Движение волн на водной поверхности. Поверхностные волны

§ 35. Волновой режим.

Волны, наблюдаемые на поверхности воды, делятся на три вида.

Ветровые волны, образующиеся в результате действия ветра.

Сейсмические волны, возникающие в океанах в результате землетрясения и достигающие у берегов высоты 10-30 м.

Сейши - волны, которые образуются в ограниченном бассейне, примыкающем к морю, в результате нарушения равновесия водной поверхности, вызванного сильным ветром или колебаниями почвы.

Для судовождения на реках и в прибрежных районах моря существенны только ветровые волны (волны трения).

Волны состоят из чередующихся между собой валов и впадин (рис. 79), где длина волны l , измеряемая в метрах, является расстоянием по горизонтали между соседними гребнями или подошвами волн; высота волны h - расстояние по вертикали от подошвы до гребня волны. Скорость волны, измеряемая в м/сек, - расстояние, которое проходят в единицу времени гребень или подошва волны в направлении ее движения.

Период волны - промежуток времени, за который последовательно проходят через одну и ту же точку два соседних гребня волн, измеряется в секундах. Угол склона или крутизна волны обозначается a . Фронт волны - линия, перпендикулярная направлению движения волны. Это направление, подобно курсу, определяется в румбах или градусах. Отношение высоты волны h к ее длине l также характеризует крутизну волн. Она меньше на морях и океанах и больше на водохранилищах и озерах.

Ветровые волны возникают с ветром, с прекращением ветра эти волны в виде мертвой зыби, постепенно затухая, продолжают двигаться в прежнем направлении.

Ветровое волнение зависит от величины водного пространства, открытого для разгона волны, скорости ветра и времени действия его в одном направлении, а также глубины. С уменьшением глубины волна становится крутой. Слабый ветер, дующий длительное время на большом водном пространстве, может вызвать волнение более значительное, чем сильный кратковременный ветер на малой водной поверхности. Высота волны связана со степенью волнения и определяется специальной шкалой волнений (см. табл. 3).

Ветровые волны несимметричны, наветренный склон их пологий, подветренный - крутой. Так как ветер на верхнюю часть волны действует сильнее, чем на нижнюю, гребень волны рассыпается, образуя «барашки».

Зыбь - волнение, продолжающееся после ветра уже затихшего, ослабевшего или изменившего направление. Волнение, распространяющееся по инерции при полном безветрии, называется мертвой зыбью.

Волны бывают правильные, когда их гребни ясно различимы, и неправильные, когда волны не имеют ясно выраженных гребней и образуются без всякой видимой закономерности. Гребни волн перпендикулярны направлению ветра в открытом море, озере, водохранилище, но у берега они принимают положение, параллельное береговой черте, набегая на берега.

Толчея - хаотическое нагромождение волн, образующихся при встрече прямых волн с отраженными. Опрокидывание гребня идущей волны на крутом берегу образует взбросы, имеющие большую разрушительную силу.

Набегание волн на отлогий берег с увеличением по высоте и крутизне и последующим опрокидыванием на берег называется прибоем. Над банками или рифами образуются буруны, служащие признаком подводной опасности.

Волны несколько успокаиваются от сильного дождя, от плавающих на поверхности воды водорослей, масла.

При обычных штормах длина большой морской волны бывает от 60 до 150 м, высота от 6 до 8 м с периодом в 6-10 сек. Крутизна волны достигает 1\20 - 1\10. На водохранилищах и глубоких озерах крутизна волны равна 1\10 - 1\15. Высота волны на водохранилище обычно достигает 2,5- 3,0 м, на озерах до 3,5 м. На реках и каналах высота волны обычно меньше - 0, 6 м, но иногда, особенно в период весенних вод, может достигать 1 м.

Таблица 3

Шкала волнений.

