Для усиления дырочной проводимости полупроводника необходимо. Полупроводники

Ерюткин Евгений Сергеевич
учитель физики высшей квалификационной категории ГОУ СОШ №1360, г. Москва

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда.

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличии от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например германий.

Одним из таких приборов является диод – прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа.

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования.

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используются множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) М.: Мнемозина. 2012 г.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. М.: Илекса. 2005 г.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика М.:2010 г.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().
  1. В следствии чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?

Полупроводник - это вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость (1/R) увеличивается.
- наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

1 электронная (проводимость "n " - типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2. дырочная (проводимость " p"- типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей

Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов
и называется электронно-дырочной проводимостью.


Полупроводники при наличии примесей

У них существует собственная + примесная проводимость
Наличие примесей сильно увеличивает проводимость.
При изменении концентрации примесей изменяется число носителей эл.тока - электронов и дырок.
Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

1) донорные примеси (отдающие)

Являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.
Это проводники " n " - типа , т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки.
Такой полупроводник обладает электронной примесной проводимостью.

Например - мышьяк.

2. акцепторные примеси (принимающие)

Создают "дырки", забирая в себя электроны.
Это полупроводники " p "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда - дырки, а неосновной - электроны.
Такой полупроводник обладает дырочной примесной проводимостью.

Например - индий.


Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода.

Урок № 41-169 Электрический ток в полупроводниках. Полупроводниковый диод. Полупроводниковые приборы.

Полупроводник - вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость увеличивается. Наблюдается у кремния, германия, селена и у некоторых соединений.Механизм проводимости у полупроводников Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик. Если полупроводник чистый(без примесей), то он обладает собственной проводимостью (невелика). Собственная проводимость бывает двух видов: 1)электронная (проводимость "п "-типа) При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; При увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.Свободные электроны перемещаются противоположно вектору напряженности электрического поля. Электронная проводимость полупроводников обусловлена наличием свободных электронов. 2)дырочная (проводимость "р"-типа). При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка". Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда. Перемещение дырки происходит в направлении вектора напряженности электрического поля.Разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны нагреванием, освещением (фотопроводимость) и действием сильных электрических полей. Зависимость R(t): термистор
- дистанционное измерение t; - противопожарная сигнализация

Общая проводимость чистого полупроводника складывается из проводимостей "р" и "n" -типов и называется электронно-дырочной проводимостью.Полупроводники при наличии примесей У них существует собственная и примесная проводимость. Наличие примесей сильно увеличивает проводимость. При изменении концентрации примесей изменяется число носителей электрического тока - электронов и дырок. Возможность управления током лежит в основе широкого применения полупроводников. Существуют следующие примеси: 1) донорные примеси (отдающие) - являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике. Это проводники " n " - типа, т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки. Такой полупроводник обладает электронной примесной проводимостью (пример – мышьяк). 2) акцепторные примеси (принимающие) создают "дырки", забирая в себя электроны. Это полупроводники " р "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной - электроны. Такой полупроводник обладает дырочной примесной проводимостью (пример – индий). Электрические свойства "р- n " переходов. "р-п" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия, электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего электрического поля ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

При запирающем (обратном направлении внешнего электрического поля) ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковый диод - полупроводник с одним "р-п" переходом. П
олупроводниковые диоды основные элементы выпрямителей переменного тока.

