Электрические измерения и приборы. Двойной измерительный мост постоянного тока

ЛЕКЦИЯ № 1

Тема: ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

1. Общие сведения об электроизмерительных приборах

Электроизмерительные приборы предназначены для измерения различных величин и параметров электрической цепи: напряжения, силы тока, мощности, частоты, сопротивления, индуктивности, емкости и других.

На схемах электроизмерительные приборы изображаются условными графическими обозначениями в соответствии с ГОСТ 2.729-68. На рис.1.1 приведены общие обозначения показывающих и регистрирующих приборов.

Рис. 1.1 Условные графические обозначения электроизмерительных приборов.

Для указания назначения электроизмерительного прибора в его общее обозначение вписывают конкретизирующее условное обозначение, установленное в стандартах, или буквенное обозначение единиц измерения прибора согласно ГОСТ в соответствии с табл.1.1.

Таблица 1.1

Наименование

единицы измерения

Условное обозначение

Наименование

единицы измерения

Условное обозначение

Миллиампер

Микроампер

Милливольт

Киловатт

Коэффициент мощности

2. Электромеханические измерительные приборы

По принципу действия электромеханические приборы подразделяются на приборы магнитоэлектрической, электромагнитной, ферродинамической, индукционной, электростатической систем. Условные обозначения систем приведены в табл. 1.2. Наибольшее распространение получили приборы первых трех типов: магнитоэлектрические, электромагнитные, электродинамические.

Таблица 1.2

Тип прибора

Условное обозначение

Род измеряемого тока

Достоинства

Недостатки

электрический

Постоянный

Высокая точность, равномерность шкалы

Неустойчив к перегрузкам

магнитный

Переменный

постоянный

Простота устройства, к перегрузкам устойчив

Низкая точность, чувствителен к помехам

динамический

Переменный

постоянный

Высокая точность

Низкая чувствительность,

чувствителен к помехам

Индукционный

Переменный

Высокая надежность, к перегрузкам устойчив

Низкая точность

3. Области применения электромеханических приборов

Магнитоэлектрические приборы: щитовые и лабораторные амперметры и вольтметры; нулевые индикаторы при измерениях в мостовых и компенсационных цепях.

В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров - приборы электромагнитной системы. Лабораторные приборы класса 0,5 и точнее могут изготовляться для измерения постоянного и переменного токов и напряжения.

Электродинамические механизмы используются в лабораторных и образцовых, приборах для измерения постоянных и переменных токов, напряжений и мощностей.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно - и трехфазных счетчиков энергии переменного тока. По точности счетчики подразделяются на классы 1,0; 2,0; 2,5. Счетчик СО (счетчик однофазный) используют для учета активной энергии (ватт-часов) в однофазных цепях. Для измерения активной энергии в трехфазных цепях применяют двухэлементные индуктивные счетчики, счетный механизм которых учитывает киловатт-часы. Для учета реактивной энергии служат специальные индуктивные счетчики, имеющие некоторые изменения в устройстве обмоток или в схеме включения.

Активные и реактивные счетчики устанавливают на всех предприятиях для расчета с энергоснабжающими организациями за используемую электроэнергию.

Принцип выбора измерительных приборов

1.Определяют расчетом цепи максимальные значения тока, напряжения и мощности в цепи. Часто значения измеряемых величин известны заранее, например, напряжение сети или аккумуляторной батареи .

2. В зависимости от рода измеряемой величины, постоянного или переменного тока, выбирают систему прибора. Для технических измерений постоянного и переменного тока выбирают соответственно магнитоэлектрическую и электромагнитную системы. При лабораторных и точных измерениях для определения постоянных токов и напряжений применяют магнитоэлектрическую систему, а для переменного тока и напряжения - электродинамическую систему.

3. Выбирают предел измерения прибора таким образом, чтобы
измеряемая величина находилась в последней, третьей части шкалы
прибора.

4. В зависимости от требуемой точности измерения выбирают класс
точности прибора.