Высота волн

(от - до, м)

Степень волнения в баллах

Характеристика

Признаки для определения состояния поверхности моря, озера, крупного водохранилища

Волнение отсутствует

Зеркально-гладкая поверхность

До 0,25

Слабое

Рябь, появляются небольшие гребни волн

0,25-0,75

Умеренное

Небольшие гребни волн начинают опрокидываться, но пена не белая, а стекловидная

0,75-1,25

Значительное

Небольшие волны, гребни некоторых из них опрокидываются, образуя местами белую клубящуюся пену - «барашки»

1,25-2,0

То же

Волны принимают хорошо выраженную форму, повсюду образуются «барашки»

2,0-3,5

Сильное

Появляются высокие гребни, их пенящиеся вершины занимают большие площади, ветер начинает срывать пену с гребней волн

3,5-6,0

То же

Гребни очерчивают длинные валы ветровых волн; пена, срываемая с гребней ветром, начинает вытягиваться полосами по склонам волн

6,0-8,5

Очень сильное

Длинные полосы пены, срываемой ветром, покрывают склоны волн, местами сливаясь, достигают их подошв

8,5-11,0

VIII

То же

Пена широкими плотными сливающимися полосами покрывает склоны волн, отчего поверхность становится белой, только местами во впадинах волн видны свободные от пены участки

11,0 и более

Исключительное

Поверхность моря покрыта плотным слоем пены, воздух наполнен водяной пылью и брызгами, видимость значительно уменьшена

Максимальные высоты волн в океанах доходят до 20 м. На морях, озерах и водохранилищах* они различны, например: в Северном - 9, Средиземном - 8, Охотском - 7, на озерах Байкал и Ладожском - 6, Черном - 6 и Каспийском - 10, на Братском водохранилище - 4, 5 (в местах, где глубины 100 м), в Рыбинском водохранилище 2, 7, в Цимлянском - 4, 5, Куйбышевском - 3, в Белом море и Финском заливе - 2, 5 м; в низовьях Волги в шторм волны достигают высоты 1, 2 м.

Для ознакомления с ветровыми волнами на определенном участке водохранилища пользуются специальным атласом волновых явлений. Любитель по тем или иным причинам не всегда может пользоваться атласом. На рис. 80 приведен график определения высоты волны в зависимости от скорости ветра и длины ее разгона. График действителен только для пресноводных водоемов: водохранилищ, озер и рек. Рельефа дна и надводного рельефа берега график не учитывает, поэтому он дает небольшой процент погрешности.

Перед выходом в плавание на широкий участок водохранилища или реки нужно определить высоту волны на трассе, по которой судно должно следовать. Предположим, по сводке погоды, переданной по радио перед выходом в плавание, сообщалось, что ожидается облачность без осадков, ветер северовосточный, умеренный.

По карте водохранилища определяем место, район, курс, трассу и расстояние в километрах от северо-восточного берега, откуда дует ветер. Получили длину разгона волны 20 км.

Из шкалы для визуальной оценки силы ветра (табл. 3) определяем, что умеренный ветер может иметь скорость от 5, 3 до 7, 4 м/сек. На графике (рис. 85) берем кривую 7 м/сек, по которой находим, что при длине разгона в 20 км высота волны будет равна 0, 65 м.

В результате, сообразуясь с навигационными качествами судна и другими данными, можно решить, следует изменить курс или лучше вообще не выходить в плавание.

Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачного примера придумать трудно, ибо они нисколько не похожи ни на звук, ни на свет; здесь собрались все трудности, которые только могут быть в волнах. Давайте начнем с длинных волн на глубокой воде. Если считать океан бесконечно глубоким и на его поверхности происходят какие-то возмущения, то возникнут" волны. Вообще говоря, возможны любые возмущения, но синусоидальное движение с очень небольшим возмущением дает волны, напоминающие обычные гладкие океанские волны, идущие к берегу. Вода, разумеется, в среднем остается на месте, а движутся сами волны. Что ж это за движение — поперечное или продольное? Оно не может быть ни тем, ни другим: ни поперечным, ни продольным. Хотя в каждом данном месте горбы чередуются со впадинами, оно не может быть движением вверх и вниз просто из-за закона сохранения количества воды. Куда должна деваться вода из впадины? Ведь она же практически несжимаема. Скорость волн сжатия, т. е. звука в воде, во много раз больше: мы сейчас их не рассматриваем. Итак, для нас сейчас вода несжимаема, поэтому при образовании впадины вода из этого места может двигаться только в стороны. Так оно и получается на самом деле: частички воды вблизи поверхности будут двигаться приблизительно по окружности. Как-нибудь, когда вы будете нежиться на воде, лежа на круге, и придет такой гладкий вал, посмотрите на соседние предметы и вы увидите, что они движутся по окружностям. Так что картина получается неожиданная: здесь мы имеем дело со смесью продольных и поперечных волн. С увеличением глубины круги уменьшаются, пока на достаточной глубине от них ничего не останется (фиг. 51.9).

