Первое предположение - случайность и независимость данных - должно выполняться всегда, поскольку корректность любого эксперимента зависит от случайности выбора и/или процесса рандомизации. Чтобы избежать искажения результатов, необходимо, чтобы данные извлекались из с генеральных совокупностей случайно и независимо друг от друга. Аналогично данные должны быть случайным образом распределенными по с уровням интересующего нас фактора (экспериментальным группам). Нарушение этих условий может серьезно исказить результаты дисперсионного анализа.

Второе предположение - нормальность - означает, что данные извлечены из нормально распределенных генеральных совокупностей. Как и для t -критерия, однофакторный дисперсионный анализ на основе F -критерия относительно мало чувствителен к нарушению этого условия. Если распределение не слишком значительно отличается от нормального, уровень значимости F -критерия изменяется мало, особенно если объем выборок достаточно велик. Если же условие о нормальности распределения нарушается серьезно, следует применять .

Третье предположение - однородность дисперсии - означает, что дисперсии каждой генеральной совокупности равны между собой (т.е. σ 1 2 = σ 2 2 = … = σ j 2). Это предположение позволяет решить, разделять или объединять внутригрупповые дисперсии. Если объемы групп совпадают, условие однородности дисперсии слабо влияет на выводы, полученные с помощью F -критерия. Однако, если объемы выборок неодинаковы, нарушение условия о равенстве дисперсий может серьезно исказить результаты дисперсионного анализа. Таким образом, следует стремиться к тому, чтобы объемы выборок были одинаковыми. Одним из методов проверки предположения об однородности дисперсии является критерий Левенэ , описанный ниже.

Если из всех трех условий нарушается лишь условие об однородности дисперсии, можно применять процедуру, аналогичную t -критерию, использующему раздельную дисперсию (подробнее см. ). Однако, если предположения о нормальном распределении и однородности дисперсии нарушаются одновременно, необходимо выполнить нормализацию данных и уменьшить разности между дисперсиями или применить непараметрическую процедуру.

Критерий Левенэ для проверки однородности дисперсии

Несмотря на то что F -критерий относительно устойчив к нарушениям условия о равенстве дисперсий в группах, грубое нарушение этого предположения существенно влияет на уровень значимости и мощность критерия. Возможно, одним из наиболее мощных является критерий Левенэ . Для проверки равенства дисперсий с генеральных совокупностей проверим следующие гипотезы:

Н 0: σ 1 2 = σ 2 2 = … = σ j 2

Н 1 : не все σ j 2 одинаковы (j = 1, 2, …, с )

Модифицированный критерий Левенэ основан на утверждении, что если изменчивость в группах одинакова, для проверки нулевой гипотезы о равенстве дисперсий можно применить анализ дисперсии абсолютных величин разностей между наблюдениями и медианами групп. Итак, сначала следует вычислить абсолютные величины разностей между наблюдениями и медианами в каждой группе, а затем выполнить однофакторный дисперсионный анализ полученных абсолютных величин разностей. Для иллюстрации критерия Левенэ вернемся к сценарию, изложенному в начале заметки. Используя данные, представленные на рис. 6, проведем аналогичный анализ, но в отношении модулей разниц исходных данных и медиан по каждой выборке отдельно (рис. 11).

Рассмотренные выше приемы проверки статистических гипотез о существенности различий между двумя средними на практике имеют ограниченное применение. Это связано с тем, что для выявления действия всех возможных условий и факторов на результативный признак полевые и лабораторные опыты, как правило, проводят с использованием не двух, а большего числа выборок (1220 и более).

Часто исследователи сравнивают средние нескольких выборок, объединенных в единый комплекс. Например, изучая влияние различных видов и доз удобрений на урожайность сельскохозяйственных культур опыты повторяют в разных вариантах. В этих случаях попарные сравнения становятся громоздкими, а статистический анализ всего комплекса требует применения особого метода. Такой метод, разработанный в математической статистике, получил название дисперсионного анализа. Впервые его применил английский статистик Р. Фишер при обработке результатов агрономических опытов (1938 г.).

Дисперсионный анализ - это метод статистической оценки надежности проявления зависимости результативного признака от одного или нескольких факторов. С помощью метода дисперсионного анализа проводится проверка статистических гипотез относительно средних в нескольких генеральных совокупностях, имеющих нормальное распределение.

Дисперсионный анализ является одним из основных методов статистической оценки результатов эксперимента. Все более широкое применение получает он и в анализе экономической информации. Дисперсионный анализ дает возможность установить, насколько выборочные показатели связи результативного и факторных признаков достаточны для распространения полученных по выборке данных на генеральную совокупность. Достоинством этого метода является то, что он дает достаточно надежные выводы по выборкам небольшого численности.

Исследуя вариацию результативного признака под влиянием одного или нескольких факторов с помощью дисперсионного анализа можно получить помимо общих оценок существенности зависимостей, также и оценку различий в величине средних, которые формируются при различных уровнях факторов, и существенности взаимодействия факторов. Дисперсионный анализ применяется для изучения зависимостей как количественных, так и качественных признаков, а также при их сочетании.

Суть этого метода заключается в статистическом изучении вероятности влияния одного или нескольких факторов, а также их взаимодействия на результативный признак. Согласно этого с помощью дисперсионного анализа решаются три основных задачи: 1) общая оценка существенности различий между групповыми средними; 2) оценка вероятности взаимодействия факторов; 3) оценка существенности различий между парами средних. Чаще всего такие задачи приходится решать исследователям при проведении полевых и зоотехнических опытов, когда изучается влияние нескольких факторов на результативный признак.

Принципиальная схема дисперсионного анализа включает установление основных источников варьирование результативного признака и определение объемов вариации (сумм квадратов отклонений) по источникам ее образования; определение числа степеней свободы, соответствующих компонентам общей вариации; вычисления дисперсий как отношение соответствующих объемов вариации к их числу степеней свободы; анализ соотношения между дисперсиями; оценка достоверности разницы между средними и формулирование выводов.

Указанная схема сохраняется как при простых моделях дисперсионного анализа, когда данные группируются по одному признаку, так и при сложных моделях, когда данные группируются по двумя и большим числом признаков. Однако с увеличением числа групповых признаков усложняется процесс разложение общей вариации по источникам ее образования.

Согласно принципиальной схемы дисперсионный анализ можно представить в виде пяти последовательно выполняемых этапов:

1) определение и разложения вариации;

2) определение числа степеней свободы вариации;

3) вычисление дисперсий и их соотношений;

4) анализ дисперсий и их соотношений;

5) оценка достоверности разницы между средними и формулировка выводов по проверке нулевой гипотезы.

Наиболее трудоемкой частью дисперсионного анализа является первый этап - определение и разложения вариации по источникам ее образования. Порядок разложения общего объема вариации подробно рассматривался в главе 5.

В основе решения задач дисперсионного анализа лежит закон разложения (добавление) вариации, согласно которого общая вариация (колебания) результативного признака делится на две: вариацию, обусловленную действием исследуемого фактора (факторов), и вариацию, вызванную действием случайных причин, то есть

Предположим, что исследуемая совокупность поделена по факторным признаком на несколько групп, каждая из которых характеризуется своей средней величине результативного признака. При этом вариацию этих величин можно объяснить двумя видами причин: такими, которые действуют на результативный признак систематически и поддаются регулировке в ходе проводимого эксперимента и регулировке не поддаются. Очевидно, что межгрупповая (факторная или систематическая) вариация зависит преимущественно от действия исследуемого фактора, а внутригрупповая (остаточная или случайная) - от действия случайных факторов.

Чтобы оценить достоверность различий между групповыми средними, необходимо определить межгрупповую и внутригрупповое вариации. Если межгрупповая (факторная) вариация значительно превышает внутригрупповое (остаточную) вариацию, то фактор влиял на результативный признак, существенно изменяя значения групповых средних величин. Но возникает вопрос, каково соотношение между міжгруповою и внутрішньогруповою вариациями можно рассматривать как достаточное для вывода о достоверности (существенности) различий между групповыми средними.

Для оценки существенности различий между средними и формулировка выводов по проверке нулевой гипотезы (Н0:х1 = х2 =... = хп) в дисперсионном анализе используется своеобразный норматив - Г-критерий, закон распределения которого установил Р.фишер. Этот критерий представляет собой отношение двух дисперсий: факторного, порождаемой действием изучаемого фактора, и остаточной, обусловленной действием случайных причин:

Дисперсионное отношение Г= £>и : £*2 американским статистиком Снедекором предложено обозначать буквой Г в честь изобретателя дисперсионного анализа Р.Фішера.

Дисперсии °2 іо2 являются оценками дисперсии генеральной совокупности. Если выборки с дисперсиями °2 °2 сделаны из одной и той же генеральной совокупности, где вариация величин имела случайный характер, то расхождение в величинах °2 °2 также случайна.

Если в эксперименте проверяют влияние нескольких факторов (А, В, С и т.д.) на результативный признак одновременно, то дисперсия, обусловленная действием каждого из них, должна быть сравнима с °е.гР , то есть

Если значение факторной дисперсии значительно больше остаточной, то фактор существенно влиял на результативный признак и наоборот.

В многофакторных экспериментах кроме вариации, обусловленной действием каждого фактора, практически всегда есть вариация, обусловленная взаимодействием факторов ($ав: ^лс ^вс $лііс). Суть взаимодействия заключается в том, что эффект одного фактора существенно меняется на разных уровнях второго (например, эффективность качества Почвы при разных дозах удобрений).

Взаимодействие факторов также должна быть оценена путем сравнения соответствующих дисперсий 3 ^в.гр:

При исчислении фактического значения Б-критерия в числителе берется большая из дисперсий, поэтому Б > 1. Очевидно, что чем больше критерий Бы, тем значительнее различия между дисперсиями. Если Б = 1, то вопрос об оценке существенности различий дисперсий снимается.

Для определения пределов случайных колебаний отношение дисперсий Г. Фишер разработал специальные таблицы Б-распределения (прил. 4 и 5). Критерий Бы функционально связанный с вероятностью и зависит от числа степеней свободы вариации к1 и к2 двух сравниваемых дисперсий. Обычно используются две таблицы, позволяющие делать выводы о предельно высокое значение критерия для уровней значимости 0,05 и 0,01. Уровень значимости 0,05 (или 5%) означает, что только в 5 случаях из 100 критерий Б может принимать значение, равное указанному в таблице или выше его. Снижение уровня значимости с 0,05 до 0,01 приводит к увеличению значения критерия Бы между двумя дисперсиями в силу действия только случайных причин.

Значение критерия также зависит непосредственно от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности (к-ме), то отношение Бы для двух дисперсий стремится к единице.

Табличное значение критерия Б показывает возможную случайную величину отношения двух дисперсий при заданном уровне значимости и соответствующем числе степеней свободы для каждой из сравниваемых дисперсий. В указанных таблицах приводится величина Б для выборок, сделанных из одной и той же генеральной совокупности, где причины изменения величин только случайные.

Значение Г находят по таблицам (прил. 4 и 5) на пересечении соответствующего столбца (число степеней свободы для большей дисперсии - к1) и строки (число степеней свободы для меньшей дисперсии - к2). Так, если большей дисперсии (числитель Г) к1 = 4, а меньшей (знаменатель Г) к2 = 9, то Га при уровне значимости а = 0,05 составит 3,63 (прил. 4). Итак, в результате действия случайных причин, поскольку малочисленные выборки, дисперсия одной выборки может при 5%-ном уровне значимости превышать дисперсию для второй выборки в 3,63 раза. При снижении уровня значимости с 0,05 до 0,01 табличное значение критерия Г, как отмечалось выше, будет увеличиваться. Так, при тех же степенях свободы к1 = 4 и к2 = 9 и а = 0,01 табличное значение критерия Г составит 6,99 (прил. 5).