При наложении электрического поля: в одном направлении сопротивление полупроводника велико, в обратном - сопротивление мало.
Транзисторы. (от английских слов transfer - переносить, resistor – сопротивление) Рассмотрим один из видов транзисторов из германия или кремния с введенными в них донорными и акцепторными примесями. Распределе­ние примесей таково, что создает­ся очень тонкая (порядка несколь­ких микрометров) прослойка полупроводника п-типа между дву­мя слоями полупроводника р-типа (см. рис.). Эту тонкую прослойку называют основанием или базой. В кристалле образуются два р -n-перехода, прямые направле­ния которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изо­браженную на рисунке. При данном включении левый р -n-пе­реход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмиттером. Если бы не было правого р -n-перехода, в цепи эмиттер - база су­ществовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напряжения) и со­противления цепи, включая малое сопротивление прямо­го перехода эмиттер - база. Батарея Б2 включена так, что правый р -n-переход в схеме (см. рис.) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называ­емой коллектором. Если бы не было левого р -n-перехо­да, сила тока в цепи коллектора была бы близка к ну­лю, так каксопротивление обратного перехода очень велико. При существовании же тока в левом р -n-пере­ходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере (если на эмиттер подано отрицательное напряжение, то левый р -n-переход будет обратным и ток в цепи эмиттера и в цепи коллек­тора будет практически отсутствовать). При создании напряжения между эмиттером и базой основные носители полупровод­ника р-типа - дырки проникают в базу, где они явля­ются уже неосновными носителями. Поскольку толщина базы очень мала и число основных носителей (электро­нов) в ней невелико, попавшие в нее дырки почти не объ­единяются (не рекомбинируют) с электронами базы и про­никают в коллектор за счет диффузии. Правый р -n-переход закрыт для основных носителей заряда ба­зы - электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. выше) плоскости много меньше сечения в верти­кальной плоскости.

Сила тока в коллекторе, практически равная силе то­ка в эмиттере, изменяется вместе с током в эмиттере. Со­противление резистора R мало влияет на ток в коллекто­ре, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника перемен­ного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе R.

При большом сопротивлении резистора изменение напря­жения на нем может в десятки тысяч раз превышать изме­нение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно полу­чить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.

Применение транзисторов Свойства р -п-перехода в полупроводниках использу­ются для усиления и генерации электрических колебаний.



3

Перенос носителей тока в полупроводниках

Introduction

Носителями тока в полупроводниках являются электроны и дырки. Носители тока движутся в периодическом поле атомов кристалла так, как будто они являются свободными частицами. Влияние периодического потенциала сказывается только на величине массы носителя. Т.е., под действием периодического потенциала меняется масса носителя. В этой связи в физике твердого тела вводят понятие эффективной массы электрона и дырки. Средняя энергия теплового движения электронов и дырок равна kT /2 на каждую степень свободы. Тепловая скорость электрона и дырки при комнатной температуре равна примерно 10 7 см/c.

Если к полупроводнику приложить электрическое поле, то это поле вызовет дрейф носителей тока. При этом скорость носителей сначала будет увеличиваться с ростом поля, достигнет среднего значения скорости и потом перестанет меняться, поскольку происходит рассеяние носителей. Причиной рассеяния являются дефекты, примеси и испускание или поглощение фононов. Основной причиной рассеяния носителей являются заряженные примеси и тепловых колебаниях атомов решетки (поглощение/испускание фононов). Взаимодействие с ними приводит к резкому изменению скорости носителей и направлению их перемещения. Изменение направления скорости носителей носит случайный характер. Дополнительным механизмом рассеяния носителей тока является рассеяние носителей на поверхности полупроводника.

При наличии внешнего электрического поля на случайный характер перемещения носителей в полупроводнике накладывается направленное движение носителей под действием поля в перерывах между соударениями. И даже, несмотря на то, что скорость случайного перемещения носителей может во много раз превосходить скорость направленного перемещения носителей под действием электрического поля, случайной составляющей перемещения носителей можно пренебречь, поскольку при случайном движении результирующий поток носителей равен нулю. Ускорение носителей под действием внешнего поля подчиняется законам динамики Ньютона. Рассеяние приводит к резкому изменению направления перемещения и величины скорости, но после рассеяния ускоренное движение частицы под действием поля возобновляется.

Результирующий эффект столкновений состоит в том, что ускорения частиц не происходит, но частицы быстро достигают постоянной скорости движения. Это эквивалентно введению тормозящей компоненты в уравнение движения частицы, характеризуемой постоянной времени t . За этот промежуток времени частица теряет количество движенияmv , определяемое средней скоростьюv . Для частицы, которая имеет постоянное ускорение между соударениями, эта постоянная времени равна времени между двумя последовательными соударениями. Рассмотрим подробнее механизмы переноса носителей тока в полупроводниках.

Дрейфовый ток (Drift Current)

Дрейфовое движение носителей в полупроводнике под действием электрического поля можно проиллюстрировать рисунком ХХХ. Поле сообщает носителям скорость v .