4. Способы включения приборов в цепь

Амперметры включают в цепь последовательно с нагрузкой, вольтметры - параллельно, ваттметры и счетчики, как имеющие две обмотки (токовую и напряжения), включают последовательно – параллельно (Рис. 1.2.).

https://pandia.ru/text/78/613/images/image013_9.gif" width="296" height="325">

https://pandia.ru/text/78/613/images/image016_8.gif" width="393" height="313 src=">

Рис. 1.3. Способы расширения пределов измерения приборов.

Цена деления многопредельных амперметров, вольтметров, ваттметров определяется по формуле:

П" в старшем разряде) и изменить полярность входного сигнала при мигании знака "-" в старшем разряде.

Погрешность измерения мультиметра ВР-11 А.

Постоянное напряжение: ±(0,5% Ux +4 зн.).

Переменное напряжение: ±(0,5% Ux + 10 зн.),

где Ux - показание прибора;

зн. - единица младшего разряда.

Достоинства электронных приборов: высокое входное сопротивление, что позволяет проводить измерения без влияния на цепь; широкий диапазон измерений, высокая чувствительность, широкий частотный диапазон, высокая точность измерений.

6. Погрешности измерений и измерительных приборов

Качество средств и результатов измерений принято характеризовать указанием их погрешностей. Разновидностей погрешностей около 30. Определения им даны в литературе по измерениям. Следует иметь в виду, что погрешности средств измерений и погрешности результатов измерений - понятия не идентичные. Исторически часть наименований разновидности погрешностей закрепилась за погрешностями средств измерений, другая за погрешностями результатов измерений, а некоторые применяются по отношению и к тем, и к другим.

Способы представления погрешности следующие.

В зависимости от решаемых задач используются несколько способов представления погрешности, чаще всего используются абсолютная, относительная и приведенная.

Абсолютная погрешность измеряется в тех же единицах что и измеряемая величина. Характеризует величину возможного отклонения истинного значения измеряемой величины от измеренного.

Относительная погрешность – отношение абсолютной погрешности к значению величины. Если мы хотим определить погрешность на всем интервале измерений, мы должны найти максимальное значение отношения на интервале. Измеряется в безразмерных единицах.

Класс точности – относительная погрешность, выраженная в процентах. Обычно значения класса точности выбираются из ряда: 0,1; 0,5: 1,0; 1,5; 2,0; 2,5 и т. д.

Понятия абсолютной и относительной погрешностей применяют и к измерениям, и к средствам измерения, а приведенная погрешность оценивает только точность средств измерения.

Абсолютная погрешность измерения - это разность между измеренным значением х и ее истинным значением хи:

Обычно истинное значение измеряемой величины неизвестно, и вместо него в (1.1) подставляют значение величины, измеряемой более точным прибором, т. е. имеющим меньшую погрешность, чем прибор, дающий значение х. Абсолютная погрешность выражается в единицах измеряемой величины. Формулой (1.1) пользуются при поверке измерительных приборов.

Относительная погрешность https://pandia.ru/text/78/613/images/image020_7.gif" width="99" height="45"> (1.2)

По относительной погрешности измерения проводят оценку точности измерения.

Приведенная погрешность измерительного прибора определяется как отношение абсолютной погрешности к нормирующему значению xn и выражается в процентах:

(1.3)

Нормирующее значение обычно принимают равным верхнему пределу рабочей части шкалы, у которой нулевая отметка находится на краю шкалы.

Приведенная погрешность определяет точность измерительного прибора, не зависит от измеряемой величины и имеет единственное значение для данного прибора. Из (1..gif" width="15" height="19 src="> тем больше, чем меньше измеряемая величина х по отношению к пределу измерения прибора хN.

Многие измерительные приборы различаются по классам точности. Класс точности прибора G - обобщенная характеристика, которая характеризует точность прибора, но не является непосредственной характеристикой точности измерения, выполняемого с помощью данного прибора.