Рассмотрим порядок определения числа степеней свободы в дисперсионном анализе. Число степеней свободы, что соответствует общей сумме квадратов отклонений, раскладывается на соответствующие компоненты аналогично разложению сумм квадратов отклонений (^общ = №^гр + ]¥вхр) , то есть общее число степеней свободы (к") раскладывается на число степеней свободы для межгрупповой (к1) и внутригрупповой (к2) вариаций.

Так, если выборочная совокупность, состоящая из N наблюдений, деленная на т групп (число вариантов опыта) и п подгрупп (количество повторностей), то число степеней свободы к соответственно составит:

а) для общей суммы квадратов отклонений (й7заг)

б) для межгрупповой суммы квадратов отклонений ^м.гР)

в) для внутригрупповой суммы квадратов отклонений в в.гР)

Согласно правилу сложения вариации:

Например, если в опыте было сформировано четыре варианта опыта (т = 4) в пяти повторностях каждый (п = 5), и общее количество наблюдений N = = т o п = 4 * 5 = 20, то число степеней свободы соответственно равно:

Зная суммы квадратов отклонений число степеней свободы, можно определить несмещенные (скорректированные) оценки для трех дисперсий:

Нулевую гипотезу Н0 по критерию Б проверяют так же, как и по и-критерию Стьюдента. Чтобы принять решение по проверки Н0, необходимо рассчитать фактическое значение критерия и сравнить его с табличным значением Ба для принятого уровня значимости а и числа степеней свободы к1 и к2 для двух дисперсий.

Если Бфакг > Ба, то в соответствии с принятым уровнем значимости можно сделать вывод, что различия выборочных дисперсий определяются не только случайными факторами; они существенные. Нулевую гипотезу в этом случае отклоняют и есть основание утверждать, что фактор существенно влияет на результативный признак. Если же < Ба, то нулевую гипотезу принимают и есть основание утверждать, что различия между сравниваемыми дисперсиями находятся в границах возможных случайных колебаний: действие фактора на результативный признак не является существенным.

Применение той или иной модели дисперсионного анализа зависит как от количества изучаемых факторов, так и от способа формирования выборок.

в Зависимости от количества факторов, определяющих вариацию результативного признака, выборки могут быть сформированы по одним, двумя и большим числом факторов. Согласно этому дисперсионный анализ делится на однофакторный и многофакторный. Иначе его еще называют однофакторним и многофакторным дисперсионным комплексом.

Схема разложение общей вариации зависит от формирования групп. Оно может быть случайным (наблюдение одной группы не связаны с наблюдениями второй группы) и неслучайным (наблюдение двух выборок связаны между собой общностью условий эксперимента). Соответственно получают независимые и зависимые выборки. Независимые выборки могут быть сформированы как с ровной, так и неровной численностью. Формирование зависимых выборок предполагает их равную численность.

Если группы сформированы в невипадковому порядке, то общий объем вариации результативного признака включает в себя наряду с факторным (міжгруповою) и остаточной вариацией вариацию повторностей, то есть

На практике в большинстве случаев приходится рассматривать зависимые выборки, когда условия для групп и подгрупп выравниваются. Так, в полевом опыте весь участок разбивают на блоки, с максимально вирівняннями условиями. При этом каждый вариант опыта получает равные возможности быть представленным во всех блоках, чем достигается выравнивание условий для всех проверяемых вариантов, опыта. Такой метод построения опыта получил название метода рендомізованих блоков. Аналогично проводятся и опыты с животными.

При обработке методом дисперсионного анализа социально-экономических данных необходимо иметь в виду, что в силу багаточисельності факторов и их взаимосвязи трудно даже при самом тщательном выравнивании условий установить степень объективного влияния каждого отдельного фактора на результативный признак. Поэтому уровень остаточной вариации определяется не только случайными причинами, но и существенными факторами, которые не были учтены при построении модели дисперсионного анализа. В результате этого остаточная, дисперсия как база сравнения иногда становится неадекватным своему назначению, она явно завышается по величине и не может выступать как критерий существенности влияния факторов. В связи с этим при построении моделей дисперсионного анализа становится актуальной проблема отбора важнейших факторов и выравнивания условий для проявления действия каждого из них. Кроме того. применение дисперсионного анализа предполагает нормальный или близкий к нормальному распределение исследуемых статистических совокупностей. Если это условие не выдерживается, то оценки, полученные в дисперсионном анализе, окажутся преувеличенными.

Дисперсионный анализ

Курсовая работа по дисциплине: «Системный анализ»

Исполнитель студент гр. 99 ИСЭ-2 Жбанов В.В.

Оренбургский государственный университет

Факультет информационных технологий

Кафедра прикладной информатики

г. Оренбург-2003

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации /1/.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ 2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.

1 Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ 2 . Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:

,

где k - число групп;

n j - число единиц в j-ой группе;

Частная средняя по j-ой группе;

Общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σ j 2 .

.

Между общей дисперсией σ 0 2 , внутригрупповой дисперсией σ 2 и межгрупповой дисперсией существует соотношение:

σ 0 2 = + σ 2 .

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

1.2 Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij , (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Пусть имеется m партий изделий. Из каждой партии отобрано соответственно n 1 , n 2 , …, n m изделий (для простоты полагается, что n 1 =n 2 =...=n m =n). Значения показателя качества этих изделий представлены в матрице наблюдений:

x 11 x 12 … x 1n

x 21 x 22 … x 2n

………………… = (x ij), (i = 1,2, …, m; j = 1,2, …, n).

x m 1 x m 2 … x mn

Необходимо проверить существенность влияния партий изделий на их качество.

Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х 1 ,Х 2 ,...,Х m , выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a 1 ,а 2 ,...,а m и одинаковыми дисперсиями σ 2 , то данная задача сводится к проверке нулевой гипотезы Н 0: a 1 =a 2 =...= а m , осуществляемой в дисперсионном анализе.

Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:

где i * – среднее значение по столбцам;

Ij – элемент матрицы наблюдений;

n – объем выборки.

А общая средняя:

. (5)

Сумма квадратов отклонений наблюдений х ij от общей средней ** выглядит так:

2 = 2 + 2 +

2 2 . (6)

Q = Q 1 + Q 2 + Q 3 .

Последнее слагаемое равно нулю

так как сумма отклонений значений переменной от ее средней равна нулю, т.е.

2 =0.

Первое слагаемое можно записать в виде:

В результате получается тождество:

Q = Q 1 + Q 2 , (8)

где - общая, или полная, сумма квадратов отклонений;

- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;

- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений.

В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассматриваемой задаче равенство (8) показывает, что общая вариация показателя качества, измеренная суммой Q, складывается из двух компонент – Q 1 и Q 2 , характеризующих изменчивость этого показателя между партиями (Q 1) и изменчивость внутри партий (Q 2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.

В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.

Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s 1 2 , являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k 1 =m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).

Таким образом:

Если найти математические ожидания средних квадратов и , подставить в их формулы выражение xij (1) через параметры модели, то получится:

(9)

т.к. с учетом свойств математического ожидания

а

(10)

Для модели I с фиксированными уровнями фактора F i (i=1,2,...,m) – величины неслучайные, поэтому

M(S) = 2 /(m-1) +σ 2 .

Гипотеза H 0 примет вид F i = F * (i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы

M(S)= M(S)= σ 2 .

Для случайной модели II слагаемое F i в выражении (1) – величина случайная. Обозначая ее дисперсией

получим из (9)

(11)

и, как и в модели I

В таблице 1.1 представлен общий вид вычисления значений, с помощью дисперсионного анализа.

Таблица 1.1 – Базовая таблица дисперсионного анализа

Компоненты дисперсии

Сумма квадратов

Число степеней свободы

Средний квадрат

Математическое ожидание среднего квадрата

Межгрупповая

Внутригрупповая

Гипотеза H 0 примет вид σ F 2 =0. В случае справедливости этой гипотезы

M(S)= M(S)= σ 2 .

В случае однофакторного комплекса как для модели I, так и модели II средние квадраты S 2 и S 2 , являются несмещенными и независимыми оценками одной и той же дисперсии σ 2 .

Следовательно, проверка нулевой гипотезы H 0 свелась к проверке существенности различия несмещенных выборочных оценок S и S дисперсии σ 2 .

Гипотеза H 0 отвергается, если фактически вычисленное значение статистики F = S/S больше критического F α: K 1: K 2 , определенного на уровне значимости α при числе степеней свободы k 1 =m-1 и k 2 =mn-m, и принимается, если F < F α: K 1: K 2 .

F- распределение Фишера (для x > 0) имеет следующую функцию плотности (для = 1, 2, ...; = 1, 2, ...):

где - степени свободы;

Г - гамма-функция.

Применительно к данной задаче опровержение гипотезы H 0 означает наличие существенных различий в качестве изделий различных партий на рассматриваемом уровне значимости.

Для вычисления сумм квадратов Q 1 , Q 2 , Q часто бывает удобно использовать следующие формулы:

(12)

(13)

(14)

т.е. сами средние, вообще говоря, находить не обязательно.

Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H 0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.

1.3 Многофакторный дисперсионный анализ

Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным дисперсионным анализом нет. Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного дисперсионного анализа (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие /3/.

Общая схема двухфакторного эксперимента, данные которого обрабатываются дисперсионным анализом имеет вид:



Рисунок 1.1 – Схема двухфакторного эксперимента

Данные, подвергаемые многофакторному дисперсионному анализу, часто обозначают в соответствии с количеством факторов и их уровней.

Предположив, что в рассматриваемой задаче о качестве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные различия в качестве изделий по каждому фактору:

А - партия изделий;

B - станок.

В результате получается переход к задаче двухфакторного дисперсионного анализа.

Все данные представлены в таблице 1.2, в которой по строкам - уровни A i фактора А, по столбцам - уровни B j фактора В, а в соответствующих ячейках, таблицы находятся значения показателя качества изделий x ijk (i=1,2,...,m; j=1,2,...,l; k=1,2,...,n).

Таблица 1.2 – Показатели качества изделий

x 11l ,…,x 11k

x 12l ,…,x 12k

x 1jl ,…,x 1jk

x 1ll ,…,x 1lk

x 2 1l ,…,x 2 1k

x 22l ,…,x 22k

x 2jl ,…,x 2jk

x 2ll ,…,x 2lk

x i1l ,…,x i1k

x i2l ,…,x i2k

x ijl ,…,x ijk

x jll ,…,x jlk

x m1l ,…,x m1k

x m2l ,…,x m2k

x mjl ,…,x mjk

x mll ,…,x mlk

Двухфакторная дисперсионная модель имеет вид:

x ijk =μ+F i +G j +I ij +ε ijk , (15)

где x ijk - значение наблюдения в ячейке ij с номером k;

μ - общая средняя;

F i - эффект, обусловленный влиянием i-го уровня фактора А;

G j - эффект, обусловленный влиянием j-го уровня фактора В;

I ij - эффект, обусловленный взаимодействием двух факторов, т.е. отклонение от средней по наблюдениям в ячейке ij от суммы первых трех слагаемых в модели (15);

ε ijk - возмущение, обусловленное вариацией переменной внутри отдельной ячейки.

Предполагается, что ε ijk имеет нормальный закон распределения N(0; с 2), а все математические ожидания F * , G * , I i * , I * j равны нулю.

Групповые средние находятся по формулам:

В ячейке:

по строке:

по столбцу:

общая средняя:

В таблице 1.3 представлен общий вид вычисления значений, с помощью дисперсионного анализа.