Очень интересно определить скорость таких волн. Это должно быть какой-то комбинацией плотности воды, ускорения силы тяжести, которая в данном случае является восстанавливающей силой, и, возможно, длины волны и глубины. Если мы рассмотрим случай бесконечной глубины, то скорость больше не будет зависеть от нее. Но какую бы формулу для фазовой скорости волн мы ни взяли, она должна содержать эти величины в такой комбинации, чтобы давать правильную размерность. Испробовав множество различных способов, мы найдем, что только одна комбинация g и λ может дать нам размерность скорости, именно √(gλ) , которая совсем не включает плотности. На самом деле эта формула для фазовой скорости не вполне точна, и полный анализ динамики, в который мы не будем входить, показывает, что все действительно получится так, как у нас, за исключением √(2 π), т. е.

Интересно, что длинные волны бегут быстрее коротких. Так что когда проходящая вдали моторная лодка создает волны, то после некоторого промежутка времени они достигнут берега, но сначала это будут редкие всплески, поскольку первыми приходят длинные волны. Затем приходящие волны становятся все короче и короче, ибо скорость падает как квадратный корень из длины волны.

«Это же неверно,— может возразить кто-нибудь,— ведь чтобы делать такое утверждение, мы должны смотреть на групповую скорость». Правильно, конечно. Формула для фазовой скорости не говорит нам о том, что приходит первым; об этом может нам сказать только групповая скорость. Так что мы должны получить групповую скорость и мы сможем показать, что она равна половине фазовой скорости. Для этого нужно только вспомнить, что фазовая скорость ведет себя как квадратный корень из длины волны. Так же, т. е. как квадратный корень из длины волны, ведет себя и групповая скорость. Но как может групповая скорость быть вдвое меньше фазовой? Посмотрите на группу волн, вызванных проходящей мимо лодкой, и проследите за каким-то определенным гребнем. Вы обнаружите, что он бежит вместе с группой, но постепенно становится все меньше и меньше, а дойдя до переднего фронта, совсем умирает. Но таинственным и непостижимым образом на смену ему с заднего фронта поднимается слабенькая волна и становится она все сильнее и сильнее. Короче говоря, по группе движутся волны, тогда как сама группа движется вдвое медленнее этих волн.

Поскольку групповая и фазовая скорости не равны друг другу, то волны, вызванные движущимся объектом, будут уже не просто коническими, а гораздо более сложными и интересными. Вы можете видеть это на фиг. 51.10, где показаны волны, вызванные движущейся по воде лодкой. Заметьте, что они совсем не похожи на то, что мы получали для звука (когда скорость не зависит от длины волны), где фронт волны был просто распространяющимся в стороны конусом. Вместо него мы получили волны позади движущегося объекта, фронт которых перпендикулярен его движению, да еще движущиеся под другими углами небольшие волны с боков. Всю эту картину движения волн в целом можно очень красиво воссоздать, зная только, что фазовая скорость пропорциональна квадратному корню из длины волны. Весь фокус заключается в том, что картина волн стационарна относительно лодки (движущейся с постоянной скоростью); все другие виды волн отстанут от нее.

До сих пор мы рассматривали длинные волны, для которых восстанавливающей силой была сила тяжести. Но когда волны становятся очень короткими, то основной восстанавливающей силой оказывается капиллярное притяжение, т. е. энергия поверхностного натяжения. Для волн поверхностного натяжения фазовая скорость равна

где Т — поверхностное натяжение, а ρ — плотность. Здесь все наоборот: чем короче длина волн, тем большей оказывается фазовая скорость. Если же действуют и сила тяжести и капиллярная сила, как это обычно бывает, то мы получаем комбинацию

где k = 2 π/λ — волновое число. Как видите, скорость волн на воде — вещь действительно довольно сложная. На фиг. 51.11 показана фазовая скорость как функция длины волны. Она велика для очень коротких волн, велика для очень длинных волн, но между ними существует некоторая минимальная скорость распространения. Исходя из этой формулы, можно вычислить и групповую скорость: она оказывается равной 3 / 2 фазовой скоро сти для ряби и 1 / 2 фазовой скорости для волн «тяжести». Слева от минимума групповая скорость больше фазовой, а справа групповая скорость меньше. С этим фактом связано несколько интересных явлений. Поскольку групповая скорость с уменьшением длины волны быстро увеличивается, то, если мы создадим какие-то возмущения, возникнут волны соответствующей длины, которые идут с минимальной скоростью, а впереди них с большей скоростью побегут короткие и очень длинные волны. В любом водоеме можно легко увидеть очень короткие волны, а вот длинные волны наблюдать труднее.

