Двойной луч преломления. Явление двойного лучепреломления

Большой интерес представляет рассмотрение особенностей прохождения света через некоторые кристаллы, называемые двояко - преломляющими. Узкий пучок света, проходя через плоскопараллельную пластину такого кристалла, например исландского шпата СаСО 3 , раздваивается и расходится в пространстве тем больше, чем длиннее его путь в кристалле (рис. 7.7). Если вращать кристалл вокруг падающего луча, то один из лучей остаётся неподвижным (обыкновенный луч), а другой поворачивается вокруг первого (необыкновенный луч), хотя угол падения при этом сохраняется; названия «обыкновенный» и «необыкновенный» приложимы к лучам, пока они распространяются в кристалле. На выходе лучи оказываются линейно-поляризованными во взаимно перпендикулярных плоскостях, что легко проверить каким-либо анализатором.

Если надлежащим образом сошлифовать часть кристалла, то можно найти в нем такое направление (прямая, соединяющая тупые углы кристалла), вдоль которого раздвоение нормально падающего луча отсутствует,- это так называемая оптическая ось кристалла. Пространственное раздвоение отсутствует и в направлении, перпендикулярном этой оси. Однако там существует иной эффект, о чем будет сказано ниже.

Через точку падения луча на кристалл всегда можно провести оптическую ось; плоскость, содержащая эту ось и падающий луч, называется главной плоскостью (главным сечением) для данного луча.

Опыт показывает, что раздвоение луча в кристалле всегда происходит в главной плоскости. Так как при вращении кристалла вокруг падающего луча главная плоскость поворачивается в пространстве, то одновременно поворачивается и необыкновенный луч. Рассмотрим некоторые наиболее простые случаи распространения света в кристалле.

а) Если луч а параллелен оптической оси (рис. 7.8), то положение главной плоскости не определено. В частности, плоскость чертежа является главной плоскостью, но такой же является, например, и перпендикулярная ей плоскость. Условия распространения лучей с любой поляризацией одинаковы, й они не раздваиваются.

б) Если луч б идет перпендикулярно оптической оси (см. рис. 7.8), то электрический вектор, лежащий в главной плоскости, параллелен оси. Электрический вектор, перпендикулярный оси, лежит при этом в плоскости, нормальной к главной, так что условия распространения для этих составляющих электрического поля световой волны неодинаковы: лучи не раздваиваются, но имеют различную скорость распространения.

в) Если луч в идет под произвольным углом к оптической оси, то условия распространения указанных выше составляющих также неодинаковы: лучи распространяются по различным направлениям и с различными скоростями (см. рис. 7Г8).

Однако легко видеть, что луч, имеющий электрический вектор, перпендикулярный оптической оси, во всех этих случаях находится в одинаковых условиях, так что законы его распространения не должны зависеть от направления распространения; это и есть обыкновенный луч, подчиняющийся обычным законам преломления .

Второй же, необыкновенный луч во всех трех случаях находится в разных условиях (оптические свойства кристалла неизотропны), а потому и условия его распространения могут усложняться .

Явление двойного преломления было изучено Гюйгенсом. Он пришел к выводу, что показатель преломления обыкновенного луча по всем направлениям одинаков (n 0 =const), а необыкновенного (n e ) различен. При этом в направлении оптической оси условия распространения обоих лучей одинаковы, й показатели преломления их совпадают. Наибольшее различие показателей преломления получается в направлении, нормальном к оптической оси. Если в этом направлении скорость необыкновенного луча больше, чем обыкновенного (ν e > ν 0), то кристалл условно называют отрицательным. В противном случае кристалл считается положительным (ν e < ν 0). Кристаллы турмалина и исландского шпата отрицательны, кварца положительны.

В промежуточных направлениях различие в скоростях лучей изменяется непрерывно. ’ Если вообразить световое возмущение, возникающее внутри кристалла, то, по Гюйгенсу, волновые фронты в сечении, параллельном оптической оси, имеют вид, показанный на рисунке 7.9, и обладают вращательной симметрией (вокруг оптической оси). Таким образом, в положительном кристалле волновой фронт обыкновенной волны (сфера) содержит внутри себя вписанный фронт необыкновенной волны (эллипсоид вращения). У отрицательного кристалла, наоборот, фронт необыкновенной волны - эллипсоид - описан вокруг сферы. В обоих случаях поверхности соприкасаются на оптической оси. Очевидно (так как показатель преломления n пропорционален ), что и электрическая проницаемость в кристалле по разным направлениям различна. Для одноосного кристалла существуют три взаимно перпендикулярных направления (х, у, r), для которых справедливы соотношения:

причем направление х является направлением, оптической оси.