Таблица 1.3 – Базовая таблица дисперсионного анализа

Компоненты дисперсии

Сумма квадратов

Число степеней свободы

Средние квадраты

Межгрупповая (фактор А)

Межгрупповая (фактор B)

Взаимодействие

Остаточная

Проверка нулевых гипотез HA, HB, HAB об отсутствии влияния на рассматриваемую переменную факторов А, B и их взаимодействия AB осуществляется сравнением отношений , , (для модели I с фиксированными уровнями факторов) или отношений , , (для случайной модели II) с соответствующими табличными значениями F – критерия Фишера – Снедекора. Для смешанной модели III проверка гипотез относительно факторов с фиксированными уровнями производится также как и в модели II, а факторов со случайными уровнями – как в модели I.

Если n=1, т.е. при одном наблюдении в ячейке, то не все нулевые гипотезы могут быть проверены так как выпадает компонента Q3 из общей суммы квадратов отклонений, а с ней и средний квадрат , так как в этом случае не может быть речи о взаимодействии факторов.

С точки зрения техники вычислений для нахождения сумм квадратов Q 1 , Q 2 , Q 3 , Q 4 , Q целесообразнее использовать формулы:

Q 3 = Q – Q 1 – Q 2 – Q 4 .

Отклонение от основных предпосылок дисперсионного анализа - нормальности распределения исследуемой переменной и равенства дисперсий в ячейках (если оно не чрезмерное) - не сказывается существенно на результатах дисперсионного анализа при равном числе наблюдений в ячейках, но может быть очень чувствительно при неравном их числе. Кроме того, при неравном числе наблюдений в ячейках резко возрастает сложность аппарата дисперсионного анализа. Поэтому рекомендуется планировать схему с равным числом наблюдений в ячейках, а если встречаются недостающие данные, то возмещать их средними значениями других наблюдений в ячейках. При этом, однако, искусственно введенные недостающие данные не следует учитывать при подсчете числа степеней свободы /1/.

2 Применение дисперсионного анализа в различных процессах и исследованиях

2.1 Использование дисперсионного анализа при изучении миграционных процессов

Миграция - сложное социальное явление, во многом определяющее экономическую и политическую стороны жизни общества. Исследование миграционных процессов связано с выявлением факторов заинтересованности, удовлетворенности условиями труда, и оценкой влияния полученных факторов на межгрупповое движение населения.

λ ij =c i q ij a j ,

где λ ij – интенсивность переходов из исходной группы i (выхода) в новую j (входа);

c i – возможность и способности покинуть группу i (c i ≥0);

q ij – привлекательность новой группы по сравнению с исходной (0≤q ij ≤1);

a j – доступность группы j (a j ≥0).

ν ij ≈ n i λ ij =n i c i q ij a j . (16)

На практике для отдельного человека вероятность p перехода в другую группу мала, а численность рассматриваемой группы n велика. В этом случае действует закон редких событий, то есть пределом ν ij является распределение Пуассона с параметром μ=np:

.

С ростом μ распределение приближается к нормальному. Преобразованную же величину √ν ij можно считать нормально распределенной.

Если прологарифмировать выражение (16) и сделать необходимые замены переменных, то можно получить модель дисперсионного анализа:

ln√ν ij =½lnν ij =½(lnn i +lnc i +lnq ij +lna j)+ε ij ,

X i,j =2ln√ν ij -lnn i -lnq ij ,

X i,j =C i +A j +ε.

Значения C i и A j позволяют получить модель двухфакторного дисперсионного анализа с одним наблюдением в клетке. Обратным преобразованием из C i и A j вычисляются коэффициенты c i и a j .

При проведении дисперсионного анализа в качестве значений результативного признака Y следует взять величины:

Х=(Х 1,1 +Х 1,2 +:+Х mi,mj)/mimj,

где mimj- оценка математического ожидания Х i,j ;

Х mi и Х mj - соответственно количество групп выхода и входа.

Уровнями фактора I будут mi групп выхода, уровнями фактора J - mj групп входа. Предполагается mi=mj=m. Встает задача проверки гипотез H I и H J о равенствах математических ожиданий величины Y при уровнях I i и при уровнях J j , i,j=1,…,m. Проверка гипотезы H I основывается на сравнении величин несмещенных оценок дисперсии s I 2 и s o 2 . Если гипотеза H I верна, то величина F (I) = s I 2 /s o 2 имеет распределение Фишера с числами степеней свободы k 1 =m-1 и k 2 =(m-1)(m-1). Для заданного уровня значимости α находится правосторонняя критическая точка x пр,α кр. Если числовое значение F (I) чис величины попадает в интервал (x пр,α кр, +∞), то гипотеза H I отвергается и считается, что фактор I влияет на результативный признак. Степень этого влияния по результатам наблюдений измеряется выборочным коэффициентом детерминации, который показывает, какая доля дисперсии результативного признака в выборке обусловлена влиянием на него фактора I. Если же F (I) чис

2.2 Принципы математико-статистического анализа данных медико-биологических исследований

В зависимости от поставленной задачи, объема и характера материала, вида данных и их связей находится выбор методов математической обработки на этапах как предварительного (для оценки характера распределения в исследуемой выборке), так и окончательного анализа в соответствии с целями исследования. Крайне важным аспектом является проверка однородности выбранных групп наблюдения, в том числе контрольных, что может быть проведено или экспертным путем, или методами многомерной статистики (например, с помощью кластерного анализа). Но первым этапом является составление вопросника, в котором предусматривается стандартизованное описание признаков. В особенности при проведении эпидемиологических исследований, где необходимо единство в понимании и описании одних и тех же симптомов разными врачами, включая учет диапазонов их изменений (степени выраженности). В случае существенности различий в регистрации исходных данных (субъективная оценка характера патологических проявлений различными специалистами) и невозможности их приведения к единому виду на этапе сбора информации, может быть затем осуществлена так называемая коррекция ковариант, которая предполагает нормализацию переменных, т.е. устранение ненормальностей показателей в матрице данных. "Согласование мнений" осуществляется с учетом специальности и опыта врачей, что позволяет затем сравнивать полученные ими результаты обследования между собой. Для этого могут использоваться многомерный дисперсионный и регрессионный анализы.

Признаки могут быть как однотипными, что бывает редко, так и разнотипными. Под этим термином понимается их различная метрологическая оценка. Количественные или числовые признаки - это замеренные в определенной шкале и в шкалах интервалов и отношений (I группа признаков). Качественные, ранговые или балльные используются для выражения медицинских терминов и понятий не имеющих цифровых значений (например, тяжесть состояния) и замеряются в шкале порядка (II группа признаков). Классификационные или номинальные (например, профессия, группа крови) - это замеренные в шкале наименований (III группа признаков).

Во многих случаях делается попытка анализа крайне большого числа признаков, что должно способствовать повышению информативности представленной выборки. Однако выбор полезной информации, то есть осуществление отбора признаков является операцией совершенно необходимой, поскольку для решения любой классификационной задачи должны быть отобраны сведения, несущие полезную для данной задачи информацию. В случае, если это не осуществлено по каким-то причинам исследователем самостоятельно или отсутствуют достаточно обоснованные критерии для снижения размерности пространства признаков по содержательным соображениям, борьба с избыточностью информации осуществляется уже формальными методами путем оценки информативности.

Дисперсионный анализ позволяет определить влияние разных факторов (условий) на исследуемый признак (явление), что достигается путем разложения совокупной изменчивости (дисперсии, выраженной в сумме квадратов отклонений от общего среднего) на отдельные компоненты, вызванные влиянием различных источников изменчивости.

С помощью дисперсионного анализа исследуются угрозы заболевания при наличии факторов риска. Концепция относительного риска рассматривает отношение между пациентами с определенной болезнью и не имеющими ее. Величина относительного риска дает возможность определить, во сколько раз увеличивается вероятность заболеть при его наличии, что может быть оценено с помощью следующей упрощенной формулы:

где a - наличие признака в исследуемой группе;

b - отсутствие признака в исследуемой группе;

c - наличие признака в группе сравнения (контрольной);

d - отсутствие признака в группе сравнения (контрольной).

Показатель атрибутивного риска (rA) служит для оценки доли заболеваемости, связанной с данным фактором риска:

,

где Q - частота признака, маркирующего риск, в популяции;

r" - относительный риск.

Выявление факторов, способствующих возникновению (проявлению) заболевания, т.е. факторов риска может осуществляться различными способами, например, путем оценки информативности с последующим ранжированием признаков, что однако не указывает на совокупное действие отобранных параметров, в отличие от применения регрессионного, факторного анализов, методов теории распознавания образов, которые дают возможность получать "симптомокомплексы" риск-факторов. Кроме того, более сложные методы позволяют анализировать и непрямые связи между факторами риска и заболеваниями /5/.

2.3 Биотестирование почвы

Многообразные загрязняющие вещества, попадая в агроценоз, могут претерпевать в нем различные превращения, усиливая при этом свое токсическое действие. По этой причине оказались необходимыми методы интегральной оценки качества компонентов агроценоза. Исследования проводили на базе многофакторного дисперсионного анализа в 11-ти польном зернотравянопропашном севообороте. В опыте изучалось влияние следующих факторов: плодородие почвы (А), система удобрений (В), система защиты растений (С). Плодородие почвы, система удобрений и система защиты растений изучались в дозах 0, 1, 2 и 3. Базовые варианты были представлены следующими комбинациями:

000 - исходный уровень плодородия, без применения удобрений и средств защиты растений от вредителей, болезней и сорняков;

111 - средний уровень плодородия почвы, минимальная доза удобрения, биологическая защита растений от вредителей и болезней;

222 - исходный уровень плодородия почвы, средняя доза удобрений, химическая защита растений от сорняков;

333 - высокий уровень плодородия почвы, высокая доза удобрений, химическая защита растений от вредителей и болезней.

Изучались варианты, где представлен только один фактор:

200 – плодородие:

020 – удобрения;

002 - средства защиты растений.

А также варианты с различным сочетанием факторов - 111, 131, 133, 022, 220, 202, 331, 313, 311.

Целью исследования являлось изучение торможения хлоропластов и коэффициента мгновенного роста, как показателей загрязнения почвы, в различных вариантах многофакторного опыта.

Торможение фототаксиса хлоропластов ряски малой исследовали в различных горизонтах почвы: 0-20, 20-40 см. Анализ изменчивости фототаксиса в разных вариантах опыта показал достоверное влияние каждого из факторов (плодородия почвы, системы удобрений и системы защиты растений). Доля в общей дисперсии плодородия почвы составила 39,7%, системы удобрений - 30,7%, системы защиты растений - 30,7 %.

Для исследования совокупного влияния факторов на торможение фототаксиса хлоропластов использовались различные сочетания вариантов опыта: в первом случае - 000, 002, 022, 222, 220, 200, 202, 020, во втором случае - 111, 333, 331, 313, 133, 311, 131.

Результаты двухфакторного дисперсионного анализа свидетельствуют о достоверном влиянии взаимодействующих системы удобрений и системы защиты растений на различия в фототаксисе для первого случая (доля в общей дисперсии составила 10,3%). Для второго случая обнаружено достоверное влияние взаимодействующих плодородия почвы и системы удобрений (53,2%).

Трехфакторный дисперсионный анализ показал в первом случае достоверное влияние взаимодействия всех трех факторов. Доля в общей дисперсии составила 47,9%.

Коэффициент мгновенного роста исследовали в различных вариантах опыта 000, 111, 222, 333, 002, 200, 220. Первый этап тестирования - до внесения гербицидов на посевах озимой пшеницы (апрель), второй этап - после внесения гербицидов (май) и последний - на момент уборки (июль). Предшетвенники - подсолнечник и кукуруза на зерно.

Появление новых листецов наблюдали после короткой лаг-фазы с периодом суммарного удвоения сырой массы 2 - 4 суток.

В контроле и в каждом варианте на основании полученных результатов рассчитывали коэффициент мгновенного роста популяции r и далее рассчитывали время удвоения численности листецов (t удв).

t удв =ln2/r.