Таким образом, мы убедились, что рябь, которая столь часто используется для иллюстрации простых волн, на самом деле гораздо сложнее и интереснее: у нее нет резкого волнового фронта, как в случае простых волн, подобных звуку или свету. Основная волна, которая вырывается вперед, состоит из мелкой ряби. Благодаря дисперсии резкое возмущение поверхности воды не приводит к резкой волне. Первыми все равно идут очень мелкие волны. Во всяком случае, когда по воде с некоторой скоростью движется объект, то возникает очень сложная картина, поскольку разные волны идут с разной скоростью. Взяв корыто с водой, можно легко продемонстрировать, что самыми быстрыми будут мелкие капиллярные волны, а уже за ними идут более крупные. Кроме того, наклонив корыто, можно увидеть, что там, где меньше глубина, меньше и скорость. Если волна идет под каким-то углом к линии максимального наклона, то она заворачивает в сторону этой линии. Таким способом можно продемонстрировать множество различных вещей и прийти к заключению, что волны на воде — куда более сложная вещь, чем волны в воздухе.

Скорость длинных волн с круговым движением воды уменьшается на мелком месте и увеличивается на глубоком. Таким образом, когда волна идет к берегу, где глубина меньше, она замедляется. Но там, где вода глубже, волна движется быстрее, так что мы снова сталкиваемся с механизмом ударной волны. Однако на этот раз, поскольку волна не столь проста, ударный фронт ее гораздо больше искажен: волна «перегибается через себя» самым привычным для нас образом (фиг. 51.12). Именно это мы видим, когда волна набегает на берег: в ней выявляются все присущие природе трудности. Никому до сих пор не удалось вычислить форму волны в тот момент, когда она разбивается. Это очень легко сделать, когда волны малы, но когда они становятся большими, все слишком усложняется.

Интересное свойство капиллярных волн можно наблюдать при возмущении поверхности движущимся объектом. С точки зрения самого объекта вода течет мимо него, и волны, которые в конечном итоге останутся вместе с ним, всегда будут волнами, которые как раз имеют нужную скорость, чтобы оставаться на воде вместе с объектом. Точно так же если поместить объект в поток, который будет омывать его, то картина волн окажется стационарной и как раз нужной длины волны для того, чтобы двигаться с той же скоростью, что и вода. Но если групповая скорость меньше фазовой, то возмущение идет по потоку назад, поскольку групповая скорость недостаточна для того, чтобы догнать поток. Если же групповая скорость больше фазовой, то волновая картина появится перед объектом. Если пристально следить за плывущим в потоке объектом, то можно заметить впереди него небольшую рябь, а позади него — длинные волны.

Другие интересные явления подобного рода можно наблюдать в льющейся жидкости. Если, например, быстро выливать молоко из бутылки, то можно заметить, как струя молока пересекается множеством перекрещивающихся линий. Это волны, вызванные возмущением на краях бутылки; они очень похожи на волны, вызванные объектом, плывущим по потоку. Но теперь такой эффект возникает с обеих сторон, поэтому получается картина пересекающихся линий.

Итак, мы познакомились с некоторыми интересными свойствами волн, с различными усложнениями, зависящими от фазовой скорости и длины волны, а также с зависимостью скорости волны от глубины и т. д.; все это приводит к весьма сложным, а потому и интересным явлениям природы.