Таким образом, векторы электрической напряженности и электрического смещения уже не совпадают друг с другом.

В системе координат (х , у, r ) справедливо уравнение:

представляющее эллипсоид вращения (эллипсоид Френеля). В более общем случае, когда эллипсоид оказывается трехосным, а в кристалле существуют два направления оптических осей. Мы не будем изучать такие двухосные кристаллы.

Решение уравнений Максвелла для случая кристалла показывает, что" направление нормали к волновому фронту не всегда совпадает с направлением распространения светового потока (луча). Пользуясь построением Гюйгенса (оно является, в сущности, следствием теории Максвелла), мы увидим, к каким осложнениям это приводит.

Волновые фронты, показанные на рисунке 7.9, получились при возбуждении электромагнитного возмущения в начале координат, лежащем внутри кристалла. Заменим этот несколько искусственный случай более реальным. Пусть на плоскую поверхность кристалла толщиной h падает нормально ограниченная плоская волна. Если кристалл отшлифован так, что его оптическая ось перпендикулярна поверхности, то волновые фронты обыкновенной и необыкновенной волн (рис. 7.10, а) распространяются вдоль оси с одной скоростью и одновременно достигают противоположной грани кристалла (мы считаем ее параллельной верхней грани). При этом никакого раздвоения лучей не происходит, и они покидают кристалл в одной и той же фазе.

Если шлифовка такова, что ось параллельна верхней грани (рис. 7.10, б), то скорости распространения обыкновенной и необыкновенной волн различны, но направления их совпадают. Из кристалла выходят лучи, распространяющиеся в одном направлении, но имеющие разность фаз:

где t 0 и t e - время прохождения обоими лучами толщи кристалл ла, Т - период волны.

Это выражение можно представить в несколько ином виде:

Глаз не различает разности фаз. Так как энергия суммы взаимно перпендикулярных колебаний не зависит от разности начальных фаз (см. «Механику», § 1.9), а колебания векторов и взаимно перпендикулярны, то никакой интерференционной картины на экране не получается. Но специальными методами фазовый сдвиг обнаружить удается (см. § 7.5).

Наконец, если оптическая ось наклонна к грани (рис. 7.10, в), то плоские волновые фронты (огибающие элементарных сферических и эллипсоидальных фронтов), параллельные грани пластины, придут к нижней грани со сдвигом фаз (во времени). При этом обыкновенные лучи распространяются без преломления. Необыкновенные же лучи - прямые, соединяющие точки А (точки пересечения геометрических главных осей эллипсов) с точками В (точки касания волновых фронтов с нижней гранью),- оказываются теперь не перпендикулярными фронту необыкновенной волны: возникает преломление необыкновенных лучей й необыкновенный пучок смещается в кристалле относительно обыкновенного. На нижней грани необыкновенные лучи еще раз преломляются и выходят из кристалла перпендикулярно нижней грани. Пространственное разделение обыкновенного и необыкновенного пучков, возникшее в кристалле, сохраняется и за его пределами. Кроме того, в плоскостях, параллельных грани, оба пучка во внешнем пространстве имеют и фазовый сдвиг во времени.

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ , распадение пучка света, идущего в анизотропной среде, на два компонента, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Мерой двойного лучепреломления (в данном направлении) является разность показателей преломления двух компонентов: Δ = n е – n 0 . В некоторых случаях (например, в кристаллах исландского шпата) двойное лучепреломление настолько велико, что оно непосредственно обнаруживается пространственным разделением компонентов, откуда и происходит само название явления. Обыкновенно в анизотропных средах (особенно в тонких слоях) пространственное разделение не заметно, и двойное лучепреломление обнаруживается только путем соответствующего оптического анализа по различным поляризационным и хроматическим явлениям, а в окрашенных анизотропных средах - по дихроизму.