Класс точности прибора численно равен наибольшей допустимой приведенной основной погрешности, вычисленной в процентах. Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0. Эти числа наносятся на шкалу прибора. Например, класс 1 характеризует гарантированные границы погрешности в процентах (± 1%, например, от конечного значения 100 В, т. е. ±1В) в нормальных условиях эксплуатации.

По международной классификации приборы с классом точности 0,5 и точнее считаются точными или образцовыми, а приборы с классом точности 1,0 и грубее - рабочими. Все приборы подлежат периодической поверке на соответствие метрологических характеристик, в том числе и класса точности, их паспортным значениям. При этом образцовый прибор должен быть точнее поверяемого через класс, а именно: поверка прибора с классом точности 4,0 проводится прибором с классом точности 1,5, а поверка прибора с классом точности 1,0 проводится прибором с классом точности 0,2.

Поскольку на шкале прибора приводится и класс точности прибора G, и предел измерения XN, то абсолютная погрешность прибора определяется из формулы (1.3):

https://pandia.ru/text/78/613/images/image019_7.gif" width="15 height=19" height="19"> с классом точности прибора G выражается формулой:

откуда следует, что относительная погрешность измерения равна классу точности прибора только при измерении предельной величины на шкале, т. е. когда х = XN. С уменьшением измеряемой величины относительная погрешность возрастает. Во сколько раз XN > х, во столька раз > G. Поэтому рекомендуется выбирать пределы измерения показывающего прибора так, чтобы отсчитывать показания в пределах последней трети шкалы, ближе к ее концу.

7. Представление результата измерений при однократных измерениях

Результат измерения состоит из оценки измеряемой величины и погрешности измерения, характеризующей точность измерения. По ГОСТ 8.011-72 результат измерения представляют в форме:

где А - результат измерения;

Абсолютная погрешность прибора;

Р - вероятность, при статистической обработке данных.

При этом А и https://pandia.ru/text/78/613/images/image023_5.gif" width="15" height="17"> не должна иметь более двух значащих цифр.

ЭЛЕКТРИЧЕСКИЕ
ИЗМЕРЕНИЯ В
СИСТЕМАХ
ЭЛЕКТРОСНАБЖЕНИЯ
Преподаватель: к.т.н., доцент кафедры ЭПП
Буякова Наталья Васильевна

Электротехнические измерения представляют собой
совокупность электрических и электронных измерений,
которые можно рассматривать как один из разделов
метрологии. Название «метрология» образовано от двух
греческих слов: metron - мера и logos - слово, учение;
дословно: учение о мере.
В современном понимании метрологией называют науку
об измерениях, методах и средствах обеспечения их
единства и способах достижения требуемой точности.
В реальной жизни метрология не только наука, но и
область практической деятельности, связанной с
изучением физических величин.
Предметом
метрологии
является
получение
количественной информации о свойствах объектов и
процессов, т.е. измерение свойств объектов и процессов с
требуемой точностью и достоверностью.

Измерения являются одним из важнейших путей познания
природы человеком.
Они дают количественную характеристику окружающего
мира, раскрывая человеку действующие в природе
закономерности.
Под измерением понимают совокупность операций,
выполняемых с помощью специального технического
средства, хранящего единицу измеряемой величины,
позволяющего сопоставить измеряемую величину с ее
единицей и получить значение этой величины.
Результат измерений величины X записывается в виде
Х=А[Х],
где А − безразмерное число, называемое числовым
значением физической величины; [X] − единица
физической величины.

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ

Измерение электрических величин, таких, как напряжение,
сопротивление, сила тока, мощность производятся с
помощью различных средств - измерительных приборов,
схем и специальных устройств.
Тип измерительного прибора зависит от вида и размера
(диапазона значений) измеряемой величины, а также от
требуемой точности измерения.
В электрических измерениях используются основные
единицы системы СИ: вольт (В), ом (Ом), фарада (Ф),
генри (Г), ампер (А) и секунда (с).

ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Электрическое
измерение
это
нахождение
(экспериментальными методами) значения физической
величины, выраженного в соответствующих единицах
(например, 3 А, 4 В).
Значения единиц электрических величин определяются
международным соглашением в соответствии с законами
физики и единицами механических величин.
Поскольку "поддержание" единиц электрических величин,
определяемых
международными
соглашениями,
сопряжено
с
трудностями,
их
представляют
"практическими"
эталонами
единиц
электрических
величин.
Такие
эталоны
поддерживаются
государственными
метрологическими лабораториями разных стран.

Все общепринятые электрические и магнитные единицы
измерения основаны на метрической системе.
В
согласии
с
современными
определениями
электрических и магнитных единиц все они являются
производными единицами, выводимыми по определенным
физическим формулам из метрических единиц длины,
массы и времени.
Поскольку же большинство электрических и магнитных
величин
не
так-то
просто
измерять,
пользуясь
упомянутыми эталонами, было сочтено, что удобнее
установить
путем
соответствующих
экспериментов
производные эталоны для некоторых из указанных
величин, а другие измерять, пользуясь такими эталонами.

Единицы системы СИ

Ампер, единица силы электрического тока, - одна из
шести основных единиц системы СИ.
Ампер (А) - сила неизменяющегося тока, который при
прохождении по двум параллельным прямолинейным
проводникам бесконечной длины с ничтожно малой
площадью кругового поперечного сечения,
расположенным в вакууме на расстоянии 1 м один от
другого, вызывал бы на каждом участке проводника
длиной 1 м силу взаимодействия, равную 2 ∗ 10−7 Н.
Вольт, единица разности потенциалов и электродвижущей
силы.
Вольт (В) - электрическое напряжение на участке
электрической цепи с постоянным током силой 1 А при
затрачиваемой мощности 1 Вт.

Кулон, единица количества электричества
(электрического заряда).
Кулон (Кл) - количество электричества, проходящее
через поперечное сечение проводника при
постоянном токе силой 1 А за время 1 с.
Фарада, единица электрической емкости.
Фарада (Ф) - емкость конденсатора, на обкладках
которого при заряде 1 Кл возникает электрическое
напряжение 1 В.
Генри, единица индуктивности.
Генри равен индуктивности контура, в котором
возникает ЭДС самоиндукции в 1 В при равномерном
изменении силы тока в этом контуре на 1 А за 1 с.

Вебер, единица магнитного потока.
Вебер (Вб) - магнитный поток, при убывании
которого до нуля в сцепленном с ним контуре,
имеющем сопротивление 1 Ом, протекает
электрический заряд, равный 1 Кл.
Тесла, единица магнитной индукции.
Тесла (Тл) - магнитная индукция однородного
магнитного поля, в котором магнитный поток
через плоскую площадку площадью 1 м2,
перпендикулярную линиям индукции, равен 1 Вб.

10. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Электроизмерительные приборы чаще всего измеряют
мгновенные значения либо электрических величин, либо
неэлектрических, преобразованных в электрические.
Все приборы делятся на аналоговые и цифровые.
Первые обычно показывают значение измеряемой
величины посредством стрелки, перемещающейся по
шкале с делениями.
Вторые снабжены цифровым дисплеем, который
показывает измеренное значение величины в виде числа.
Цифровые приборы в большинстве измерений более
предпочтительны, так как они более точны, более удобны
при снятии показаний и, в общем, более универсальны.

11.

Цифровые универсальные измерительные приборы
("мультиметры") и цифровые вольтметры применяются
для измерения со средней и высокой точностью
сопротивления постоянному току, а также напряжения и
силы переменного тока.
Аналоговые
приборы
постепенно
вытесняются
цифровыми, хотя они еще находят применение там, где
важна низкая стоимость и не нужна высокая точность.
Для самых точных измерений сопротивления и полного
сопротивления (импеданса) существуют измерительные
мосты и другие специализированные измерители.
Для регистрации хода изменения измеряемой величины
во времени применяются регистрирующие приборы ленточные самописцы и электронные осциллографы,
аналоговые и цифровые.