.
В природе, однако, мы видим еще ряд типов волновых движений. Таких, как возбуждаемые ветром волны на воде и барханы в пустынях, или возбуждаемые неизвестно чем гигантские спиральные волны в дисках плоских галактик. Или вообще не выглядящие волнами, но реально возникающие из них циклоны и антициклоны. Последние пока оставим на "поздний ужин", а сейчас обсудим механизм возбуждения волн сдвиговыми движениями газа и жидкости.
Этот механизм принято называть неустойчивостью Кельвина-Гельмгольца (НКГ) . Именно она является причиной возбуждения волн на воде, ряби на песке под водой вблизи берегов рек и моря, барханов в пустынях, волн облаков. Мы знаем, что в отсутствии ветра поверхность воды в реках, озерах и морях спокойна. При слабом ветре - тоже. Но при достаточно заметном ветре на поверхности воды возбуждаются волны.
Ветер дует параллельно поверхности воды. И, казалось бы, скользя вдоль поверхности воды, он не должен возбуждать волн. Как же понять эффект возбуждения ветром волн на воде?
В стационарных потоках сплошной среды действует своеобразный закон сохранения, называемый уравнением Бернулли :

P / ρ + v 2 /2 = const ,

где v - скорость частицы жидкости или газа в конкретной точке пространства, P - давление и ρ - плотность в той же точке пространства. Смысл этого уравнения состоит в том, что означенная в нем комбинация сохраняется вдоль линии тока - линии, вдоль которой движутся частицы жидкости (газа).
Кстати, уравнение Бернулли очень похоже на закон сохранения энергии из школьной физики. В котором полная энергия частицы сохраняется вдоль траектории ее движения. В нем тоже
v 2 /2 + U / m = E / m = const и видна аналогия между P / ρ и U / m .
Предположим теперь, что на поверхности воды случайно в результате флуктуации возникла маленькая выпуклость:

Схема возбуждения ветровых волн на воде (неустойчивость Кельвина-Гельмгольца ).

О т этого линии тока в воздухе в самой близкой окрестности этой флуктуации тоже станут слегка выпуклыми. Но эти выпуклости по мере удаления от поверхности воды быстро затухают. Из-за результирующего сближения линий тока в воздухе над выпуклостью водной поверхности скорость воздуха вдоль них слегка увеличится. Поскольку через уменьшенное сечение должно пройти то же количество воздуха, что и через обычное сечение над плоской поверхностью воды. И, следовательно, второе слагаемое в уравнении Бернулли над выпуклостью поверхности воды увеличивается, а первое слагаемое - уменьшается.
Что же преимущественно изменяется в первом слагаемом - давление или плотность воздуха? Интуитивно кажется, что плотность. Но это не так. На самом деле колебания плотности δρ в существенно дозвуковых потоках порядка ρ (v /с) ². И при скорости звука с~340 м/сек и скоростях ветра до 15-17 м/сек колебания плотности не будут превышать четверти процента от величины самой плотности. То есть, воздух в таких потоках остается практически несжимаемым. И реально над выпуклостью воды на рисунке будет уменьшаться давление в воздухе. А в воде оно остается неизменным. Поэтому произвольная выпуклость на поверхности воды вынуждена будет расти по амплитуде. В этом и состоит суть неустойчивости Кельвина-Гельмгольца как механизма возбуждения ветром волн на воде.
Из сказанного следует, что любой ветерок должен возбуждать волны на воде. Но по опыту мы знаем, что от слабого ветра волны не возбуждаются. Причина этого - в стабилизирующем влиянии поверхностного натяжения на границе раздела вода-воздух.
Который оказывается недостаточно при превышении скоростью ветра некоторого критического значения (в условиях российского лета это значение для чистой воды - около 7 м/сек).
Но если ветер перестанет дуть, то через некоторое время затухают и возбужденные им волны. Поскольку переток энергии ветра в колебания водной поверхности прекращается. А колебания водной поверхности постепенно затухают из-за диссипации их энергии , обусловленной вязкостью воды.
Возбуждаемые ветром волны на воде по своей сути являются внутренними гравитационными (ВГВ), описанными в . Но поскольку масштаб неоднородности среды в вертикальном направлении фактически равен нулю (разрыв плотности среды на границе вода-воздух), то частота этих волн ω определяется не масштабом неоднородности среды, а длиной волны λ. Из тех же соображений размерности, что и в предыдущем псто, определяем частоту волн: ω ~ √g/λ, где g - ускорение силы тяжести (значок "~" - по порядку величины).
Неустойчивость Кельвина-Гельмгольца (НКГ) возбуждается не только в системах с разрывом скорости в системе ветер - покоящаяся вода (черная толстая линия на графике). Она развивается и в плавно сдвиговых движениях сплошной среды, если в графике профиля ее скорости есть точка перегиба, при прохождении через которую выпуклая кривая графика скорости становится вогнутой (красная линия на графике):