Анизотропия среды м. б. природной, как в кристаллах всех систем за исключением кубической, и случайной (иногда временной), как в стеклах, подвергаемых неравномерным механическим деформациям или закалке, или же в жидкостях, находящихся в электрическом поле, или в текущих жидкостях. Во всех случаях анизотропия сопровождается двойным лучепреломлением. Наиболее изучено (с формальной стороны) двойное лучепреломление в кристаллах, в частности в исландском шпате (СаСО 3), нашедшем широкое применение при изготовлении поляризационных призм. Исландский шпат кристаллизуется в ромбоэдрах гексагональной системы; одна из наиболее часто встречающихся его форм изображена ниже. В 2 противолежащих вершинах А и В встречаются по 3 равных тупых угла по 101°53", через эти вершины проходит главная кристаллографическая и оптическая ось кристалла ; при распространении света вдоль этой оси двойного лучепреломления не происходит. Плоскости, проходящие через ось или через направление, ей параллельное, и перпендикулярные к одной из граней кристалла, называются главными сечениями кристалла . Двойное лучепреломление в одноосных кристаллах происходит так, что один из лучей подчиняется законам преломления, т. е. имеет постоянный показатель преломления при любых углах падения и поляризован в плоскости главного сечения; т. о., колебания происходят в нем перпендикулярно к этой плоскости (обыкновенный луч ). Второй луч законам преломления не подчиняется, и колебания его происходят в плоскости главного сечения (необыкновенный луч ).

Для нахождения направления обоих лучей в кристалле можно воспользоваться простым геометрическим построением, предложенным еще Гюйгенсом. Обыкновенному лучу соответствует сферическая волна, необыкновенному - эллипсоидальная (эллипсоид вращения). Строя по принципу Гюйгенса элементарные волны, можно по огибающим эти волны двум поверхностям найти направления обоих лучей. Если в кристалле скорость обыкновенного луча больше, чем необыкновенного (т. е. сфера охватывает эллипсоид), - кристалл называется положительным (кварц, лед и т. д.); в противном случае кристаллы называются отрицательными (исландский шпат, рубин и т. д,). Одноосные кристаллы являются частным, особенно простым случаем анизотропной среды. Значительно сложнее двойное лучепреломление проявляется в двуосных кристаллах (аррагонит, слюда, гипс, сахар и т. д.) с двумя направлениями, вдоль которых двойного лучепреломления не происходит, а по остальным направлениям оба луча являются необыкновенными, т. е. не подчиняются законам преломления; в этих кристаллах наблюдается также особый случай преломления, т. н. коническая рефракция .

Особенности распространения света в кристаллах связаны с тем, что в анизотропной среде, вообще говоря, направление луча (т. е. направление распространения энергии) не совпадает с направлением нормали к волновой поверхности. Теория двойного лучепреломления, данная впервые Френелем, м. б. выведена на основании уравнений Максвелла, составленных для анизотропной среды и отнесенных к осям электрической симметрии. Если

где ε 1 , ε 2 и ε 3 - диэлектрические постоянные вдоль осей электрической симметрии и с - скорость света, - то скорость v распространения в направлении волновой нормали, определяемой косинусами m, n и р, связана уравнением:

(закон Френеля). Это уравнение - квадратное относительно v 2 , т. е. каждому данному направлению нормали соответствуют две разные скорости v. Величины А, В, С называются главными световыми скоростями . Закон Френеля и лежит в основе теории двойного лучепреломления. Распадение светового пучка на два, при распространении в анизотропной среде, связано с тем, что для каждого данного направления падающего луча существуют только два направления в среде, по которым могут распространяться поперечные волны, притом поляризованные определенным образом (разумеется, всегда возможно подобрать такой поляризованный падающий луч, который пройдет через кристалл без двойного лучепреломления).

Сумма энергий обоих лучей равна энергии падающего света (если не считать потерь при отражении). При распадении поляризованного луча на два компонента при двойном лучепреломлении, энергия компонентов выразится следующим образом: a 2 ·sin 2 α и а 2 ·cos 2 α, где α - угол, образуемый направлением колебаний первоначального луча с направлением колебаний одного из компонентов, и а 2 - энергия первоначального луча (закон Малюса). Оба луча при двойном лучепреломлении поляризованного света произошли от одного, т. е. когерентны . Если каким-либо способом (например, при помощи поляризационной призмы) выделить компоненты обоих лучей с колебаниями в одной плоскости и заставить их встретиться то, благодаря когерентности, произойдет интерференция, и лучи усилят или ослабят друг друга. При освещении белым светом при этом процессе будут происходить хроматические явления, т. к. при взаимном ослаблении одних волн другие, наоборот, взаимно усиливаются. Лучи, обыкновенный и необыкновенный, распространяются в анизотропной среде с различными скоростями; поэтому по выходе из среды они обладают некоторой разностью хода. Можно достигнуть, например, разности хода в четверть волны; тогда два линейно поляризованных луча, слагаясь, образуют луч, поляризованный по кругу. Для этой цели часто применяют листочки слюды (пластинки в «четверть волны»). Интерференционные явления используются для точных определений двойного лучепреломления.