12. ЦИФРОВЫЕ ПРИБОРЫ

Во всех цифровых измерительных приборах (кроме
простейших) используются усилители и другие электронные
блоки для преобразования входного сигнала в сигнал
напряжения, который затем преобразуется в цифровую форму
аналого-цифровым преобразователем (АЦП).
Число, выражающее измеренное значение, выводится на
светодиодный (СИД), вакуумный люминесцентный или
жидкокристаллический (ЖК) индикатор (дисплей).
Прибор обычно работает под управлением встроенного
микропроцессора, причем в простых приборах микропроцессор
объединяется с АЦП на одной интегральной схеме.
Цифровые приборы хорошо подходят для работы с
подключением к внешнему компьютеру. В некоторых видах
измерений такой компьютер переключает измерительные
функции прибора и дает команды передачи данных для их
обработки.

13. Аналого-цифровые преобразователи (АЦП)

Существуют три основных типа АЦП: интегрирующий,
последовательного приближения и параллельный.
Интегрирующий АЦП усредняет входной сигнал по
времени. Из трех перечисленных типов это самый точный,
хотя и самый "медленный". Время преобразования
интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и
более, погрешность составляет 0,1-0,0003%.
Погрешность АЦП последовательного приближения
несколько больше (0,4-0,002%), но зато время
преобразования - от 10мкс до 1 мс.
Параллельные АЦП - самые быстродействующие, но и
наименее точные: их время преобразования порядка 0,25
нс, погрешность - от 0,4 до 2%.

14.

15. Методы дискретизации

Сигнал дискретизируется по времени путем быстрого
измерения его в отдельные моменты времени и
удержания (сохранения) измеренных значений на время
преобразования их в цифровую форму.
Последовательность полученных дискретных значений
может выводиться на дисплей в виде кривой, имеющей
форму сигнала; возводя эти значения в квадрат и
суммируя, можно вычислять среднеквадратическое
значение сигнала; их можно использовать также для
вычисления
времени
нарастания,
максимального
значения, среднего по времени, частотного спектра и т.д.
Дискретизация по времени может производиться либо за
один период сигнала ("в реальном времени"), либо (с
последовательной или произвольной выборкой) за ряд
повторяющихся периодов.

16. Цифровые вольтметры и мультиметры

Цифровые
вольтметры
и
мультиметры
измеряют
квазистатическое значение величины и указывают его в
цифровой форме.
Вольтметры непосредственно измеряют только напряжение,
обычно постоянного тока, а мультиметры могут измерять
напряжение постоянного и переменного тока, силу тока,
сопротивление постоянному току и иногда температуру.
Эти самые распространенные контрольно-измерительные
приборы общего назначения с погрешностью измерения от 0,2
до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей.
"Полуцелый" знак (разряд) - это условное указание на то, что
дисплей может показывать числа, выходящие за пределы
номинального числа знаков. Например, 3,5-значный (3,5разрядный) дисплей в диапазоне 1-2 В может показывать
напряжение до 1,999 В.

17.

18. Измерители полных сопротивлений

Это специализированные приборы, измеряющие и показывающие
емкость конденсатора, сопротивление резистора, индуктивность
катушки индуктивности или полное сопротивление (импеданс)
соединения конденсатора или катушки индуктивности с резистором.
Имеются приборы такого типа для измерения емкости от 0,00001 пФ
до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и
индуктивности от 0,0001 мГ до 99,999 Г.
Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни
один прибор не перекрывает всего диапазона частот. На частотах,
близких к 1 кГц, погрешность может составлять лишь 0,02%, но
точность снижается вблизи границ диапазонов частоты и измеряемых
значений.
Большинство приборов могут показывать также производные
величины, такие, как добротность катушки или коэффициент потерь
конденсатора, вычисляемые по основным измеренным значениям.