Именно этот случай мы и наблюдаем в небе в виде волнообразных облаков.
Ошибка Ландау . В самом начале войны Лев Ландау задался вопросом - а не стабилизируется ли неустойчивость КГ если разрыв в скорости потока существенно превышает скорость звука? По его вполне корректным вычислениям выходило, что стабилизируется. Если разрыв скорости превышает
2√2 скорости звука.
Сразу возникла идея - давайте жечь немецкие танки сверхзвуковой струей легко воспламеняющейся жидкости! Поставили опыты. Не пошло. И об этом забыли. И только в 1954 году стало ясно, что Ландау в своих вычислениях учел только возмущения поверхности струи кольцевого типа. А возмущения винтового типа не учел. Но именно винтовые возмущения остаются неустойчивыми при сколь угодно больших скоростях струи по сравнению со скоростью звука.

ВОЛНЫ НА ПОВЕРХНОСТИ ЖИДКОСТИ - волновые движения жидкости, существование к-рых связано с изменением формы её границы. Наиб. важный пример - волны на свободной поверхности водоёма (океана, моря, озера и др.), формирующиеся благодаря действию сил тяжести и поверхностного натяжения. Если к--л. внеш. воздействие (брошенный камень, движение судна, порыв ветра и т. п.) нарушает равновесие жидкости, то указанные силы, стремясь восстановить равновесие, создают движения, передаваемые от одних частиц жидкости к другим, порождая волны. При этом волновые движения охватывают, строго говоря, всю толщу воды, но если глубина водоёма велика по сравнению с длиной волны, то эти движения сосредоточены гл. обр. в приповерхностном слое, практически не достигая дна (короткие волны, или волны на глубокой воде). Простейший вид таких волн - плоская синусоидальная волна, в к-рой поверхность жидкости синусоидально "гофрирована" в одном направлении, а все возмущения физ. величин, напр. вертик. смещения частиц , имеют вид, где х - горизонтальная, z - вертикальная координаты, - угл. частота, k - волновое число, А - амплитуда колебаний частиц, зависящая от глубины z . Решение ур-ний гидродинамики несжимаемой жидкости вместе с граничными условиями (пост. давление на поверхности и отсутствие возмущений на большой глубине) показывает, что , где A 0 - амплитуда смещения поверхности. При этом каждая частица жидкости движется по окружности, радиус к-рой равен A (z) (рис., а). Т.о., колебания затухают в глубь жидкости по экспоненте, и тем быстрее, чем короче волна (больше k ). Величины связаны дисперсионным уравнением

где - плотность жидкости, g - ускорение свободного падения, - коэф. поверхностного натяжения. Из этой ф-лы определяются фазовая скорость , с к-рой движется точка с фиксир. фазой (напр., вершина волны), и групповая скорость - скорость движения энергии. Обе эти скорости в зависимости от k (или длины волны ) имеют минимум; так, мин. значение фазовой скорости волн на чистой (лишённой загрязняющих плёнок, влияющих на поверхностное натяжение) воде достигается при 1,7 см и равно 23 см /c . Волны гораздо меньшей длины наз. капиллярными, а более длинные - гравитационными, т. к. на их распространение преимуществ. влияние оказывают соответственно силы поверхностного натяжения и тяжести. Для чисто гравитац. волн . В смешанном случае говорят о гравитац--капиллярных волнах.

Траектории движения частиц воды в синусоидальной волне: а - на глубокой, б - на мелкой воде.

В общем случае на характеристики волн влияет полная глубина жидкости H . Если вертик. смещения жидкости у дна равны нулю (жёсткое дно), то в плоской синусоидальной волне амплитуда колебаний меняется по закону: , а дисперс. ур-ние волн в водоёме конечной глубины (без учёта вращения Земли) имеет вид

Для коротких волн это ур-ние совпадает с (1). Для длинных волн, или волн на мелкой воде , если можно пренебречь эффектами капиллярности (для длинных волн они обычно существенны только в случае тонких плёнок жидкости), оно приобретает вид В такой волне фазовая и групповая скорости равны одной и той же величине не зависящей от частоты. Это значение скорости наибольшее для гравитац. волн в данном водоёме; в самом глубоком месте океана (H =11 км) оно 330 м/с. Движение частиц в длинной волне происходит по эллипсам, сильно вытянутым в горизонтальном направлении, причём амплитуда горизонтальных движений частиц почти одинакова по всей глубине (рис., б) .