Явление двойного лучепреломления в кристаллах использовано при построении разнообразных научных и технических оптических приборов. Двойное лучепреломление в жидкостях в электрическом поле успешно применяется в последнее время для передачи изображений на расстояние, для говорящего кино и т. д. Двойное лучепреломление, появляющееся в стекле при закалке, служит удобным признаком для обнаружения опасных натяжений в стеклянной посуде, электрических лампочках и т. д. Для этой цели различными оптическими фирмами выпущены поляризационные приборы, позволяющие производить быструю качественную оценку натяжений по цвету интерференционной картины, возникающей благодаря двойному лучепреломлению. Наконец, двойное лучепреломление позволяет изучать на прозрачных моделях из стекла или целлулоида натяжения, которые возникают при различных деформациях в машинах, частях построек и т. д. Цветные картины, получаемые от таких деформируемых моделей, с помощью очень простых поляризационных приборов дают возможность быстрого качественного и количественного изучения натяжений и освобождают от сложных, иногда невыполнимых расчетов.

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ - раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её и ориентации волнового вектора относительно кристаллографич. осей, т. е. от направления распространения (см. Кристаллооптика, Оптическая анизотропия) . При падении световой волны на поверхность в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляризации падающей волны. Различают линейное и эллиптическое Д. л. в зависимости от свойств и .

В прозрачных немагн. кристаллах без дисперсии пространственной происходит линейное Д. л. - возникают две линейно поляризов. волны, векторы индукции к-рых D 1 и D 2 взаимно ортогональны и соответственно ортогональны векторам магн. поля H 1 и H 2 . Д. л. в кристаллах можно описать, приведя тензор диэлектрической проницаемости к главным осям и задав значения: - "главные показатели преломления"; величину Д. л. обычно описывают макс. разностью этих показателей преломления. При прохождении света через границу двух анизотропных сред происходит более сложное преобразование двух падающих волн в две преломлённые.

В прозрачных магн. кристаллах без пространств. дисперсии также имеет место линейное Д. л., однако векторы индукций (электрической D и магнитной В )в двух волнах не ортогональны ( ).

Д. л. в этом случае является следствием того, что электрич. и магн. проницаемости описываются разл. тензорами; в гипотетич. среде, где (-скаляр), Д. л. отсутствовало бы (но скорости волн зависели бы от направления).

В прозрачных немагн. кристаллах с пространств. дисперсией первого порядка - гиротропией - падающая волна распадается на две волны (идущие по разным направлениям с разными скоростями), поляризованные эллиптически, причём соответственные оси эллипсов D 1 и D 2 ортогональны, а направления обхода этих эллипсов противоположны - происходит эллиптическое Д. л. В нек-рой области частот возможно появление даже большего числа волн - 3 или 4.

В кристаллах, обладающих поглощением, картина Д. л. более сложна. Как известно, волны в поглощающих средах неоднородны; векторы E, D и H, В в общем случае поляризованы эллиптически, причём эллипсы различны и ориентированы по-разному. Поэтому в общем случае имеет место эллиптическое Д. л.; эллипсы векторов двух волн D 1 и D 2 подобны, ортогональны и имеют одно направление обхода, но разные размеры вследствие анизотропии поглощения (см. Дихроизм ).То же имеет место для векторов B 1 и B 2 , но эллипсы их отличаются от первых формой и ориентацией (ориентации совпадают лишь при круговой поляризации).