Расчет этих показателей был проведен в динамике с анализом почвенных образцов. Анализ данных показал, что время удвоения популяции рясок до обработки почвы было наименьшем по сравнению с данными после обработки и на момент уборки. В динамике наблюдений больший интерес вызывает отклик почвы после внесения гербицида и на момент уборки. Прежде всего взаимодействие с удобрениями и уровнем плодородия.

Подчас получить прямой отклик на внесение химических препараратов может быть осложнено взаимодействием препарата с удобрениями, как органическими, так и минеральными. Полученные данные позволили проследить динамику отклика вносимых препаратов, во всех вариантах с химическими средствами защиты, где отмечается приостановка роста индикатора.

Данные однофакторного дисперсионного анализа показали достоверное влияние каждого показателя на темпы роста ряски малой на первом этапе. На втором этапе эффект различий по плодородию почвы составил 65,0 %, по системе удобрений и системе защиты растений - по 65,0%. Факторы показали достоверные различия среднего по коэффициенту мгновенного роста варианта 222 и вариантов 000, 111, 333. На третьем этапе доля в общей дисперсии плодородия почвы составила 42,9%, системы удобрений и системы защиты растений - по 42,9%. Отмечено достоверное различие по средним значениям вариантов 000 и 111, вариантов 333 и 222.

Исследуемые образцы почвы с вариантов полевого мониторинга отличаются друг от друга по показателю торможение фототаксиса. Отмечено влияние факторов плодородия, система удобрений и средства защиты растений с долями 30,7 и 39,7% при однофакторном анализе, при двух факторном и трехфакторном - зарегистрировали совместное влияние факторов.

Анализ результатов опыта показал незначительные различия между горизонтами почвы по показателю - торможение фототаксиса. Отличия отмечены по средним значениям.

На всех вариантах, где имеются средства защиты растений наблюдается изменения положения хлоропластов и приостановка роста ряски малой /6/.

2.4 Грипп вызывает повышенную выработку гистамина

Исследователи из детской больницы в Питсбурге (США) получили первые доказательства того, что при острых респираторных вирусных инфекциях повышается уровень гистамина. Несмотря на то, что и раньше предполагалось, что гистамин играет определенную роль в возникновении симптомов острых респираторных инфекциях верхних дыхательных путей.

Ученых интересовало, почему многие люди применяют для самолечения «простудных» заболеваний и насморка антигистаминные препараты, которые во многих странах входят в категорию OTC, т.е. доступны без рецепта врача.

Целью проведенного исследования было определить, повышается ли продукция гистамина при экспериментальной инфекции, вызванной вирусом гриппа А.

15 здоровым добровольцам интраназально ввели вирус гриппа А, а затем наблюдали за развитием инфекции. Ежедневно в течение заболевания у добровольцев собиралась утренняя порция мочи, а затем проводилось определение гистамина и его метаболитов и рассчитывалось общее количество гистамина и его метаболитов, выделенных за сутки.

Заболевание развилось у всех 15 добровольцев. Дисперсионный анализ подтвердил достоверно более высокий уровень гистамина в моче на 2-5 сутки вирусной инфекции (p<0,02) - период, когда симптомы «простуды» наиболее выражены. Парный анализ показал, что наиболее значительно уровень гистамина повышается на 2 день заболевания. Кроме этого, оказалось, что суточное количество гистамина и его метаболитов в моче при гриппе примерно такое же, как и при обострении аллергического заболевания.

Результаты данного исследования служат первыми прямыми доказательствами того, что уровень гистамина повышается при острых респираторных инфекциях /7/.

Дисперсионный анализ в химии

Дисперсионный анализ – совокупность методов определения дисперсности, т. е. характеристики размеров частиц в дисперсных системах. Дисперсионный анализ включает различные способы определения размеров свободных частиц в жидких и газовых средах, размеров каналов-пор в тонкопористых телах (в этом случае вместо понятия дисперсности используют равнозначное понятие пористости), а также удельной поверхности. Одни из методов дисперсионного анализа позволяют получать полную картину распределения частиц по размерам (объёмам), а другие дают лишь усреднённую характеристику дисперсности (пористости).

К первой группе относятся, например, методы определения размеров отдельных частиц непосредственным измерением (ситовой анализ, оптическая и электронная микроскопия) или по косвенным данным: скорости оседания частиц в вязкой среде (седиментационный анализ в гравитационном поле и в центрифугах), величине импульсов электрического тока, возникающих при прохождении частиц через отверстие в непроводящей перегородке (кондуктометрический метод).

Вторая группа методов объединяет оценку средних размеров свободных частиц и определение удельной поверхности порошков и пористых тел. Средний размер частиц находят по интенсивности рассеянного света (нефелометрия), с помощью ультрамикроскопа, методами диффузии и т.д., удельную поверхность - по адсорбции газов (паров) или растворённых веществ, по газопроницаемости, скорости растворения и др. способами. Ниже приведены границы применимости различных методов дисперсионного анализа (размеры частиц в метрах):

Ситовой анализ – 10 -2 -10 -4

Седиментационный анализ в гравитационном поле – 10 -4 -10 -6

Кондуктометрический метод – 10 -4 -10 -6

Микроскопия – 10 -4 -10 -7

Метод фильтрации – 10 -5 -10 -7

Центрифугирование – 10 -6 -10 -8

Ультрацентрифугирование – 10 -7 -10 -9

Ультрамикроскопия – 10 -7 -10 -9

Нефелометрия – 10 -7 -10 -9

Электронная микроскопия – 10 -7 -10 -9

Метод диффузии – 10 -7 -10 -10

Дисперсионный анализ широко используют в различных областях науки и промышленного производства для оценки дисперсности систем (суспензий, эмульсий, золей, порошков, адсорбентов и т.д.) с величиной частиц от нескольких миллиметров (10 -3 м) до нескольких нанометров (10 -9 м) /8/.

2.6 Использование прямого преднамеренного внушения в бодрствующем состоянии в методике воспитания физических качеств

Физическая подготовка – основополагающая сторона спортивной тренировки, так как в большей мере, чем другие стороны подготовки, характеризуется физическими нагрузками, воздействующими на морфофункциональные свойства организма. От уровня физической подготовленности зависят успешность технической подготовки, содержание тактики спортсмена, реализация личностных свойств в процессе тренировок и состязаний.

Одной из основных задач физической подготовки является воспитание физических качеств. В связи с этим возникает необходимость в разработке педагогических средств и методов, позволяющих учитывать возрастные особенности юных спортсменов, сохраняющих их здоровье, не требующих дополнительных затрат времени и в то же время стимулирующих рост физических качеств и, как следствие, - спортивного мастерства. Использование вербального гетеровоздействия в тренировочном процессе в группах начальной подготовки - одно из перспективных направлений исследований по данной проблеме.

Анализ теории и практики реализации внушающего вербального гетеровоздействия выявил основные противоречия:

Доказанность эффективного использования специфических методов вербального гетеровоздействия в тренировочном процессе и практическую невозможность их использования тренером;

Признание прямого преднамеренного внушения (далее ППВ) в бодрствующем состоянии как одного из основных методов вербального гетеровоздействия в педагогической деятельности тренера и отсутствие теоретического обоснования методических особенностей его применения в спортивной подготовке, и в частности в процессе воспитания физических качеств.

В связи с выявленными противоречиями и недостаточной разработанностью проблема использования системы методов вербального гетеровоздействия в процессе воспитания физических качеств спортсменов предопределила цель исследования - разработать рациональные целенаправленные методики ППВ в бодрствующем состоянии, способствующие совершенствованию процесса воспитания физических качеств на основе оценки психического состояния, проявления и динамики физических качеств дзюдоистов групп начальной подготовки.

С целью апробации и определения эффективности экспериментальных методик ППВ при воспитании физических качеств дзюдоистов был проведен сравнительный педагогический эксперимент, в котором приняли участие четыре группы – три экспериментальных и одна контрольная. В первой экспериментальной группе (ЭГ) использовалась методика ППВ М1, во второй - методика ППВ М2, в третьей - методика ППВ М3. В контрольной группе (КГ) методики ППВ не применялись.

Для определения эффективности педагогического воздействия методик ППВ в процессе воспитания у дзюдоистов физических качеств был проведен однофакторный дисперсионный анализ.

Степень влияния методики ППВ M1 в процессе воспитания:

Выносливости:

а) после третьего месяца составила 11,1%;

Скоростных способностей:

а) после первого месяца - 16,4%;

б) после второго - 26,5%;

в) после третьего - 34,8%;

а) после второго месяца - 26, 7%;

б) после третьего - 35,3%;

Гибкости:

а) после третьего месяца - 20,8%;

а) после второго месяца основного педагогического эксперимента степень влияния методики составила 6,4%;

б) после третьего - 10,2%.

Следовательно, существенные изменения в показателях уровня развития физических качеств с использованием методики ППВ М1 обнаружены в скоростных способностях и силе, степень влияния методики в данном случае наибольшая. Наименьшая степень влияния методики обнаружена в процессе воспитания выносливости, гибкости, координационных способностей, что дает основание говорить о недостаточной эффективности использования методики ППВ М1 при воспитании указанных качеств.

Степень влияния методики ППВ M2 в процессе воспитания:

Выносливости

а) после первого месяца эксперимента - 12,6%;

б) после второго - 17,8%;

в) после третьего - 20,3%.

Скоростных способностей:

а) после третьего месяца тренировочных занятий - 28%.

а) после второго месяца - 27,9%;

б) после третьего - 35,9%.

Гибкости:

а) после третьего месяца тренировочных занятий - 14,9%;

Координационных способностей - 13,1%.

Полученный результат однофакторного дисперсионного анализа данной ЭГ позволяет сделать вывод о том, что методика ППВ М2 наиболее результативна при воспитании выносливости и силы. Менее эффективна она в процессе воспитания гибкости, скоростных и координационных способностей.

Степень влияния методики ППВ М3 в процессе воспитания:

Выносливости:

а) после первого месяца эксперимента 16,8%;

б) после второго - 29,5%;

в) после третьего - 37,6%.

Скоростных способностей:

а) после первого месяца - 26,3%;

б) после второго - 31,3%;

в) после третьего - 40,9%.

а) после первого месяца - 18,7%;

б) после второго - 26,7%;

в) после третьего - 32,3%.

Гибкости:

а) после первого - изменений нет;

б) после второго - 16,9%;

в) после третьего - 23,5%.

Координационных способностей:

а) после первого месяца изменений нет;

б) после второго - 23,8%;

в) после третьего - 91% .

Таким образом, однофакторный дисперсионный анализ показал, что использование методики ППВ М3 в подготовительном периоде наиболее эффективно в процессе воспитания физических качеств, так как наблюдается увеличение степени ее влияния после каждого месяца педагогического эксперимента /9/.

2.7 Купирование острой психотической симптоматики у больных шизофренией атипичным нейролептиком

Цель исследования сводилась к изучению возможности применения рисполепта для купирования острых психозов у больных с диагнозом шизофрении (параноидный тип по МКБ-10) и шизоаффективного расстройства. При этом в качестве основного изучаемого критерия использовался показатель длительности сохранения психотической симптоматики в условиях фармакотерапии рисполептом (основная группа) и классическими нейролептиками.

Основные задачи исследования сводились к определению показателя длительности психоза (так называемый нетто-психоз), под которым понималось сохранение продуктивной психотической симптоматики с момента начала применения нейролептиков, выраженное в днях. Данный показатель был рассчитан отдельно для группы, принимавшей рисперидон, и отдельно для группы, принимавшей классические нейролептики.

Наряду с этим была поставлена задача по определению доли редукции продуктивной симптоматики под влиянием рисперидона в сравнении с классическими нейролептиками в разные сроки терапии.

В общей сложности изучены 89 больных (42 мужчины и 47 женщин) с острой психотической симптоматикой в рамках параноидной формы шизофрении (49 больных) и шизоаффективного расстройства (40 больных).