19.

20. АНАЛОГОВЫЕ ПРИБОРЫ

Для измерения напряжения, силы тока и сопротивления на
постоянном
токе
применяются
аналоговые
магнитоэлектрические приборы с постоянным магнитом и
многовитковой подвижной частью.
Такие приборы стрелочного типа характеризуются
погрешностью от 0,5 до 5%.
Они просты и недороги (пример - автомобильные
приборы, показывающие ток и температуру), но не
применяются там, где требуется сколько-нибудь
значительная точность.

21. Магнитоэлектрические приборы

В таких приборах используется сила взаимодействия
магнитного поля с током в витках обмотки подвижной
части, стремящаяся повернуть последнюю.
Момент этой силы уравновешивается моментом,
создаваемым противодействующей пружиной, так что
каждому значению тока соответствует определенное
положение стрелки на шкале. Подвижная часть имеет
форму многовитковой проволочной рамки с размерами от
3-5 до 25-35 мм и делается как можно более легкой.
Подвижная
часть,
установленная
на
каменных
подшипниках или подвешенная на металлической
ленточке, помещается между полюсами сильного
постоянного магнита.

22.

Две спиральные пружинки, уравновешивающие крутящий
момент, служат также токопроводами обмотки подвижной
части.
Магнитоэлектрический
прибор
реагирует
на
ток,
проходящий по обмотке его подвижной части, а потому
представляет
собой
амперметр
или,
точнее,
миллиамперметр (так как верхний предел диапазона
измерений не превышает примерно 50 мА).
Его можно приспособить для измерения токов большей
силы, присоединив параллельно обмотке подвижной части
шунтирующий резистор с малым сопротивлением, чтобы в
обмотку подвижной части ответвлялась лишь малая доля
полного измеряемого тока.
Такое устройство пригодно для токов, измеряемых
многими тысячами ампер. Если последовательно с
обмоткой присоединить добавочный резистор, то прибор
превратится в вольтметр.

23.

Падение напряжения на таком последовательном
соединении
равно
произведению
сопротивления
резистора на ток, показываемый прибором, так что его
шкалу можно проградуировать в вольтах.
Чтобы
сделать
из
магнитоэлектрического
миллиамперметра омметр, нужно присоединять к нему
последовательно измеряемые резисторы и подавать на
это
последовательное
соединение
постоянное
напряжение, например от батареи питания.
Ток в такой схеме не будет пропорционален
сопротивлению, а потому необходима специальная шкала,
корректирующая нелинейность. Тогда можно будет
производить по шкале прямой отсчет сопротивления, хотя
и с не очень высокой точностью.

24. Гальванометры

К
магнитоэлектрическим
приборам
относятся
и
гальванометры - высокочувствительные приборы для
измерения крайне малых токов.
В гальванометрах нет подшипников, их подвижная часть
подвешена на тонкой ленточке или нити, используется
более сильное магнитное поле, а стрелка заменена
зеркальцем, приклеенным к нити подвеса (рис. 1).
Зеркальце поворачивается вместе с подвижной частью, а
угол
его
поворота
оценивается
по
смещению
отбрасываемого им светового зайчика на шкале,
установленной на расстоянии около 1 м.
Самые чувствительные гальванометры способны давать
отклонение по шкале, равное 1 мм, при изменении тока
всего лишь на 0,00001 мкА.

25.

Рисунок 1. ЗЕРКАЛЬНЫЙ ГАЛЬВАНОМЕТР измеряет ток,
проходящий через обмотку его подвижной части, помещенной в
магнитное поле, по отклонению светового зайчика.
1 - подвес;
2 - зеркальце;
3 - зазор;
4 - постоянный
магнит;
5 - обмотка
подвижной части;
6 - пружинка
подвеса.