В зависимости от свойств симметрии анизотропной среды в ней имеется несколько избранных направлений, в к-рых Д. л. отсутствует; эти направления наз. оптич. осями. Могут быть оси изотропные, вдоль к-рых волны любой поляризации распространяются с одинаковой скоростью, и оси круговые, вдоль к-рых без Д. л. может распространяться лишь волна определ. знака круговой поляризации. Прозрачные кристаллы низших сингоний обычно имеют две изотропные оси, при симметрии выше 222 D 2 (см. Симметрия кристаллов )они сливаются в одну. При наличии поглощения кристаллы низших сингоний имеют одну изотропную ось (в частном случае ромбич. сингоний - две) и (или) несколько круговых.

Д. л. может наблюдаться не только в естественно-анизотропной среде, но и в среде с искусств. анизотропией, вызванной асимметричными деформациями, внутр. натяжениями (см. Фотоупругость) , приложением акустич. поля (см. Акустооптика ),приложением электрических (см. Керра эффект )или магнитных (см. Коттона - Мутона эффект )полей, анизотропным нагревом. В жидкостях возможно создание Д. л. в потоке, если молекулы жидкости или растворённого вещества обладают несферич. формой и анизотропной поляризуемостью .

Явление, аналогичное Д. л, наблюдается и в др. диапазонах эл--магн. волн, напр. в диапазоне СВЧ в плазме, находящейся в магн. поле (а следовательно, анизотропной); см. Волны в плазме .

Лит.: Федоров Ф. И., Оптика анизотропных сред. Минск, 1958, Кизель В. А., Отражение света, M , 1973, гл. 1, 2; Федоров Ф. И., Филиппов В. В., Отражение и преломление света прозрачными кристаллами, Минск. 1976; Дорожкин Л. M. и др., Измерение показателей преломления монокристаллов методом равных отклонений, "Краткие сообщения по физике", 1977, № 3, с. 8; Stаmnеs J., Shеrman G., Reflection and refraction of an arbitrary wave at a plane interface separating two uniaxial crystals, "J. Opt. Soc. Amer.", 1977, v. 67, p. 683; Halevi P., Mendoza-Hernfindez A., Temporal and spatial behavior of the Poynting vector in dissepative media refraction from vacuum into a medium, "J. Opt. Soc. Amer.", 1981, v. 71, p. 1238.

В . А. Кизель .

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ - расщепление пучка неполяризованного света в оптически анизотропной среде на два пучка.

Явление Д. л. было открыто Э. Бартолином в 1669 г. и описано им на примере кристалла исландского шпата (CaCO 3).

Изучение Д. л. в тканях при физиол., гистопатол. и других исследованиях может иметь важное диагностическое значение.

Если узкий пучок света падает на поверхность оптически анизотропного (см. Анизотропия) кристалла, то на выходе из него можно наблюдать два луча, один из которых называют обыкновенным, а другой необыкновенным (рис.). В одноосных кристаллах обыкновенный луч подчиняется обычным, а необыкновенный более сложным законам преломления. Обыкновенный (АВСД) и необыкновенный (АВС1Д1) лучи отличаются различной скоростью распространения и вследствие этого различными коэффициентами преломления, а также тем, что они линейно поляризованы в двух взаимно перпендикулярных плоскостях (см. Поляризация). Угол, образованный этими лучами, называют углом Д. л.

Явление Д. л. широко используется для получения информации о наличии оптической анизотропии (напр., вследствие формирования кристаллоподобных образований), в исследуемом биол, материале, оно позволяет судить о конформационных переходах макромолекул, перестройках мембран, комплексообразовании и т. п. Так, напр., при микроскопии мышечных волокон поперечнополосатых мышц миофибриллы обнаруживают правильное чередование светлых и темных полос. При этом более темные (плотные) полосы обладают Д. л., что указывает на анизотропность структуры. Актин, так же как и миозин, обладает Д. л., однако лишь в том случае, когда связан с ионами кальция и образует фибриллы. Этот факт позволил предположить, что при сокращении мышц происходит переход глобулярной формы актина в фибриллярную при участии ионов кальция.

Д. л. наблюдается также в костях, сухожилиях и фасциях. Хорошо выражена оптическая анизотропия коллагеновых волокон, однако в рыхлой соединительной ткани Д. л. обнаруживается с трудом вследствие спутанного расположения пучков. Эластические волокна в нерастянутом состоянии почти не обнаруживают Д. л.