Fig . Движение носителей под действием поля .

Если принять, что все носители в полупроводнике движутся с одинаковой скоростью v , то ток можно выразить как отношение общего перемещенного между электродами заряда к времени t r прохождения этого заряда от одного электрода к другому, или:

где L расстояние между электродами.

Плотность тока теперь можно выразить через концентрацию носителей тока n в полупроводнике:

где А –площадь сечения полупроводника.

Подвижность (Mobility)

Характер движения носителей тока в полупроводнике в отсутствии поля и под действием внешнего электрического поля приведен на рисунке ХХХ. Как уже отмечалось, тепловая скорость электронов порядка 10 7 cm/sи она существенно выше дрейфовой скорости электронов.

Fig . Случайный характер движения носителей тока в полупроводнике в отсутствии и при наличии внешнего поля.

Рассмотрим движение носителей только под действием электрического поля. В соответствии с законом Ньютона:

где сила включает в себя две составляющие – электростатическую силу и минус силу, обуславливающую потери количества движения при рассеянии, деленную на время между соударениями:

Приравнивая эти выражения и используя выражение для средней скорости, получим:

Рассмотрим только стационарный случай, когда частица уже ускорилась и достигла своей средней постоянной скорости. В этом приближении скорость пропорциональна напряженности электрического поля. Коэффициент пропорциональности между последними величинами определяется как подвижность:

Подвижность обратно пропорциональна массе носителя и прямо пропорциональна времени свободного пробега.

Плотность дрейфового тока можно записать как функцию подвижности:

Как уже отмечалось, в полупроводниках масса носителей не равна массе электрона в вакууме, m и в формуле для подвижности следует использовать эффективную массу,m * :

Диффузия носителей тока в полупроводниках.

Диффузионный ток

Если внешнее электрическое поле в полупроводнике отсутствует, то наблюдается случайное перемещение носителей тока – электронов и дырок под действием тепловой энергии. Это случайное перемещение не приводит к направленному перемещению носителей и образованию тока. Всегда вместо ушедшего из какого-либо места носителя на его место придет другой. Так что по всему объему полупроводника сохраняется однородная плотность носителей.

Но ситуация меняется, если носители распределены по объему неравномерно, т.е. имеет место градиент концентрации. В этом случае под действием градиента концентрации возникает направленное перемещение носителей –диффузия из области, где концентрация выше, в область с низкой концентрацией. Направленное перемещение заряженных носителей под действием диффузии создает диффузионный ток. Рассмотрим этот эффект более подробно.

Получим соотношение для диффузионного тока. Будем исходить из того, что направленное перемещение носителей под действием градиента концентрации происходит в результате теплового движения (при температуре
по Кельвину на каждую степень свободы частицы приходится энергия
), т.е. диффузия отсутствует при нулевой температуре (дрейф носителей возможен и при 0К).

Несмотря на то, что случайный характер движения носителей под действием тепла требует статистического подхода, вывод формулы для диффузионного тока будет основан на использовании средних величин, характеризующих процессы. Результат получается один и тот же.

Введем средние величины – среднюю тепловую скорость v th , среднее время между соударениями,, и среднюю длину свободного пробега,l . Средняя тепловая скорость может быть направлена как в положительном, так и в отрицательном направлении. Эти величины связаны между собой соотношением

Рассмотрим ситуацию с неоднородным распределением электронов n (x ) (см. Рис ХХХ).

Fig. 1 Carrier density profile used to derive the diffusion current expression

Рассмотрим поток электронов через плоскость с координатой x = 0. Носители в эту плоскость приходят как слева со стороны координатыx = - l , так и справа со стороны координатыx = l . Поток электронов слева направо равен

где коэффициент ½ означает, что половина электронов в плоскости с координатой x = - l движется налево, а вторая половина – направо. Аналогично, поток электронов черезx = 0 приходящий справа со стороныx = + l будет равен:

Общий поток электронов, проходящих через плоскость x = 0 слева направо, будет равен:

Считая, что средняя длина свободного пробега электронов достаточно мала, мы можем записать разницу в концентрациях электронов справа и слева от координаты x = 0 через отношение разности концентраций к расстоянию между плоскостями, т.е. через производную:

Плотность тока электронов будет равна:

Обычно произведение тепловой скорости на среднюю длину свободного пробега заменяют одним сомножителем, называемым коэффициентом диффузии электронов, D n .

