Двойной интеграл основные понятия и определения. Двойной интеграл

1.1 Определение двойного интеграла





1.2 Свойства двойного интеграла

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f(x, y) интегрируема в каждой из областей D 1 и D 2 , причем

2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а? и? - любые вещественные числа, то функция [? · f(x, y) + ?· g(x, y)] также интегрируема в области D, причем

3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D.

4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ? g(x, y), то

5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем

(Конечно, из интегрируемости |f(x, y)| в D не вытекает интегрируемость f(x, y) в D.)

6°. Теорема о среднем значении. Если обе функции f(x, y) и g(x, y) интегрируемы в области D, функция g(x, y) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f(x, y) в области D, то найдется число?, удовлетворяющее неравенству m ? ? ? M и такое, что справедлива формула

В частности, если функция f(x, y) непрерывна в D, а область D связна, то в этой области найдется такая точка (?, ?), что? = f(?, ?), и формула принимает вид

7°. Важное геометрическое свойство. равен площади области D

Пусть в пространстве дано тело T (рис. 2.1), ограниченное снизу областью D , сверху - графиком непрерывной и неотрицательной функции) z=f (x, y ,) которая определена в области D , с боков - цилиндрической поверхностью, направляющей которой является граница области D , а образующие параллельны оси Оz. Тело такого вида называется цилиндрическим телом.

1.3 Геометрическая интерпретация двойного интеграла






1.4 Понятие двойного интеграла для прямоугольника

Пусть произвольная функция f(x, y) определена всюду на прямоугольнике R = ? (см. Рис. 1).

Разобьем сегмент a ? x ? b на n частичных сегментов при помощи точек a = x 0 < x 1 < x 2 < ... < x n = b, а сегмент c ? y ? d на p частичных сегментов при помощи точек c = y 0 < y 1 < y 2 < ... < y p = d.

Этому разбиению при помощи прямых, параллельных осям Ox и Oy, соответствует разбиение прямоугольника R на n · p частичных прямоугольников R kl = ? (k = 1, 2, ..., n; l = 1, 2, ..., p). Указанное разбиение прямоугольника R обозначим символом T. В дальнейшем в этом разделе под термином "прямоугольник" будем понимать прямоугольник со сторонами, параллельными координатным осям.

На каждом частичном прямоугольнике R kl выберем произвольную точку (? k , ? l). Положив?x k = x k - x k-1 , ?y l = y l - y l-1 , обозначим через?R kl площадь прямоугольника R kl . Очевидно, ?R kl = ?x k ?y l .

называется интегральной суммой функции f(x, y), соответствующей данному разбиению T прямоугольника R и данному выбору промежуточных точек (? k , ? l) на частичных прямоугольниках разбиения T.

Диагональ будем называть диаметром прямоугольника R kl . Символом? обозначим наибольший из диаметров всех частичных прямоугольников R kl .

Число I называется пределом интегральных сумм (1) при? > 0, если для любого положительного числа? можно указать такое положительное число?, что при? < ? независимо от выбора точек (? k , ? l) на частичных прямоугольниках R выполняется равенство

| ? - I | < ?.

Функция f(x, y) называется интегрируемой (по Риману) на прямоугольнике R, если существует конечный предел I интегральных сумм этой функции при? > 0.

Указанный предел I называется двойным интегралом от функции f(x, y) по прямоугольнику R и обозначается одним из следующих символов:

Замечание. Точно также, как и для однократного определенного интеграла, устанавливается, что любая интегрируемая на прямоугольнике R функция f(x, y) является ограниченной на этом прямоугольнике.

Это дает основание рассматривать в дальнейшем лишь ограниченные функции f(x, y).

Основные свойства двойного интеграла

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

. Аддитивность . Если функция f (x , y ) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f (x , y ) интегрируема в каждой из областей D 1 и D 2 , причем

. Линейное свойство . Если функции f (x , y ) и g (x , y ) интегрируемы в области D , а α и β - любые вещественные числа, то функция [α · f (x , y ) + β · g (x , y )] также интегрируема в области D , причем

. Если функции f (x , y ) и g (x , y ) интегрируемы в области D , то и произведение этих функций интегрируемо в D .