Перечисленными свойствами обладают только волны достаточно малой амплитуды (много меньшей как длины волны, так и глубины водоёма). Интенсивные нелинейные волны имеют существенно несинусоидальную форму, зависящую от амплитуды. Характер нелинейного процесса зависит от соотношения между длиной волны и глубиной водоёма. Короткие гравитац. волны на глубокой воде приобретают заострённые вершины, к-рые при определ. критич. значении их высоты обрушиваются с образованием капиллярной "ряби" или пенных "барашков". Волны умеренной амплитуды могут иметь стационарную форму, не изменяющуюся при распространении. Согласно теории Герстнера, в нелинейной стационарной волне частицы по-прежнему движутся по окружности, поверхность же имеет форму трохоиды, к-рая при малой амплитуде совпадает с синусоидой, а при нек-рой макс. критич. амплитуде, равной , превращается в циклоиду, имеющую на вершинах "острия". Более близкие к данным наблюдений результаты даёт теория Стокса, согласно к-рой частицы в стационарной нелинейной волне движутся по незамкнутым траекториям, т. е. "дрейфуют" в направлении распространения волны, причём при критич. значении амплитуды (несколько меньшем ) на вершине волны появляется не "остриё", а "излом" с углом 120°.

У длинных нелинейных волн на мелкой воде скорость движения любой точки профиля растёт с высотой, поэтому вершина волны догоняет её подножие; в результате крутизна переднего склона волны непрерывно увеличивается. Для относительно невысоких волн этот рост крутизны останавливает дисперсия, связанная с конечностью глубины водоёма; такие волны описываются Кортевега-де Фриса уравнением . Стационарные волны на мелководье могут быть периодическими или уединёнными (см. Солитон ); для них также существует критич. высота, при к-рой они обрушиваются. На распространение длинных волн существ. влияние оказывает рельеф дна. Так, подходя к пологому берегу, волны резко тормозятся и обрушиваются (прибой); при входе волны из моря в русло реки возможно образование крутого пенящегося фронта - бора, продвигающегося вверх по реке в виде отвесной стены. Волны цунами в районе очага землетрясения, их возбуждающего, почти незаметны, однако выходя на сравнительно мелководную прибрежную область - шельф, они иногда достигают большой высоты, представляя грозную опасность для береговых поселений.

В реальных условиях В. на п. ж. не являются плоскими, а имеют более сложную пространственную структуру, зависящую от характеристик их источника. Напр., упавший в воду камень порождает круговые волны (см. Цилиндрическая волна ).Движение судна возбуждает корабельные волны; одна система таких волн расходится от носа судна в виде "усов" (на глубокой воде угол между "усами" не зависит от скорости движения источника и близок к 39°), другая - движется за его кормой в направлении движения судна. Источники длинных волн в океане - силы притяжения Луны и Солнца, порождающие приливы, а также подводные землетрясения и Извержения вулканов - источники волн цунами.

Сложную структуру имеют ветровые волны, характеристики к-рых определяются скоростью ветра и временем его воздействия на волну. Механизм передачи энергии от ветра к волне связан с тем, что пульсации давления в потоке воздуха деформируют поверхность. В свою очередь эти деформации влияют на распределение давления воздуха вблизи водной поверхности, причём эти два эффекта могут усиливать друг друга, и в результате амплитуда возмущений поверхности нарастает (см. Автоколебания ). При этом фазовая скорость возбуждаемой волны близка к скорости ветра; благодаря такому синхронизму пульсации воздуха действуют "в такт" с чередованием возвышений и впадин (резонанс во времени и пространстве). Это условие может выполняться для волн разных частот, бегущих в разл. направлениях по отношению к ветру; получаемая ими энергия затем частично переходит и к другим волнам за счёт нелинейных взаимодействий (см. Волны) . В результате развитое волнение представляет собой случайный процесс, характеризуемый непрерывным распределением энергии по частотам и направлениям (пространственно-временным спектром). Волны, уходящие из области действия ветра (зыбь), приобретают более регулярную форму.

Волны, аналогичные В. на п. ж., существуют и на границе раздела двух несмешивающихся жидкостей (с.м. Внутренние волны ).

В океане волны изучаются разл. методами с помощью волнографов, следящих за колебаниями поверхности воды, а также дистанц. методами (фотографирование поверхности моря, использование радио- и гидролокаторов) - с судов, самолётов и ИСЗ.