Аналогичные соотношения можно записать и для дырочного диффузионного тока:

Следует только помнить, что заряд дырок положительный.

Между коэффициентом диффузии и подвижностью существует связь. Хотя на первый взгляд может показаться, что эти коэффициенты не должны быть связаны между собой, поскольку диффузия носителей обусловлена тепловым движением, а дрейф носителей обусловлен внешним электрическим полем. Однако один из основных параметров – время между соударениями не должен зависеть от причины, вызвавшей движение носителей.

Используем определение тепловой скорости как,

и выводы термодинамики о том, что на каждую степень свободы движения электрона приходится тепловая энергия kT /2, равная кинетической:

Из этих соотношений можно получить произведение тепловой скорости и средней длины свободного пробега, выраженное через подвижность носителя:

Но произведение тепловой скорости и средней длины свободного пробега мы уже определили как коэффициент диффузии. Тогда последнее соотношение для электронов и дырок можно записать в следующем виде:

Эти соотношения называются соотношениями Эйнштейна.

Общий ток

Общий ток через полупроводник является суммой дрейфового и диффузионного тока. Для плотности тока электронов можно записать:

и аналогично для дырок:

Общая плотность тока через полупроводник равен сумме электронного и дырочного тока:

Суммарный ток через полупроводник равен произведению плотности тока на площадь полупроводника:

Ток можно записать также в следующей форме:

Условие равновесия неоднородно легированного полупроводника

(условие отсутствия тока через полупроводник)

Полупроводники – это материалы, которые при обычных условиях являются диэлектриками, но с увеличение температуры становятся проводниками. То есть в полупроводниках при увеличении температуры, сопротивление уменьшается.

Строение полупроводника на примере кристалла кремния

Рассмотрим строение полупроводников и основные типы проводимости в них. В качестве примера рассмотрим кристалла кремния.

Кремний является четырехвалентным элементом. Следовательно, в его внешней оболочке имеются четыре электрона, которые слабо связаны с ядром атома. С каждым по соседству находится еще четыре атома.

Атомы между собой взаимодействуют и образуют ковалентные связи. От каждого атома в такой связи участвует один электрон. Схема устройства кремния изображена на следующем рисунке.

картинка

Ковалентные связи являются достаточно прочными и при низких температурах не разрываются. Поэтому в кремнии нет свободных носителей заряда, и он при низких температурах является диэлектриком. В полупроводниках существует два вида проводимости: электронная и дырочная.

Электронная проводимость

При нагревании кремния ему будет сообщаться дополнительная энергия. Кинетическая энергия частиц увеличивается и некоторые ковалентные связи разрываются. Тем самым образуются свободные электроны.

В электрическом поле эти электроны перемещаются между узлами кристаллической решетки. При этом в кремнии будет создаваться электрический ток.

Так как основными носителями заряда являются свободные электроны, такой тип проводимости называют – электронной проводимостью. Количество свободных электронов зависит от температуры. Чем сильнее мы будем нагревать кремний, тем больше ковалентных связей будет разрываться, а следовательно, будет появляться больше свободных электронов. Это приводит к уменьшению сопротивления. И кремний становится проводником.

Дырочная проводимость

Когда происходит разрыв ковалентной связи, на месте вырвавшегося электрона, образуется вакантное место, которое может занять другой электрон. Это место называется дыркой. В дырке имеется избыточный положительный заряд.

Положение дырки в кристалле постоянно меняется, любой электрон может занять это положение, а дырка при этом переместится туда, откуда перескочил электрон. Если электрического поля нет, то движение дырок беспорядочное, и поэтому тока не возникает.

При его наличии, возникает упорядоченность перемещения дырок, и помимо тока, который создается свободными электронами, появляется еще ток, который создается дырками. Дырки будут двигаться в противоположном движению электронов направлении.

Таким образом, в полупроводниках проводимость является электронно-дырочной. Ток создается как с помощью электронов, так и с помощью дырок. Такой тип проводимости еще называется собственной проводимостью, так как участвуют элементы только одного атома.