Для пружинного маятника возвращающей силой является. Пружинный маятник

1. Действие на тело силы упругости, пропорциональной смещению тела х от положения равновесия и направленной всегда к этому положению.

2. Инертность колеблющегося тела, благодаря которой оно не останавливается в положении равновесия (когда сила упругости обращается в нуль), а продолжает двигаться в прежнем направлении.

Выражение для циклической частоты имеет вид:

где w - циклическая частота, k - жесткость пружины, m - масса.

Эта формула показывает, что частота свободных колебаний не зависит от начальных условий и полностью определяется собственными характеристиками самой колебательной системы - в данном случае жесткостью k и массой m.

Это выражение определяет период свободных колебаний пружинного маятника.

Конец работы -

Эта тема принадлежит разделу:

Скорость движения средняя путевая скорость мгновенная скорость/ скорость движения

Кинема тика точки раздел кинематики изучающий математическое описание движения материальных точек основной задачей кинематики является.. основная задача механики определить положение тела в любой момент времени.. механическое движение это изменение положения тела в пространстве с течением времени относительно других тел..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Энергия упругой волны
вектор плотности потока энергии физического поля; численно равен энер

Закон Максвелла распределения молекул по скоростям теплового движения
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на ка

Теплота
Теплота - один из двух, известных современному естествознанию, способов передачи энергии - мера передачи неупорядоченного движения. Количество переданной энергии называют количеством теплоты.

Тепловые двигатели и холодильные машины. Цикл Карно
Цикл Карно́- идеальный термодинамический цикл. Тепловая машина Карно, работающая

Пружинный маятник - это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 13.12, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами. К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия. Пусть мы сжали пружину, переместив тело в положение А, и отпустили \((\upsilon_0=0).\) Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение x m пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна. Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.

По закону Гука \(~F_x=-kx.\) По второму закону Ньютона \(~F_x = ma_x.\) Следовательно, \(~ma_x = -kx.\) Отсюда

\(a_x = -\frac{k}{m}x\) или \(a_x + -\frac{k}{m}x = 0 \) - динамическое уравнение движения пружинного маятника.

Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний \(~a_x + \omega^2 x = 0,\) видим, что пружинный маятник совершает гармонические колебания с циклической частотой \(\omega = \sqrt \frac{k}{m}\) Так как \(T = \frac{2 \pi}{\omega},\) то

\(T = 2 \pi \sqrt{ \frac{m}{k} }\)- период колебаний пружинного маятника.

По этой же формуле можно рассчитывать и период колебаний вертикального пружинного маятника (рис. 13.12. б). Действительно, в положении равновесия благодаря действию силы тяжести пружина уже растянута на некоторую величину x 0 , определяемую соотношением \(~mg=kx_0.\) При смещении маятника из положения равновесия O на х проекция силы упругости \(~F"_{ynpx} = -k(x_0 + x)\) и по второму закону Ньютона \(~ma_x=-k(x_0+ x) + mg.\) Подставляя сюда значение \(~kx_0=mg,\) получим уравнение движения маятника \(a_x + \frac{k}{m}x = 0,\) совпадающее с уравнением движения горизонтального маятника.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 377-378.

Тела под действием силы упругости, потенциальная энергия которой пропорциональна квадрату смещения тела из положения равновесия:

где k – жесткость пружины.

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени. Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия.

Когда в школе проходят колебания, то их иллюстрируют двумя самыми простыми примерами: грузик на пружинке и математический маятник (то есть точечный грузик на нерастяжимой нити) в поле тяжести. В обоих случаях в колебаниях наблюдается важная закономерность: их период не зависит от амплитуды - по крайней мере до тех пор, пока эта амплитуда остается малой, - а определяется только механическими свойствами системы.

А теперь давайте совместим эти два примера и рассмотрим колебания грузика, подвешенного на растяжимой пружинке в поле тяжести (рис. 1).

Для простоты мы пренебрегаем третьим измерением и считаем, что этот пружинный маятник колеблется строго в плоскости рисунка. В этом случае грузик (который тоже считается точечным) может двигаться в вертикальной плоскости в произвольном направлении, а не только вверх-вниз или влево-вправо, как изображено на рис. 2. Но если опять ограничиться только малыми отклонениями от положения равновесия, то горизонтальные и вертикальные колебания совершаются практически независимо, со своими периодами T x и T y .

Казалось бы, раз эти колебания определяются совершенно разными силами и характеристиками системы, то их периоды могут быть совершенно произвольными, никак не связанными друг с другом. Оказывается - нет!

Задача

Докажите , что у такого маятника период горизонтальных колебаний всегда больше периода вертикальных: T x > T y .

Подсказка

Задача может поначалу удивить тем, что в ней как будто ничего и не дано, а что-то при этом требуется доказать. Но ничего страшного тут нет. Когда задача формулируется таким образом, это означает, что вы можете для себя ввести какие-то обозначения, которые вам нужны, сосчитать с ними то, что требуется, а потом прийти к выводу, который уже не зависит от этих величин. Проделайте это для данной задачи. Возьмите формулы для периодов колебания, подумайте, что за величины в них входят, и сравните два периода друг с другом, поделив один на другой.