Первый эпизод и длительность заболевания до 1 года были зарегистрированы у 43 больных, тогда как в остальных случаях на момент исследования отмечались последующие эпизоды шизофрении при длительности заболевания свыше 1 года.

Терапию рисполептом получали 29 человек, среди которых с так называемым первым эпизодом было 15 больных. Терапию классическими нейролептиками получали 60 человек, среди которых с первым эпизодом было 28 человек. Доза рисполепта варьировала в диапазоне от 1 до 6 мг в сутки и в среднем составляла 4±0,4 мг/сут. Рисперидон принимали исключительно внутрь после еды один раз в сутки в вечернее время.

Терапия классическими нейролептиками включала применение трифлуоперазина (трифтазина) в суточной дозе до 30 мг внутримышечно, галоперидола в суточной дозе до 20 мг внутримышечно, триперидола в суточной дозе до 10 мг внутрь. Подавляющее большинство больных принимало классические нейролептики в виде монотерапии в течение первых двух недель, после чего переходили в случае необходимости (при сохранении бредовой, галлюцинаторной или другой продуктивной симптоматики) к сочетанию нескольких классических нейролептиков. При этом в качестве основного препарата оставался нейролептик с выраженным элективным антибредовым и антигаллюцинаторным аффектом (например, галоперидол или трифтазин), к нему присоединяли в вечернее время препарат с отчетливым гипноседативным эффектом (аминазин, тизерцин, хлорпротиксен в дозах до 50-100 мг/сут).

В группе, принимавшей классические нейролептики, был предусмотрен прием корректоров холинолитического ряда (паркопан, циклодол) в дозах до 10-12 мг/сут. Корректоры назначались в случае появления отчетливых побочных экстрапирамидных эффектов в виде острых дистоний, лекарственного паркинсонизма и акатизии.

В таблице 2.1 представлены данные по длительности психоза при лечении рисполептом и классическими нейролептиками.

Таблица 2.1 – Длительность психоза ("нетто-психоз") при лечении рисполептом и классическими нейролептиками

Как следует из данных таблицы, при сравнении длительности психоза при терапии классическими нейролептиками и рисперидоном наблюдается практически двукратное сокращение продолжительности психотической симптоматики под влиянием рисполепта. Существенно, что на данную величину продолжительности психоза не влияли ни факторы порядкового номера приступов, ни характер картины ведущего синдрома. Иначе говоря, длительность психоза определялась исключительно фактором терапии, т.е. зависела от типа применяемого препарата безотносительно порядкового номера приступа, продолжительности заболевания и характера ведущего психопатологического синдрома.

С целью подтверждения полученных закономерностей был проведен двухфакторный дисперсионный анализ. При этом поочередно учитывалось взаимодействие фактора терапии и порядкового номера приступа (1-й этап) и взаимодействие фактора терапии и характера ведущего синдрома (2-й этап). Результаты дисперсионного анализа подтвердили влияние фактора терапии на величину длительности психоза (F=18,8) при отсутствии влияния фактора номера приступа (F=2,5) и фактора типа психопатологического синдрома (F=1,7). Немаловажно, что совместное влияние фактора терапии и номера приступа на величину длительности психоза также отсутствовало, равно как и совместное влияние фактора терапии и фактора психопатологического синдрома.

Таким образом, результаты дисперсионного анализа подтвердили влияние только фактора применяемого нейролептика. Рисполепт однозначно приводил к сокращению длительности психотической симптоматики по сравнению с традиционными нейролептиками примерно в 2 раза. Принципиально, что этот эффект был достигнут, несмотря на пероральный прием рисполепта, тогда как классические нейролептики применялись у большей части больных парентерально /10/.

2.8 Снование фасонной пряжи с ровничным эффектом

В Костромском Государственном технологическом университете разработана новая структура фасонной нити с переменными геометрическими параметрами. В связи с этим возникает проблема переработки фасонной пряжи в приготовительном производстве. Данное исследование посвящалось процессу снования по вопросам: выбор типа натяжного устройства, дающего минимальный разброс натяжения и выравнивание натяжения, нитей различной линейной плотности по ширине сновального вала.

Объект исследования – льняная фасонная нить четырех вариантов линейной плотности от 140 до 205 текса. Исследовалась работа натяжных приборов трех типов: фарфорового шайбового, двухзонного НС-1П и однозонного НС-1П. Экспериментальное исследование натяжения снующихся нитей производилось на сновальной машине СП-140-3Л. Скорость снования, масса тормозных шайб соответствовали технологическим параметрам снования пряжи.

Для исследования зависимости натяжения фасонной нити от геометрических параметров при сновании проведен анализ для двух факторов: X 1 - диаметр эффекта, X 2 - длина эффекта. Выходными параметрами являются натяжение Y 1 и колебание натяжения Y 2 .

Полученные уравнения регрессии адекватны экспериментальным данным при уровне значимости 0,95, так как расчетный критерий Фишера для всех уравнений меньше табличного.

Для определения степени влияния факторов Х 1 и Х 2 на параметры Y 1 и Y 2 проведен дисперсионный анализ, который показал, что большее влияние на уровень и колебание натяжения оказывает диаметр эффекта.

Сравнительный анализ полученных тензограмм показал, что минимальный разброс натяжения при сновании данной пряжи обеспечивает двухзонный натяжной прибор НС-1П.

Установлено, что с ростом линейной плотности от 105 до 205 текс прибор НС-1П дает приращение уровня натяжения лишь на 23%, в то время как фарфоровый шайбовый - на 37 %, однозонный НС-1П на 53 %.

При формировании сновальных валов, включающих в себя фасонные и "гладкие" нити, необходима индивидуальная настройка натяжного прибора традиционным методом /11/.

2.9 Сопутствующая патология при полной утрате зубов у лиц пожилого и старческого возраста

Изучены эпидемиологически полная утрата зубов и сопутствующая патология пожилого населения, проживающего в домах престарелых на территории Чувашии. Обследование проводилось путем стоматологического осмотра и заполнения статистических карт 784 человек. Результаты анализа показали высокий процент полной утраты зубов, усугубляющейся общей патологией организма. Это характеризует осмотренную категорию населения как группу повышенного стоматологического риска и требует пересмотра всей системы стоматологического обслуживания их.

У пожилых людей уровень заболеваемости в два раза, а в старческом возрасте в шесть раз выше в сравнении с уровнем заболеваемости лиц более молодых возрастов.

Основными заболеваниями лиц пожилого и старческого возраста являются болезни органов кровообращения, нервной системы и органов чувств, органов дыхания, органов пищеварения, костей и органов движения, новообразования и травмы.

Цель исследования – разработка и получение информации о сопутствующих заболеваниях, эффективности зубопротезирования и нуждаемости в ортопедическом лечении лиц пожилого и старческого возраста с полной потерей зубов.

Всего было обследовано 784 человека в возрасте от 45 до 90 лет. Соотношение женщин и мужчин 2,8:1.

Оценка статистической связи с помощью коэффициента корреляции рангов Пирсона позволила установить взаимное влияние отсутствия зубов на сопутствующую заболеваемость с уровнем надежности р=0,0005. Пожилые пациенты с полной потерей зубов страдают болезнями, свойственными старости, а именно, атеросклерозом сосудов головного мозга и гипертонической болезнью.

Дисперсионный анализ показал, что в изучаемых условиях определяющую роль играет специфика болезни. Роль нозологических форм в различных возрастных периодах колеблется в пределах 52-60 %. Наибольшее статистически достоверное влияние на отсутствие зубов оказывают болезни органов пищеварения и сахарный диабет.

В целом группа больных в возрасте 75-89 лет характеризовалась большим числом патологических заболеваний.

В этом исследовании было проведено сравнительное изучение частоты распространения сопутствующей патологии среди пациентов с полной утратой зубов пожилого и старческого возраста, проживающих в домах престарелых. Выявлен высокий процент отсутствия зубов среди лиц этой возрастной категории. У пациентов с полной адентией наблюдается характерная для этого возраста сопутствующая патология. Наиболее часто среди обследованных лиц встречались атеросклероз и гипертония. Статистически достоверно влияние на состояние полости рта таких заболеваний, как болезни желудочно-кишечного тракта и сахарный диабет, доля остальных нозоологических форм оказалась в пределах 52-60 %. Применение дисперсионного анализа не подтвердили значимой роли пола и местожительства на показатели состояния полости рта.

Таким образом, в заключении следует отметить, что анализ распределения сопутствующих заболеваний у лиц с полным отсутствием зубов в пожилом и старческом возрасте показал, что эта категория граждан относится к особой группе населения, которая должна получать адекватную стоматологическую помощь в рамках существующих стоматологических систем /12/.

3 Дисперсионный анализ в контексте статистических методов

Статистические методы анализа – это методология измерения результатов деятельности человека, то есть перевода качественных характеристик в количественные.

Основные этапы при проведении статистического анализа:

Составление плана сбора исходных данных - значений входных переменных (X 1 ,...,X p), числа наблюдений n. Этот этап выполняется при активном планировании эксперимента.

Получение исходных данных и ввод их в компьютер. На этом этапе формируются массивы чисел (x 1i ,..., x pi ; y 1i ,..., y qi), i=1,..., n, где n - объем выборки.

Первичная статистическая обработка данных. На данном этапе формируется статистическое описание рассматриваемых параметров:

а) построение и анализ статистических зависимостей;

б) корреляционный анализ предназначен для оценивания значимости влияния факторов (X 1 ,...,X p) на отклик Y;

в) дисперсионный анализ используется для оценивания влияния на отклик Y неколичественных факторов (X 1 ,...,X p) с целью выбора среди них наиболее важных;

г) регрессионный анализ предназначен для определения аналитической зависимости отклика Y от количественных факторов X;

Интерпретация результатов в терминах поставленной задачи /13/.

В таблице 3.1 приведены статистические методы, с помощью которых решаются аналитические задачи. В соответствующих ячейках таблицы находятся частоты применения статистических методов:

Метка «-» - метод не применяется;

Метка «+» - метод применяется;

Метка «++» - метод широко применяется;

Метка «+++» - применение метода представляет особый интерес /14/.

Дисперсионный анализ подобно t-критерию Стьюдента, позволяет оценить различия между выборочными средними; однако, в отличие от t-критерия, в нем нет ограничений на количество сравниваемых средних. Таким образом, вместо того, чтобы поставить вопрос о различии двух выборочных средних, можно оценить, различаются ли два, три четыре, пять или k средних.

Дисперсионный анализ позволяет иметь дело с двумя или более независимыми переменными (признаками, факторами) одновременно, оценивая не только эффект каждой из них по отдельности, но и эффекты взаимодействия между ними /15/.


Таблица 3.1 – Применение статистических методов при решении аналитических задач

Аналитические задачи, возникающие в сфере бизнеса, финансов и управления

Методы описательной статистики

Методы поверки статисти-ческих гипотез

Методы регресси-онного анализа

Методы дисперси-онного анализа

Методы много-мерного анализа

Методы дискриминантного анализа

кластер-ного

Методы анализа

выжива-емости

Методы анализа

и прогноза

временных рядов

Задачи горизонталь-ного (временного) анализа

Задачи вертикального (структурного) анализа

Задачи трендового анализа и прогноза

Задачи анализа относительных показателей

Задачи сравнительного (пространствен-ного) анализа

Задачи факторного анализа

К большинству сложных систем применим принцип Парето, согласно которому 20 % факторов определяют свойства системы на 80 %. Поэтому первоочередной задачей исследователя имитационной модели является отсеивание несущественных факторов, позволяющее уменьшить размерность задачи оптимизации модели.

Анализ дисперсии оценивает отклонение наблюдений от общего среднего. Затем вариация разбивается на части, каждая из которых имеет свою причину. Остаточная часть вариации, которую не удается связать с условиями эксперимента, считается его случайной ошибкой. Для подтверждения значимости используется специальный тест - F-статистика.