. Если функции f (x , y ) и g (x , y ) обе интегрируемы в области D и всюду в этой области f (x , y ) ≤ g (x , y ), то

. Если функция f (x , y ) интегрируема в области D , то и функция |f (x , y )| интегрируема в области D , причем

(Конечно, из интегрируемости |f (x , y )| в D не вытекает интегрируемость f (x , y ) в D .)

. Теорема о среднем значении . Если обе функции f (x , y ) и g (x , y ) интегрируемы в области D , функция g (x , y ) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f (x , y ) в области D , то найдется число μ , удовлетворяющее неравенству m μ M и такое, что справедлива формула

ДВОЙНЫЕ ИНТЕГРАЛЫ

ЛЕКЦИЯ 1

Двойные интегралы. Определение двойного интеграла и его свойства. Повторные интегралы. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат.

Двойной интеграл представляет собой обобщение понятия определенного интеграла на случай функции двух переменных. В этом случае вместо отрезка интегрирования будет присутствовать какая-то плоская фигура.

Пусть D – некоторая замкнутая ограниченная область, а f (x,y ) – произвольная функция, определенная и ограниченная в этой области. Будем предполагать, что границы области D состоят из конечного числа кривых, заданных уравнениями вида y =f (x ) или x =g(y ), где f (x ) и g (y ) – непрерывные функции.

Разобьем область D произвольным образом на n частей. Площадь i -го участка обозначим символом Ds i . На каждом участке произвольно выберем какую-либо точку P i , и пусть она в какой-либо фиксированной декартовой системе имеет координаты (x i ,y i ). Составим интегральную сумму для функции f (x,y ) по области D, для этого найдем значения функции во всех точках P i , умножим их на площади соответствующих участков Ds i и просуммируем все полученные результаты:

Назовем диаметром diam (G ) области G наибольшее расстояние между граничными точками этой области.

Двойным интегралом функции f (x,y ) по области D называется предел, к которому стремится последовательность интегральных сумм (1.1) при неограниченном увеличении числа разбиений n (при этом ). Это записывают следующим образом

Заметим, что, вообще говоря, интегральная сумма для заданной функции и заданной области интегрирования зависит от способа разбиения области D и выбора точек P i . Однако если двойной интеграл существует, то это означает, что предел соответствующих интегральных сумм уже не зависит от указанных факторов. Для того чтобы двойной интеграл существовал (или, как говорят, чтобы функция f (x,y ) была интегрируемой в области D), достаточно чтобы подынтегральная функция была непрерывной в заданной области интегрирования .

Пусть функция f (x,y ) интегрируема в области D . Поскольку предел соответствующих интегральных сумм для таких функций не зависит от способа разбиения области интегрирования, то разбиение можно производить при помощи верти­кальных и горизонтальных линий. Тогда большинство участков области D будет иметь прямоугольный вид, площадь которых равна Ds i =Dx i Dy i . Поэтому дифференциал площади можно записать в виде ds=dxdy . Следовательно, в декартовой системе координат двойные интегралы можно записывать в виде



Замечание . Если подынтегральная функция f (x,y )º1, то двойной интеграл будет равен площади области интегрирования:

Отметим, что двойные интегралы обладают такими же свойствами, что и определенные интегралы. Отметим некоторые из них.

Свойства двойных интегралов.

1 0 . Линейное свойство. Интеграл от суммы функций равен сумме интегралов :

и постоянный множитель можно выносить за знак интеграла :

2 0 . Аддитивное свойство. Если область интегрирования D разбить на две части, то двойной интеграл будет равен сумме интегралов по каждой этой части :

3 0 . Теорема о среднем. Если функция f(x,y ) непрерывна в области D, то в этой области найдется такая точка (x,h), что :

Далее возникает вопрос: как вычисляются двойные интегралы? Его можно вычислить приближенно, с этой целью это разработаны эффективные методы составления соответствующих интегральных сумм, которые затем вычисляются численно при помощи ЭВМ. При аналитическом вычислении двойных интегралов их сводят к двум определенным интегралам.

Двойной интеграл обладает свойствами, аналогичными свойствам определенного интеграла. Отметим лишь основные из них:

1. Если функции и
интегрируемы в области
, то интегрируемы в ней их сумма и разность, причем

2. Постоянный множитель можно выносить за знак двойного интеграла:

3. Если
интегрируема в области
, а эта область разбита на две непересекающиеся областии
, то

.