Решение

Период колебания грузика массы m на пружинке жесткости k и длины L 0 составляет

.

Эта формула не меняется и в том случае, если грузик подвешен в поле тяжести с ускорением свободного падения g . Конечно, положение равновесия грузика сместится вниз на высоту ΔL = mg/k - именно при таком удлинении пружинки сила упругости компенсирует силу тяжести. Но период вертикальных колебаний относительно этого нового положения равновесия с растянутой пружинкой останется тем же.

Период горизонтальных колебаний растянутого маятника выражается через ускорение свободного падения g и его полную длину L = L 0 + ΔL :

.

Именно благодаря дополнительному растяжению в поле тяжести мы выясняем, что

Вот и всё решение.

Послесловие

Несмотря на свою кажущуюся простоту, маятник на пружинке - система, довольно богатая на явления. Это один из самых простых примеров симпатичного явления - резонанса Ферми. Заключается оно вот в чем. Вообще говоря, если грузик как-то оттянуть и отпустить, то он будет колебаться и по вертикали, и по горизонтали. Эти два типа колебания будут просто накладываться и не мешать друг другу. Но если периоды вертикальных и горизонтальных колебаний связаны соотношением T x = 2T y , то горизонтальные и вертикальные колебания, словно против своей воли, начнут постепенно превращаться друг в друга, как на анимации справа. Энергия колебаний будет как бы перекачиваться из вертикальных колебаний в горизонтальные и наоборот.

Выглядит это так: вы оттягиваете грузик вниз и отпускаете его. Он поначалу колеблется только вверх-вниз, затем сам по себе начинает раскачиваться в стороны, на какое-то мгновение колебание становится почти полностью горизонтальным, а потом снова возвращается к вертикальному. Удивительно, но строго вертикальное колебание оказывается неустойчивым.

Объяснение этого замечательного эффекта, а также магического соотношения T x :T y = 2:1, вот в чем. Обозначим через x и y отклонения грузика от положения равновесия (ось y направлена вверх). При таком отклонении потенциальная энергия вырастает на величину

Это - точная формула, она годится для любых отклонений, больших и маленьких. Но если x и y малы, существенно меньше L , то выражение приблизительно равно

плюс другие слагаемые, содержащие еще более высокие степени отклонений. Величины U y и U x - это обычные потенциальные энергии, из которых получаются вертикальные и горизонтальные колебания. А вот выделенная синим цветом величина U xy - это особая добавка, которая порождает взаимодействие между этими колебаниями. Благодаря этому маленькому взаимодействию колебания по вертикали влияют на горизонтальные колебания и наоборот. Это становится совсем прозрачно, если провести вычисления дальше и написать уравнение колебаний по горизонтали и вертикали:

где введены обозначения

Без синей добавки у нас были бы обычные независимые колебания по вертикали и горизонтали с частотами ω y и ω x . Эта добавка играет роль вынуждающей силы , дополнительно раскачивающей колебания. Если частоты ω y и ω x произвольны, то эта маленькая сила не приводит ни к какому существенному эффекту. Но если выполняется соотношение ω y = 2ω x , наступает резонанс: вынуждающая сила для обоих типов колебаний содержит компоненту с той же частотой, что и само колебание . В результате эта сила медленно, но неуклонно раскачивает один тип колебаний и подавляет другой. Именно так горизонтальные и вертикальные колебания перетекают друг в друга.

Дополнительные красоты возникают, если в этом примере по-честному учесть третье измерение. Будем считать, что грузик может сжимать-разжимать пружинку по вертикали и качаться, как маятник, в двух горизонтальных направлениях. Тогда, при выполнении условия резонанса, при взгляде сверху грузик выписывает звездчатую траекторию, как, например, на рис. 3. Так получается потому, что плоскость колебания не остается неподвижной, а поворачивается - но не плавно, а как бы скачками. Пока колебание идет из стороны в сторону, эта плоскость более-менее держится, а поворот происходит за тот короткий промежуток, когда колебание почти вертикально. Предлагаем читателям самостоятельно подумать, каковы причины этого поведения и от чего зависит угол поворота плоскости. А желающие окунуться с головой в эту довольно-таки глубокую задачу могут полистать статью Stepwise Precession of the Resonant Swinging Spring , в которой не только приведен подробный анализ задачи, но и рассказывается о ее истории и о связи этой задачи с другими разделами физики, в частности с атомной физикой.

Пружинный маятник - это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 1, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами.

К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия.

Пусть мы сжали пружину, переместив тело в положение А, и отпустили . Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение x m пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна.

Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.

По закону Гука F x = -kx. По второму закону Ньютона F x = ma x . Следовательно, ma x = -kx. Отсюда

Динамическое уравнение движения пружинного маятника.

Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний , видим, что пружинный маятник совершает гармонические колебания с циклической частотой