Дисперсионный анализ определяет, есть ли эффект. Регрессионный анализ позволяет прогнозировать отклик (значение целевой функции) в некоторой точке пространства параметров. Непосредственной задачей регрессионного анализа является оценка коэффициентов регрессии /16/.

Слишком большая размерность выборок затрудняет проведение статистических анализов, поэтому имеет смысл уменьшить размер выборки.

Применив дисперсионный анализ можно выявить значимость влияния различных факторов на исследуемую переменную. Если влияние фактора окажется несущественным, то этот фактор можно исключить из дальнейшей обработки.

Макроэконометристы должны уметь решать четыре логически отличающиеся задачи:

Описание данных;

Макроэкономический прогноз;

Структурный вывод;

Анализ политики.

Описание данных означает описание свойств одного или нескольких временных рядов и сообщение этих свойств широкому кругу экономистов. Макроэкономический прогноз означает предсказание курса экономики, обычно на два-три года или меньше (главным образом потому, что прогнозировать на более длинные горизонты слишком трудно). Структурный вывод означает проверку того, соответствуют ли макроэкономические данные конкретной экономической теории. Макроэконометрический анализ политики происходит по нескольким направлениям: с одной стороны, оценивается влияние на экономику гипотетического изменения инструментов политики (например налоговой ставки или краткосрочной процентной ставки), с другой стороны, оценивается влияние изменения правил политики (например переход к новому режиму монетарной политики). Эмпирический макроэкономический исследовательский проект может включать одну или несколько из этих четырех задач. Каждая задача должна быть решена таким образом, чтобы были учтены корреляции между рядами по времени.

В 1970-х годах эти задачи решались с использованием разнообразных методов, которые, если оценить их с современных позиций, были неадекватны по нескольким причинам. Чтобы описать динамику отдельного ряда, достаточно было просто использовать одномерные модели временных рядов, а чтобы описать совместную динамику двух рядов – спектральный анализ. Однако отсутствовал общепринятый язык, пригодный для систематического описания совместных динамических свойств нескольких временных рядов. Экономические прогнозы делались либо с использованием упрощенных моделей авторегрессии - скользящего среднего (ARMA), либо с использованием популярных в то время больших структурных эконометрических моделей. Структурный вывод основывался либо на малых моделях с одним уравнением, либо на больших моделях, идентификация в которых достигалась за счет плохо обоснованных исключающих ограничений, и которые обычно не включали ожидания. Анализ политики на основе структурных моделей зависел от этих идентифицирующих предположений.

Наконец, рост цен в 1970-е годы рассматривался многими как серьезная неудача больших моделей, которые в то время использовались для выработки политических рекомендаций. То есть это было подходящее время для появления новой макроэконометрической конструкции, которая могла бы решить эти многочисленные проблемы.

В 1980 году была создана такая конструкция – векторные авторегрессии (VAR). На первый взгляд, VAR – не более, чем обобщение одномерной авторегрессии на многомерный случай, и каждое уравнение в VAR – не более, чем обычная регрессия по методу наименьших квадратов одной переменной на запаздывающие значения себя и других переменных в VAR. Но этот вроде бы простой инструмент дал возможность систематически и внутренне согласованно уловить богатую динамику многомерных временных рядов, а статистический инструментарий, который сопутствует VAR, оказался удобным и, что очень важно, его было легко интерпретировать.

Выделяют три различных VAR-модели:

Приведенная форма VAR;

Рекурсивная VAR;

Структурная VAR.

Все три являются динамическими линейными моделями, которые связывают текущие и прошлые значения вектора Y t n-мерного временного ряда. Приведенная форма и рекурсивные VAR – это статистические модели, которые не используют никакие экономические соображения за исключением выбора переменных. Эти VAR используются для описания данных и прогноза. Структурная VAR включает ограничения, полученные из макроэкономической теории, и эта VAR используется для структурного вывода и анализа политики.

Приведенная форма VAR выражает Y t в виде распределенного лага прошлых значений плюс серийно некоррелированный член ошибки, то есть обобщает одномерную авторегрессию на случай векторов. Математически приведенная форма модели VAR – это система n уравнений, которые можно записать в матричной форме следующим образом:

где  - это n l вектор констант;

A 1 , A 2 , ..., A p – это n n матрицы коэффициентов;

 t , - это nl вектор серийно некоррелированных ошибок, о которых предполагается, что они имеют среднее ноль и матрицу ковариаций .

Ошибки  t , в (17) – это неожиданная динамика в Y t , остающаяся после учета линейного распределенного лага прошлых значений.

Оценить параметры приведенной формы VAR легко. Каждое из уравнений содержит одни и те же регрессоры (Y t–1 ,...,Y t–p), и нет взаимных ограничений между уравнениями. Таким образом, эффективная оценка (метод максимального правдоподобия с полной информацией) упрощается до обычного МНК, примененного к каждому из уравнений. Матрицу ковариаций ошибок можно состоятельно оценить выборочной ковариационной матрицей полученных из МНК остатков.

Единственная тонкость – определить длину лага p, но это можно сделать, используя информационный критерий, такой как AIC или BIC.

На уровне матричных уравнений рекурсивная и структурная VAR выглядят одинаково. Эти две модели VAR учитывают в явном виде одновременные взаимодействия между элементами Y t , что сводится к добавлению одновременного члена к правой части уравнения (17). Соответственно, рекурсивная и структурная VAR обе представляются в следующем общем виде:

где  - вектор констант;

B 0 ,..., B p - матрицы;

 t - ошибки.

Наличие в уравнении матрицы B 0 означает возможность одновременного взаимодействия между n переменными; то есть B 0 позволяет сделать так, чтобы эти переменные, относящиеся к одному моменту времени, определялись совместно.

Рекурсивную VAR можно оценить двумя способами. Рекурсивная структура дает набор рекурсивных уравнений, которые можно оценить с помощью МНК. Эквивалентный способ оценивания заключается в том, что уравнения приведенной формы (17), рассматриваемые как система, умножаются слева на нижнюю треугольную матрицу.

Метод оценивания структурной VAR зависит от того, как именно идентифицирована B 0 . Подход с частичной информацией влечет использование методов оценивания для отдельного уравнения, таких как двухшаговый метод наименьших квадратов. Подход с полной информацией влечет использование методов оценивания для нескольких уравнений, таких как трехшаговый метод наименьших квадратов.

Необходимо помнить о множественности различных типов VAR. Приведенная форма VAR единственна. Данному порядку переменных в Y t соответствует единственная рекурсивная VAR, но всего имеется n! таких порядков, т.е. n! различных рекурсивных VAR. Количество структурных VAR – то есть наборов предположений, которые идентифицируют одновременные взаимосвязи между переменными, - ограничено только изобретательностью исследователя.

Поскольку матрицы оцененных коэффициентов VAR затруднительно интерпретировать непосредственно, результаты оценивания VAR обычно представляют некоторыми функциями этих матриц. К таким статистикам разложения ошибки прогноза.

Разложения дисперсии ошибки прогноза вычисляются в основном для рекурсивных или структурных систем. Такое разложение дисперсии показывает, насколько ошибка в j-м уравнении важна для объяснения неожиданных изменений i-й переменной. Когда ошибки VAR некоррелированы по уравнениям, дисперсию ошибки прогноза на h периодов вперед можно записать как сумму компонентов, являющихся результатом каждой из этих ошибок /17/.

3.2 Факторный анализ

В современной статистике под факторным анализом понимают совокупность методов, которые на основе реально существующих связей признаков (или объектов) позволяют выявлять латентные обобщающие характеристики организационной структуры и механизма развития изучаемых явлений и процессов.

Понятие латентности в определении ключевое. Оно означает неявность характеристик, раскрываемых при помощи методов факторного анализа. Вначале имеется дело с набором элементарных признаков X j , их взаимодействие предполагает наличие определенных причин, особенных условий, т.е. существование некоторых скрытых факторов. Последние устанавливаются в результате обобщения элементарных признаков и выступают как интегрированные характеристики, или признаки, но более высокого уровня. Естественно, что коррелировать могут не только тривиальные признаки X j , но и сами наблюдаемые объекты N i поэтому поиск латентных факторов теоретически возможен как по признаковым, так и по объектным данным.

Если объекты характеризуются достаточно большим числом элементарных признаков (m > 3), то логично и другое предположение - о существовании плотных скоплений точек (признаков) в пространстве n объектов. При этом новые оси обобщают уже не признаки X j , а объекты n i , соответственно и латентные факторы F r будут распознаны по составу наблюдаемых объектов:

F r = c 1 n 1 + c 2 n 2 + ... + c N n N ,

где c i - вес объекта n i в факторе F r .

В зависимости от того, какой из рассмотренных выше тип корреляционной связи - элементарных признаков или наблюдаемых объектов - исследуется в факторном анализе, различают R и Q - технические приемы обработки данных.

Название R-техники носит объемный анализ данных по m признакам, в результате него получают r линейных комбинаций (групп) признаков: F r =f(X j), (r=1..m). Анализ по данным о близости (связи) n наблюдаемых объектов называется Q-техникой и позволяет определять r линейных комбинаций (групп) объектов: F=f(n i), (i = l .. N).

В настоящее время на практике более 90% задач решается при помощи R-техники.

Набор методов факторного анализа в настоящее время достаточно велик, насчитывает десятки различных подходов и приемов обработки данных. Чтобы в исследованиях ориентироваться на правильный выбор методов, необходимо представлять их особенности. Разделим все методы факторного анализа на несколько классификационных групп:

Метод главных компонент. Строго говоря, его не относят к факторному анализу, хотя он имеет с ним много общего. Специфическим является, во-первых, то, что в ходе вычислительных процедур одновременно получают все главные компоненты и их число первоначально равно числу элементарных признаков. Во-вторых, постулируется возможность полного разложения дисперсии элементарных признаков, другими словами, ее полное объяснение через латентные факторы (обобщенные признаки).

Методы факторного анализа. Дисперсия элементарных признаков здесь объясняется не в полном объеме, признается, что часть дисперсии остается нераспознанной как характерность. Факторы обычно выделяются последовательно: первый, объясняющий наибольшую долю вариации элементарных признаков, затем второй, объясняющий меньшую, вторую после первого латентного фактора часть дисперсии, третий и т.д. Процесс выделения факторов может быть прерван на любом шаге, если принято решение о достаточности доли объясненной дисперсии элементарных признаков или с учетом интерпретируемости латентных факторов.

Методы факторного анализа целесообразно разделить дополнительно на два класса: упрощенные и современные аппроксимирующие методы.

Простые методы факторного анализа в основном связаны с начальными теоретическими разработками. Они имеют ограниченные возможности в выделении латентных факторов и аппроксимации факторных решений. К ним относятся:

Однофакторная модель. Она позволяет выделить только один генеральный латентный и один характерный факторы. Для возможно существующих других латентных факторов делается предположение об их незначимости;

Бифакторная модель. Допускает влияние на вариацию элементарных признаков не одного, а нескольких латентных факторов (обычно двух) и одного характерного фактора;

Центроидный метод. В нем корреляции между переменными рассматриваются как пучок векторов, а латентный фактор геометрически представляется как уравновешивающий вектор, проходящий через центр этого пучка. : Метод позволяет выделять несколько латентных и характерные факторы, впервые появляется возможность соотносить факторное решение с исходными данными, т.е. в простейшем виде решать задачу аппроксимации.

Современные аппроксимирующие методы часто предполагают, что первое, приближенное решение уже найдено каким либо из способов, последующими шагами это решение оптимизируется. Методы отличаются сложностью вычислений. К этим методам относятся:

Групповой метод. Решение базируется на предварительно отобранных каким-либо образом группах элементарных признаков;

Метод главных факторов. Наиболее близок методу главных компонент, отличие заключается в предположении о существовании характерностей;

Метод максимального правдоподобия, минимальных остатков, а-факторного анализа канонического факторного анализа, все оптимизирующие.