4. Если
и
интегрируемы в области
, в которой

, то


.

5. Если в области
функция
удовлетворяет неравенствам


,где
и
некоторые действительные числа, то



,

где – площадь области
.

Доказательства этих свойств аналогичны доказательству соответствующих теорем для определенного интеграла.

Вычисление двойного интеграла в прямоугольных декартовых координатах

Пусть требуется вычислить двойной интеграл
, где область- прямоугольник, определяемый неравенствами,.

Предположим, что
непрерывна в этом прямоугольнике и принимает в нем неотрицательные значения, тогда данный двойной интеграл равен объему тела с основанием, ограниченного сверху поверхностью
, с боков - плоскостями
,
,
,
:

.

С другой стороны, объем такой фигуры можно вычислить с помощью определенного интеграла:

,

где
- площадь сечения данного тела плоскостью, проходящей через точкуи перпендикулярной к оси
. А так как рассматриваемое сечение является криволинейной трапецией
, ограниченной сверху графиком функции
, гдефиксировано, а, то

.

Из этих трех равенств следует, что


.

Итак, вычисление данного двойного интеграла свелось к вычислению двух определенных интегралов; при вычислении «внутреннего интеграла» (записанного в скобках) считается постоянным.

Замечание. Можно доказать, что последняя формула верна и при
, а также в случае, когда функция
меняет знак в указанном прямоугольнике.

Правая часть формулы называется повторным интегралом и обозначается так:

.

Аналогично можно показать, что



.

Из выше сказанного следует, что


.

Последнее равенство означает, что результат интегрирования не зависит от порядка интегрирования.

Чтобы рассмотреть более общий случай, введем понятие стандартной области. Стандартной (или правильной) областью в направлении данной оси называется такая область, для которой любая прямая, параллельная этой оси пересекает границу области не более, чем в двух точках. Другими словами, пересекает саму область и ее границу только по одному отрезку прямой.

Предположим, что ограниченная область

и ограничена сверху графиком функции
, снизу - графиком функции
. ПустьR{,} - минимальный прямоугольник, в котором заключена данная область
.

Пусть в области
определена и непрерывна функция
. Введем новую функцию:

,

тогда в соответствии со свойствами двойного интеграла


.

И, следовательно,


.

Поскольку отрезок
целиком принадлежит области
то, следовательно,
при


, а еслилежит вне этого отрезка, то
.

При фиксированном можем записать:

.

Так как первый и третий интегралы в правой части равны нулю, то

.

Следовательно,


.

Из чего получаем формулу для вычисления двойного интеграла по области, стандартной относительно оси
путем сведения к повторному интегралу:


.

Если область
является стандартной в направлении оси
и определяется неравенствами,

, аналогично можно доказать, что


.

Замечание. Для области
, стандартной в направлении осей
и
, будут выполнены оба последних равенства, поэтому


По этой формуле осуществляется изменение порядка интегри­рования при вычислении соответствующего двойного интеграла.

Замечание. Если область интегрирования не является стандартной (правильной) в направлении обеих осей координат, то ее разбивают на сумму стандартных областей и представляют интеграл в виде суммы интегралов по этим областям.

Пример . Вычислить двойной интеграл
по области
, ограниченной линиями:
,
,
.

Решение.

Данная область является стандартной как относительно оси
, так и относительно оси
.

Вычислим интеграл, считая область стандартной относительно оси
.


.

Замечание. Если вычислить интеграл, считая область стандартной относительно оси
, мы получим тот же результат:


.

Пример . Вычислить двойной интеграл
по области
, ограниченной линиями:
,
,
.

Решение. Изобразим на рисунке заданную область интегрирования.

Данная область является стандартной относительно оси
.


.

Пример . Изменить порядок интегрирования в повторном интеграле:

Решение. Изобразим на рисунке область интегрирования.

Из пределов интегрирования находим линии, ограничивающие область интегрирования: ,
,
,
. Для изменения порядка интегрирования выразимкак функции оти найдем точки пересечения:

,
,
.

Так как на одном из интервалов функция выражена двумя аналитическими выражениями, то область интегрирования необходимо разбить на две области, а повторный интеграл представить как сумму двух интегралов.


.