В нервной ткани двоякопреломляющими являются миелиновые волокна. При развитии й гибели нервных волокон их оптические свойства изменяются. Исследование изменений Д. л. в одиночных нервных волокнах при возбуждении дало основание связать эти изменения с конформационными перестройками мембран в различные фазы развития потенциала действия (см. Проведение нервного импульса).

Феномен Д. л. с успехом используют для изучения структуры нуклеиновых к-т.

В патол, условиях Д. л. наблюдается в тканях организма очень часто. Оптически анизотропные вещества могут откладываться в ткани непосредственно или появляться в результате хим. превращений других (большей частью жировых) веществ. Примерами патол, процессов, при которых наблюдается появление в тканях оптически анизотропных веществ, являются: отложение холестериновых соединений в сосудах, роговице глаза, сухожилиях и почках в преклонном возрасте; развитие особых опухолей, называемых ксантомами, которые состоят из клеток типа макрофагов, содержащих в плазме нейтральный жир и большое количество холестеринэстеров.

Явление Д. л. наблюдается также при исследовании срезов тканей опухолей.

Библиография Волькенштейн М. В. Молекулы и жизнь, М., 1965; Ланд-сберг Г. С. Оптика, М., 1976; Левин С. В. Структурные изменения клеточных мембран, с. 172, Л., 1976

В 1669 г. датский ученый Эразм Бартолин обнаружил, что если смотреть на какой-либо предмет сквозь кристалл исландского шпата, то при определенных положениях кристалла и предмета видны сразу два изображения предмета. Это явление назвали явлением двойного лучепреломления .

Объяснение природы этого явления дал в 1690 г. Христиан Гюйгенс в своей работе «Трактат о свете».

В современной трактовке объяснение природы явления следующее.

Свет, попадающий в двулучепреломляющее вещество, делится на два плоскополяризованных во взаимно перпендикулярных плоскостях луча.

В общем случае эти лучи по-разному распространяются в различных направлениях.

Однако в любом двулучепреломляющем веществе существует одно или два направления, вдоль которых оба луча распространяются с одной скоростью.

Эти направления принято называть оптическими осями .
В зависимости от количества осей двулучепреломляющие вещества делят на одноосные и двуосные. Мы будем рассматривать только одноосные двулучепреломляющие вещества.

Важно отметить, что направления колебаний векторов Е плоскополяризованных лучей, возникающих внутри двулучепреломляющего вещества, всегда ориентированы определенным образом. У одного из них колебания вектора Е перпендикулярны плоскости, в которой лежат падающий луч и оптическая ось (эту плоскость принято называть главным сечением ). У второго – параллельны главному сечению.

Скорости распространения этих лучей зависят от угла между вектором Е и оптической осью.

В луче с вектором Е , перпендикулярным главному сечению, угол между Е и оптической осью не зависит от угла падения луча. При любых углах падения вектор Е перпендикулярен оптической оси.

Это значит, что при любом угле падения он имеет одну и ту же скорость.

Поскольку скорость света в веществе связана с показателем преломления этого вещества, постольку показатель преломления двулучепреломляющего вещества для этого луча также не зависит от угла падения. Другими словами, этот луч ведет себя как в обыкновенной изотропной среде.

Поэтому его принято называть обыкновенным . Далее вектор Е обыкновенного луча будет обозначаться Е о .

Второй луч называется необыкновенным , поскольку для него угол между направлением колебаний вектора Е е (далее вектор Е необыкновенного луча будет обозначаться Е е ) и оптической осью зависит от угла падения (см. рисунок). Следовательно, при разных углах падения он распространяется с разной скоростью и имеет разный показатель преломления, что, в общем, необыкновенно.

Пусть на плоскопараллельную пластинку двулучепреломляющего вещества падает плоскополяризованный свет.

В этом случае плоскость главного сечения перпендикулярна поверхности пластинки.

Внутри пластинки падающий луч разделится на два плоскополяризованных луча, один из которых поляризован перпендикулярно оптической оси (обыкновенный луч), а второй – параллельно (необыкновенный луч).

Естественно, что на входе в пластинку эти лучи будут синфазны.

Внутри пластинки показатели преломления для этих лучей имеют разные значения (n o и n e).

Значит, если обыкновенный и необыкновенный лучи пройдут внутри пластинки одинаковое расстояние (например, d – толщину пластинки), то они уже не будут синфазными. Они будут иметь разность фаз Dj, равную k o (n o d – n e d ). Здесь k o – волновое число для вакуума.