Эти методы позволяют последовательно улучшить предварительно найденные решения на основе использования статистических приемов оценивания случайной величины или статистических критериев, предполагают большой объем трудоемких вычислений. Наиболее перспективным и удобным для работы в этой группе признается метод максимального правдоподобия.

Основной задачей, которую решают разнообразными методами факторного анализа, включая и метод главных компонент, является сжатие информации, переход от множества значений по m элементарным признакам с объемом информации n х m к ограниченному множеству элементов матрицы факторного отображения (m х r) или матрицы значений латентных факторов для каждого наблюдаемого объекта размерностью n х r, причем обычно r < m.

Методы факторного анализа позволяют также визуализировать структуру изучаемых явлений и процессов, а это значит определять их состояние и прогнозировать развитие. Наконец, данные факторного анализа дают основания для идентификации объекта, т.е. решения задачи распознавания образа.

Методы факторного анализа обладают свойствами, весьма привлекательными для их использования в составе других статистических методов, наиболее часто в корреляционно-регрессионном анализе, кластерном анализе, многомерном шкалировании и др. /18/.

3.3 Парная регрессия. Вероятностная природа регрессионных моделей.

Если рассмотреть задачу анализа расходов на питание в группах с одинаковыми доходами, например в $10.000(x), то это детерминированная величина. А вот Y - доля этих денег, затрачиваемая на питание - случайна и может меняться от года к году. Поэтому для каждого i-го индивида:

где ε i - случайная ошибка;

α и β - константы (теоретически), хотя могут меняться от модели к модели.

Предпосылки для парной регрессии:

X и Y связаны линейно;

Х - неслучайная переменная с фиксированными значениями;

- ε - ошибки нормально распределены N(0,σ 2);

- .

На рисунке 3.1 представлена модель парной регрессии.

Рисунок 3.1 – Модель парной регрессии

Эти предпосылки описывают классическую линейную регрессионную модель.

Если ошибка имеет ненулевое среднее, исходная модель будет эквивалентна новой модели и другим свободным членом, но с нулевым средним для ошибки.

Если выполняются предпосылки, то МНК оценки и являются эффективными линейными несмещенными оценками

Если обозначить:

то что математическое ожидание и дисперсии коэффициентов и будут следующие:

Ковариация коэффициентов:

Если то и распределены тоже нормально:

Отсюда следует, что:

Вариация β полностью определяется вариацией ε;

Чем выше дисперсия X - тем лучше оценка β.

Полная дисперсия определяется по формуле:

Дисперсия отклонений в таком виде - несмещенная оценка и называется стандартной ошибкой регрессии. N-2 - может быть интерпретировано как число степеней свободы.

Анализ отклонений от линии регрессии может представить полезную меру того, насколько оцененная регрессия отражает реальные данные. Хорошая регрессия та, которая объясняет значительную долю дисперсии Y и наоборот плохая регрессия не отслеживает большую часть колебаний исходных данных. Интуитивно ясно, что всякая дополнительная информация позволит улучшить модель, то есть уменьшить необъясненную долю вариации Y. Для анализа регрессионной модели проводят разложение дисперсии на составляющие, определяют коэффициент детерминации R 2 .

Отношение двух дисперсий распределено по F-распределению, т. е. если проверить на статистическую значимость отличия дисперсии модели от дисперсии остатков, можно сделать вывод о значимости R 2 .

Проверка гипотезы о равенстве дисперсий этих двух выборок:

Если гипотеза Н 0 (о равенстве дисперсий нескольких выборок) верна, t имеет F-распределение с (m 1 ,m 2)=(n 1 -1,n 2 -1) степенями свободы.

Посчитав F – отношение как отношение двух дисперсий и сравнив его с табличным значением, можно сделать вывод о статистической значимости R 2 /2/, /19/.

Заключение

Современные приложения дисперсионного анализа охватывают широкий круг задач экономики, биологии и техники и трактуются обычно в терминах статистической теории выявления систематических различий между результатами непосредственных измерений, выполненных при тех или иных меняющихся условиях.

Благодаря автоматизации дисперсионного анализа исследователь может проводить различные статистические исследования с применение ЭВМ, затрачивая при этом меньше времени и усилий на расчеты данных. В настоящее время существует множество пакетов прикладных программ, в которых реализован аппарат дисперсионного анализа. Наиболее распространенными являются такие программные продукты как:

В современных статистических программных продуктах реализованы большинство статистических методов. С развитием алгоритмических языков программирования стало возможным создавать дополнительные блоки по обработке статистических данных.

Дисперсионный анализ является мощным современным статистическим методом обработки и анализа экспериментальных данных в психологии, биологии, медицине и других науках. Он очень тесно связан с конкретной методологией планирования и проведения экспериментальных исследований.

Дисперсионный анализ применяется во всех областях научных исследований, где необходимо проанализировать влияние различных факторов на исследуемую переменную.

Список литературы

1 Кремер Н.Ш. Теория вероятности и математическая статистика. М.: Юнити – Дана, 2002.-343с.

2 Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2003.-523с.

4 www.conf.mitme.ru

5 www.pedklin.ru

6 www.webcenter.ru

7 www.infections.ru

8 www.encycl.yandex.ru

9 www.infosport.ru

10 www.medtrust.ru

11 www.flax.net.ru

12 www.jdc.org.il

13 www.big.spb.ru

14 www.bizcom.ru

15 Гусев А.Н. Дисперсионный анализ в экспериментальной психологии. – М.: Учебно-методический коллектор «Психология», 2000.-136с.

17 www.econometrics.exponenta.ru

18 www.optimizer.by.ru

Дисперсионный анализ есть совокупность статистических методов, предназначенных для проверки гипотез о связи между определенными признаками и исследуемыми факторами, которые не имеют количественного описания, а также для установления степени влияния факторов и их взаимодействия. В специальной литературе его часто называют ANOVA (от англоязычного названия Analysis of Variations). Впервые этот метод был разработан Р. Фишером в 1925 г.

Виды и критерии дисперсионного анализа

Этот метод используется для исследования связи между качественными (номинальными) признаками и количественной (непрерывной) переменной. По сути, он осуществляет тестирование гипотезы о равенстве средних арифметических нескольких выборок. Таким образом, его можно рассматривать как параметрический критерий для сравнения центров сразу нескольких выборок. Если использовать этот метод для двух выборок, то результаты дисперсионного анализа будут идентичны результатам t-критерия Стьюдента. Однако, в отличие от других критериев, это исследование позволяет изучить проблему более детально.

Дисперсионный анализ в статистике базируется на законе: сумма квадратов отклонений объединенной выборки равна сумме квадратов внутригрупповых отклонений и сумме квадратов межгрупповых отклонений. Для исследования используется критерий Фишера для установления значимости различия межгрупповых дисперсий от внутригрупповых. Однако для этого необходимыми предпосылками являются нормальность распределения и гомоскедастичность (равенство дисперсий) выборок. Различают одномерный (однофакторный) дисперсионный анализ и многомерный (многофакторный). Первый рассматривает зависимость исследуемой величины от одного признака, второй - сразу от многих, а также позволяет выявить связь между ними.

Факторы

Факторами называют контролируемые обстоятельства, что влияют на конечный результат. Его уровнем или способом обработки называют значение, которое характеризует конкретное проявление этого условия. Эти цифры обычно подают в номинальной или порядковой шкале измерений. Часто выходные значения измеряют в количественных или порядковых шкалах. Тогда возникает проблема группировки выходных данных в ряде наблюдений, что соответствуют примерно одинаковым числовым значениям. Если количество групп взять чрезмерно большим, то количество наблюдений в них может оказаться недостаточным для получения надежных результатов. Если брать число чрезмерно малым, это может привести к потере существенных особенностей влияния на систему. Конкретный способ группировки данных зависит от объема и характера варьирования значений. Количество и размеры интервалов при однофакторном анализе чаще всего определяют по принципу равных промежутков или по принципу равных частот.

Задачи дисперсионного анализа

Итак, существуют случаи, когда нужно сравнить две или больше выборок. Именно тогда и целесообразно применение дисперсионного анализа. Название метода указывает на то, что выводы делают на основе исследования составляющих дисперсии. Суть изучения состоит в том, что общее изменение показателя разбивают на составляющие части, которые соответствуют действию каждого отдельно взятого фактора. Рассмотрим ряд задач, которые решает типичный дисперсионный анализ.

Пример 1

В цехе есть ряд станков - автоматов, которые изготавливают определенную деталь. Размер каждой детали - это случайная величина, которая зависит от настройки каждого станка и случайных отклонений, возникающих в процессе изготовления деталей. Нужно по данным измерений размеров деталей определить, одинаково ли настроены станки.

Пример 2

Во время изготовления электрического аппарата используют различные типы изоляционной бумаги: конденсаторную, электротехническую и др. Аппарат можно пропитать различными веществами: эпоксидной смолой, лаком, смолой МЛ-2 и др. Утечки можно устранять под вакуумом при повышенном давлении, при нагреве. Пропитывать можно методом погружения в лак, под непрерывной струей лака и т. п. Электрический аппарат в целом заливают определенным компаундом, вариантов которого есть несколько. Показателями качества являются электрическая прочность изоляции, температура перегрева обмотки в рабочем режиме и ряд других. Во время отработки технологического процесса изготовления аппаратов надо определить, как влияет каждый из перечисленных факторов на показатели аппарата.

Пример 3

Троллейбусное депо обслуживает несколько троллейбусных маршрутов. На них работают троллейбусы различных типов, и оплату за проезд собирают 125 контролеров. Руководство депо интересует вопрос: как сравнить экономические показатели работы каждого контролера (выручку) учитывая различные маршруты, различные типы троллейбусов? Как определить экономическую целесообразность выпуска троллейбусов определенного типа на тот или другой маршрут? Как установить обоснованные требования к величине выручки, которую приносит кондуктор, на каждом маршруте в различных типах троллейбусов?

Задача по выбору метода состоит в том, как получить максимум информации относительно влияния на конечный результат каждого фактора, определить числовые характеристики такого влияния, их надежность при минимальных затратах и за максимально короткое время. Решить такие задачи позволяют методы дисперсионного анализа.

Однофакторный анализ

Исследование своей целью ставит оценку величины влияния конкретного случая на анализируемый отзыв. Другой задачей однофакторного анализа может быть сравнение двух или нескольких обстоятельств друг с другом с целью определения разницы их влияния на отзыв. Если нулевую гипотезу отвергают, то следующим этапом будет количественное оценивание и построение доверительных интервалов для полученных характеристик. В случае, когда нулевая гипотеза не может быть отброшенной, обычно ее принимают и делают вывод о сущности влияния.

Однофакторный дисперсионный анализ может стать непараметрическим аналогом рангового метода Краскела-Уоллиса. Он разработан американскими математиком Уильямом Краскелом и экономистом Вильсоном Уоллисом в 1952 г. Этот критерий назначен для проверки нулевой гипотезы о равенстве эффектов влияния на исследуемые выборки с неизвестными, но равными средними величинами. При этом количество выборок должно быть больше двух.

Критерий Джонкхиера (Джонкхиера-Терпстра) был предложен независимо друг от друга нидерландским математиком Т. Дж. Терпстром в 1952 г. и британским психологом Е. Р. Джонкхиером в 1954 г. Его применяют тогда, когда заранее известно, что имеющиеся группы результатов упорядочены по росту влияния исследуемого фактора, который измеряют в порядковой шкале.