Лит.: Баском В., Волны и пляжи, [пер. с англ.], Л., 1966; Tриккер Р., Бор, прибой, волнение и корабельные волны, [пер. с англ.], Л., 1969; Уизем Д ж., Линейные и нелинейные волны, пер. с англ., M., 1977; Физика океана, т. 2 - Гидродинамика океана, M., 1978; Кадомцев Б. Б., Pыдник В. И., Волны вокруг нас, M., 1981; Лайтхилл Дж., Волны в жидкостях, пер. с англ., M., 1981; Ле Блон П., Mайсек Л., Волны в океане, пер. с англ., [ч.] 1-2, M., 1981. Л. А. Островский .


Образование волн на поверхности воды называется волнением.

Волны, наблюдаемые на поверхности воды, делятся на:

  • Волны трения:

    • ветровые, образующиеся в результате действия ветра

    • глубинные


  • Приливные волны.

  • Гравитационные волны:

    • гравитационные волны на мелкой воде

    • гравитационные волны на глубокой воде

    • сейсмические волны (цунами), возникающие в океанах в результате землетрясения (или вулканической деятельности) и достигающие у берегов высоты 10-30 м.

    • корабельные волны


Волны состоят из чередующихся между собой валов и впадин. Верх волны называется гребнем, основание волны - подошвой.
В прибрежных районах моря существенны только ветровые волны (волны трения).

Ветровые волны возникают с ветром, с прекращением ветра эти волны в виде мертвой зыби, постепенно затухая, продолжают двигаться в прежнем направлении. Ветровое волнение зависит от величины водного пространства, открытого для разгона волны, скорости ветра и времени действия его в одном направлении, а также глубины. С уменьшением глубины волна становится крутой.
Ветровые волны несимметричны, наветренный склон их пологий, подветренный - крутой. Так как ветер на верхнюю часть волны действует сильнее, чем на нижнюю, гребень волны рассыпается, образуя «барашки». В открытом море "барашки" образуются при ветре, который называется "свежим" (ветер силой 5 баллов и скоростью 8,0-10,7 м/с, или 33 км/ч).
Зыбь - волнение, продолжающееся после ветра уже затихшего, ослабевшего или изменившего направление. Волнение, распространяющееся по инерции при полном безветрии, называется мертвой зыбью.
При встрече волн с разных румбов на некоторой площади образуется толчея . Хаотическое нагромождение волн, образующихся при встрече прямых волн с отраженными - это тоже толчея .
При прохождении волн над банками, рифами и камнями образуются буруны .
Набегание волн на берег с увеличением по высоте и крутизне и последующим опрокидыванием называется прибоем .

Прибой получает разный характер в зависимости от того, какой берег: отмелый (имеющий малые углы наклона и большую ширину подводного склона) или приглубый (имеющий значительные уклоны подводного склона).

Опрокидывание гребня идущей волны на крутой берег образует взбросы , имеющие большую разрушительную силу.

© Юрий Данилевский: Ноябрьский шторм. Севастополь

Когда прибой случается у приглубого берега, круто поднимающегося из воды, то рассыпание волны происходит только при ударе о берег. При этом образуется обратная волна, встречающаяся со следующей за ней и уменьшающая ее силу удара, а затем набегает новая волна и снова ударяет в берег.
Такие удары волн в случае большой зыби или сильного волнения сопровождаются нередко взбросами волн на значительную высоту.

© Шторм в Севастополе, 11 ноября 2007г.

На берегах Черного моря сила удара волны может достигать 25 т на 1 м 2 .
При взбросе волна получает огромную силу. На Шетландских островах, к северу от Шотландии, встречаются обломки гнейсовых скал, доходящие до 6-13 т весом, выброшенные прибоем на высоту до 20 м над уровнем моря.

Бурное продвижение волн и зыби на берег называется накат .

Волны бывают правильные, когда их гребни ясно различимы, и неправильные, когда волны не имеют ясно выраженных гребней и образуются без всякой видимой закономерности.
Гребни волн перпендикулярны направлению ветра в открытом море, озере, водохранилище, но у берега они принимают положение, параллельное береговой черте , набегая на берега.
Направление распространения волны в открытом море обозначается на поверхности воды семейством параллельных полос пены - следа разрушающихся гребней волны.