Если разность фаз лучей, выходящих из пластинки, будет кратна 2p, ориентация плоскости колебаний вектора Е не изменится. Свет за пластинкой будет поляризован так же, как перед ней.

Если разность фаз кратна нечетному числу p, плоскость колебаний вектора Е за пластинкой повернется на 90°, но свет по-прежнему будет плоскополяризованным.

Если разность фаз окажется равной p/2, то свет за пластинкой окажется поляризованным по кругу. Пластинки такой толщины называют четвертьволновыми .

Пропускание поляризованного по кругу света через вторую четвертьволновую пластинку приводит к добавке дополнительной разности фаз в p/2. Это вызовет превращение поляризованного по кругу света в плоскополяризованный, плоскость поляризации которого повернута на 90° по сравнению со светом, падающим на первую пластинку*.

Волновые поверхности обыкновенного и необыкновенного лучей имеют различную форму.

У обыкновенного луча это, естественно, сфера – обыкновенный луч во все стороны распространяется с одной скоростью.

У необыкновенного же волновая поверхность представляет собой эллипсоид – его скорость для разных направлений различна.

Поскольку вдоль оптической оси и обыкновенная, и необыкновенная световая волны распространяются с одной скоростью, в точках пересечения с оптической осью их волновые поверхности соприкасаются.

Рассмотрим естественную световую волну, падающую на поверхность кристаллической двулучепреломляющей пластинки.

Пусть оптическая ось пластинки параллельна поверхности пластинки.

Луч естественного света, попадая в точку А , возбуждает две вторичные световые волны – обыкновенную и необыкновенную.

Их фронты имеют вид, показанный на рисунке.

Лучи вторичных волн, возбужденных между точками А и В , перпендикулярны волновым поверхностям обыкновенной и необыкновенной волн, которые можно построить, проводя из точки В касательную к каждой волновой поверхности, образованной обыкновенным и необыкновенным лучами, прошедшими через точку А .

Из показанного на рисунке построения видно, что обыкновенная и необыкновенная волны распространяются внутри кристалла в разные стороны. На этом свойстве основан ряд методов получения поляризационных устройств – отсекая один из лучей (обыкновенный или необыкновенный), можно получить плоскополяризованный свет.

В заключение отметим, что двулучепреломляющими бывают кристаллические вещества, такие как кварц, исландский шпат.

Кроме этого, двулучепреломляющими могут быть вещества с несимметричными молекулами, ориентированными упорядочено вдоль какого-либо направления. Это могут быть жидкости и аморфные тела, в которых ориентация молекул возникает вследствие внешнего воздействия (механического напряжения, воздействия внешнего электрического или магнитного поля).

Квантовая механика

Кризис классической физики

В конце ХIХ в. в физике сложилась интересная ситуация. Ученые полагали, что стройное здание классической физики близко к завершению. Казалось, осталось объяснить некоторые незначительные эффекты… и развитие физики будет закончено.

Однако на рубеже ХIХ–ХХ вв. было сделано несколько открытий, которые не удавалось объяснить с позиции классической физики. Эти открытия породили кризис классической физики, который, в свою очередь, произвел революционный переворот в науке и вызвал появление квантовой физики.

Тепловое излучение

Тепловым называется электромагнитное излучение, испускаемое веществом за счет его внутренней энергии.

Тепловое излучение испускается всеми телами, температура которых отлична от абсолютного нуля.

Тепловое излучение представляет собой суперпозицию электромагнитных волн, длины которых лежат в широком диапазоне. Спектр теплового излучения непрерывен.

Спектральный состав теплового излучения зависит от температуры – чем выше температура тела, тем больше в нем доля коротковолнового излучения.

Вы прекрасно знаете, что раскаленные тела могут светиться. Это значит, что тепловое излучение такого тела содержит волны видимого диапазона.

Цвет свечения будет зависеть от температуры. Например, тело можно раскалить добела. Остывая, тело изменит цвет на красный, затем перестанет светиться вообще, хотя будет еще довольно горячим.

Тело перестанет светиться, но будет излучать энергию – вы можете ощущать тепло, идущее от него. Это значит, что тело излучает в инфракрасном диапазоне.

Более холодные тела в основном излучают в диапазоне, не воспринимаемом нашими органами чувств, поэтому мы его не ощущаем.