М - критерий Бартлетта, предложенный британским статистиком Маурисом Стивенсоном Бартлеттом в 1937 г., применяют для проверки нулевой гипотезы о равенстве дисперсий нескольких нормальных генеральных совокупностей, с которых взяты исследуемые выборки, в общем случае имеющие различные объемы (число каждой выборки должно быть не меньше четырех).

G - критерий Кохрена, который открыл американец Вильям Геммел Кохрен в 1941 г. Его используют для проверки нулевой гипотезы о равенстве дисперсий нормальных генеральных совокупностей по независимым выборкам равного объема.

Непараметрический критерий Левене, предложенный американским математиком Ховардом Левене в 1960 г., является альтернативой критерия Бартлетта в условиях, когда нет уверенности в том, что исследуемые выборки подчиняются нормальному распределению.

В 1974 г. американские статистики Мортон Б. Браун и Алан Б. Форсайт предложили тест (критерий Брауна-Форсайта), который несколько отличается от критерия Левене.

Двухфакторный анализ

Двухфакторный дисперсионный анализ применяют для связанных нормально распределенных выборок. На практике часто используют и сложные таблицы этого метода, в частности те, в которых каждая ячейка содержит набор данных (повторные измерения), соответствующих фиксированным значениям уровней. Если предположения, необходимые для применения двухфакторного дисперсионного анализа, не выполняются, то используют непараметрический ранговый критерий Фридмана (Фридмана, Кендалла и Смита), разработанный американским экономистом Милтоном Фридманом в конце 1930 г. Этот критерий не зависит от типа распределения.

Предполагается только, что распределение величин является одинаковым и непрерывным, а сами они независимы одна от другой. При проверке нулевой гипотезы выходные данные подают в форме прямоугольной матрицы, в которой строки соответствуют уровням фактора В, а столбцы - уровням А. Каждая ячейка таблицы (блока) может быть результатом измерений параметров на одном объекте или на группе объектов при постоянных значениях уровней обоих факторов. В этом случае соответствующие данные подают как средние значения определенного параметра по всем измерениям или объектам исследуемой выборки. Для применения критерия выходных данных необходимо перейти от непосредственных результатов измерений к их рангу. Ранжирование осуществляют по каждой строке отдельно, то есть величины упорядочивают для каждого фиксированного значения.

Критерий Пейджа (L-критерий), предложенный американским статистиком Е. Б. Пейджем в 1963 г., предназначен для проверки нулевой гипотезы. Для больших выборок применяют аппроксимацию Пейджа. Они при условии реальности соответствующих нулевых гипотез подчиняются стандартному нормальному распределению. В случае, когда в строках исходной таблицы есть одинаковые значения, необходимо использовать средние ранги. При этом точность выводов будет тем хуже, чем больше будет количеств таких совпадений.

Q - критерий Кохрена, предложенный В. Кохреном в 1937 г. Его используют в случаях, когда группы однородных субъектов подвергаются воздействиям, количество которых превышает два и для которых возможны два варианта отзывов - условно-отрицательный (0) и условно-положительный (1). Нулевая гипотеза состоит из равенства эффектов влияния. Двухфакторный дисперсионный анализ дает возможность определить существование эффектов обработки, однако не дает возможности установить, для каких именно столбцов существует этот эффект. При решении данной проблемы применяют метод множественных уравнений Шеффе для связанных выборок.

Многофакторный анализ

Задача многофакторного дисперсионного анализа возникает тогда, когда нужно определить влияние двух или большего количества условий на определенную случайную величину. Исследование предусматривает наличие одной зависимой случайной величины, измеренной в шкале разницы или отношений, и нескольких независимых величин, каждая из которых выражена в шкале наименований или в ранговой. Дисперсионный анализ данных является достаточно развитым разделом математической статистики, который имеет массу вариантов. Концепция исследования общая как для однофакторного, так и для многофакторного. Сущность ее состоит в том, что общую дисперсию разбивают на составляющие, что соответствует определенной группировке данных. Каждой группировке данных соответствует своя модель. Здесь мы рассмотрим только основные положения, нужные для понимания и практического использования наиболее применяемых его вариантов.

Дисперсионный анализ факторов требует достаточно внимательного отношения к сбору и подаче входных данных, а особенно к интерпретации результатов. В отличие от однофакторного, результаты которого можно условно разместить в определенной последовательности, результаты двухфакторного требуют более сложного представления. Еще сложнее ситуация возникает, когда есть три, четыре или больше обстоятельств. Из-за этого в модель достаточно редко включают больше трех (четырех) условий. Примером может быть возникновение резонанса при определенной величине емкости и индуктивности электрического круга; проявление химической реакции при определенной совокупности элементов, из которых построена система; возникновение аномальных эффектов в сложных системах при определенном совпадении обстоятельств. Наличие взаимодействия может в корне изменить модель системы и иногда привести к переосмыслению природы явлений, с которыми имеет дело экспериментатор.

Многофакторный дисперсионный анализ с повторными опытами

Данные измерений достаточно часто можно группировать не по двум, а по большему количеству факторов. Так, если рассматривать дисперсионный анализ срока службы покрышек колес троллейбуса с учетом обстоятельств (завод-производитель и маршрут, на котором эксплуатируются покрышки), то можно выделить как отдельное условие сезон, во время которого эксплуатируются покрышки (а именно: зимняя и летняя эксплуатация). В результате будем иметь задачу трехфакторного метода.

При наличии большего количества условий подход такой же, как и в двухфакторном анализе. Во всех случаях модель пытаются упростить. Явление взаимодействия двух факторов проявляется не так часто, а тройное взаимодействие бывает только в исключительных случаях. Включают то взаимодействие, для которого есть предыдущая информация и серьезные основания, чтобы ее учесть в модели. Процесс выделения отдельных факторов и их учета относительно простой. Поэтому часто возникает желание выделить больше обстоятельств. Этим не следует увлекаться. Чем больше условий, тем менее надежной становится модель и тем больше вероятность ошибки. Сама модель, в которую входит большое количество независимых переменных, становится достаточно сложной для интерпретации и неудобной для практического использования.

Общая идея дисперсионного анализа

Дисперсионный анализ в статистике - это метод получения результатов наблюдений, зависимых от различных одновременно действующих обстоятельств, и оценки их влияния. Управляемую переменную величину, которая соответствует способу воздействия на объект исследования и в некоторый период времени приобретает определенное значение, называют фактором. Они могут быть качественными и количественными. Уровни количественных условий приобретают определенное значение на числовой шкале. Примерами являются температура, давление прессования, количество вещества. Качественные факторы - это разные вещества, разные технологические способы, аппараты, наполнители. Их уровням соответствует шкала наименований.

К качественным можно отнести также вид упаковочного материала, условия хранения лекарственной формы. Сюда же рационально отнести степень измельчения сырья, фракционный состав гранул, имеющих количественное значение, однако плохо поддающихся регулированию, если использовать количественную шкалу. Число качественных факторов зависит от вида лекарственной формы, а также физических и технологических свойств лекарственных веществ. Например, из кристаллических веществ можно получать таблетки прямым прессованием. В этом случае достаточно провести выбор скользящих и смазывающих веществ.

Примеры качественных факторов для различных видов лекарственных форм

  • Настойки. Состав экстрагента, тип экстрактора, способ подготовки сырья, способ получения, способ фильтрации.
  • Экстракты (жидкие, густые, сухие). Состав экстрагента, способ экстракции, тип установки, способ удаления экстрагента и балластных веществ.
  • Таблетки. Состав вспомогательных веществ, наполнители, разрыхлители, связующие, смазывающие и скользящие вещества. Способ получения таблеток, вид технологического оборудования. Вид оболочки и ее компонентов, пленкообразователи, пигменты, красители, пластификаторы, растворители.
  • Инъекционные растворы. Вид растворителя, способ фильтрации, природа стабилизаторов и консервантов, условия стерилизации, способ заполнения ампул.
  • Суппозитории. Состав суппозиторной основы, способ получения суппозиториев, наполнителей, упаковки.
  • Мази. Состав основы, структурные компоненты, способ приготовления мази, вид оборудования, упаковка.
  • Капсулы. Вид оболочечного материала, способ получения капсул, тип пластификатора, консерванта, красителя.
  • Линименты. Способ получения, состав, тип оборудования, тип эмульгатора.
  • Суспензии. Вид растворителя, вид стабилизатора, метод диспергирования.

Примеры качественных факторов и их уровней, изучаемых в процессе изготовления таблеток

  • Разрыхлитель. Крахмал картофельный, глина белая, смесь натрия гидрокарбоната с кислотой лимонной, магния карбонат основной.
  • Связывающий раствор. Вода, крахмальный клейстер, сахарный сироп, раствор метилцеллюлозы, раствор оксипропилметилцеллюлозы, раствор поливинилпирролидона, раствор поливинилового спирта.
  • Скользящая вещество. Аэросил, крахмал, тальк.
  • Наполнитель. Сахар, глюкоза, лактоза, натрия хлорид, фосфат кальция.
  • Смазывающее вещество. Стеариновая кислота, полиэтиленгликоль, парафин.

Модели дисперсионного анализа в исследовании уровня конкурентоспособности государства

Одним из важнейших критериев оценки состояния государства, по которым проводится оценка уровня его благосостояния и социально-экономического развития, является конкурентоспособность, то есть совокупность свойств, присущих национальной экономике, которые определяют способность государства конкурировать с другими странами. Определив место и роль государства на мировом рынке, можно установить четкую стратегию обеспечения экономической безопасности в международных масштабах, ведь она является залогом положительных взаимоотношений России со всеми игроками мирового рынка: инвесторами, кредиторами, правительствами государств.

Для сравнения уровня конкурентоспособности государств проводится ранжирование стран с помощью комплексных индексов, которые включают различные взвешенные показатели. В основу этих индексов заложены ключевые факторы, влияющие на экономическое, политическое и т. п. положение. Комплекс моделей исследования конкурентоспособности государства предусматривает использование методов многомерного статистического анализа (в частности, это дисперсионный анализ (статистика), эконометрическое моделирование, принятие решений) и включает следующие основные этапы:

  1. Формирование системы показателей-индикаторов.
  2. Оценку и прогнозирование индикаторов конкурентоспособности государства.
  3. Сравнение показателей-индикаторов конкурентоспособности государств.

А теперь рассмотрим содержание моделей каждого из этапов данного комплекса.

На первом этапе с помощью методов экспертного изучения формируется обоснованный комплекс экономических показателей-индикаторов оценки конкурентоспособности государства с учетом специфики ее развития на основе международных рейтингов и данных статистических отделов, отражающих состояние системы в целом и ее процессов. Выбор этих показателей обоснован необходимостью отобрать те из них, которые наиболее полно с точки зрения практики позволяют определить уровень государства, его инвестиционную привлекательность и возможности относительной локализации существующих потенциальных и реально действующих угроз.

Основные показатели-индикаторы международных рейтинг-систем - это индексы:

  1. Глобальной конкурентоспособности (ИГК).
  2. Экономической свободы (ИЭС).
  3. Развития человеческого потенциала (ИРЧП).
  4. Восприятия коррупции (ИВК).
  5. Внутренних и внешних угроз (ИВЗЗ).
  6. Потенциала международного влияния (ИПМВ).

Второй этап предусматривает оценку и прогнозирование индикаторов конкурентоспособности государства по международным рейтингам для исследуемых 139 государств мира.

Третий этап предусматривает сравнение условий конкурентоспособности государств при помощи методов корреляционно-регрессионного анализа.

Используя результаты исследования можно определить характер протекания процессов в целом и по отдельным составляющим конкурентоспособности государства; проверить гипотезу о влиянии факторов и их взаимосвязи при соответствующем уровне значимости.

Реализация предложенного комплекса моделей позволит не только оценить сложившуюся ситуацию уровня конкурентоспособности и инвестиционной привлекательности государств, но и проанализировать недостатки управления, предупредить ошибки неправильных решений, не допустить развития кризиса в государстве.