26. РЕГИСТРИРУЮЩИЕ ПРИБОРЫ

Регистрирующие приборы записывают "историю" изменения
значения измеряемой величины.
К таким приборам наиболее распространенных типов относятся
ленточные самописцы, записывающие пером кривую изменения
величины на диаграммной бумажной ленте, аналоговые
электронные осциллографы, развертывающие кривую процесса
на
экране
электронно-лучевой
трубки,
и
цифровые
осциллографы, запоминающие однократные или редко
повторяющиеся сигналы.
Основное различие между этими приборами - в скорости
записи.
Ленточные
самописцы
с
их
движущимися
механическими частями наиболее подходят для регистрации
сигналов, изменяющихся за секунды, минуты и еще медленнее.
Электронные осциллографы же способны регистрировать
сигналы, изменяющиеся за время от миллионных долей
секунды до нескольких секунд.

27. ИЗМЕРИТЕЛЬНЫЕ МОСТЫ

Измерительный
мост
это
обычно
четырехплечая
электрическая
цепь,
составленная
из
резисторов,
конденсаторов и катушек индуктивности, предназначенная для
определения отношения параметров этих компонентов.
К одной паре противоположных полюсов цепи подключается
источник питания, а к другой - нуль-детектор.
Измерительные мосты применяются только в тех случаях, когда
требуется наивысшая точность измерения. (Для измерений со
средней
точностью
лучше
пользоваться
цифровыми
приборами, поскольку они проще в обращении.)
Наилучшие
трансформаторные
измерительные
мосты
переменного тока характеризуются погрешностью (измерения
отношения) порядка 0,0000001%.
Простейший мост для измерения сопротивления носит имя
своего изобретателя Ч.Уитстона

28. Двойной измерительный мост постоянного тока

Рисунок 2. ДВОЙНОЙ ИЗМЕРИТЕЛЬНЫЙ МОСТ (мост Томсона) более точный вариант моста Уитстона, пригодный для измерения
сопротивления четырехполюсных эталонных резисторов в области
микроом.

29.

К резистору трудно подсоединить медные провода, не привнеся
при этом сопротивления контактов порядка 0,0001 Ом и более.
В случае сопротивления 1 Ом такой токоподвод вносит ошибку
порядка всего лишь 0,01%, но для сопротивления 0,001 Ом
ошибка будет составлять 10%.
Двойной измерительный мост (мост Томсона), схема которого
представлена на рис. 2, предназначен для измерения
сопротивления эталонных резисторов малого номинала.
Сопротивление таких четырехполюсных эталонных резисторов
определяют как отношение напряжения на их потенциальных
зажимах (р1, р2 резистора Rs и р3, p4 резистора Rx на рис. 2) к
току через их токовые зажимы (с1, с2 и с3, с4).
При такой методике сопротивление присоединительных
проводов не вносит ошибки в результат измерения искомого
сопротивления.
Два дополнительных плеча m и n исключают влияние
соединительного провода 1 между зажимами с2 и с3.
Сопротивления m и n этих плеч подбирают так, чтобы
выполнялось равенство M/m = N/n. Затем, изменяя
сопротивление Rs, сводят разбаланс к нулю и находят Rx =
Rs(N /M).

30. Измерительные мосты переменного тока

Наиболее распространенные измерительные мосты
переменного тока рассчитаны на измерения либо на
сетевой частоте 50-60 Гц, либо на звуковых частотах
(обычно вблизи 1000 Гц); специализированные же
измерительные мосты работают на частотах до 100 МГц.
Как правило, в измерительных мостах переменного тока
вместо двух плеч, точно задающих отношение
напряжений, используется трансформатор. К исключениям
из этого правила относится измерительный мост
Максвелла - Вина.

31. Измерительный мост Максвелла - Вина

Рисунок 3. ИЗМЕРИТЕЛЬНЫЙ МОСТ МАКСВЕЛЛА - ВИНА для
сравнения параметров эталонных катушек индуктивности (L) и
конденсаторов (C).

32.

Такой измерительный мост позволяет сравнивать эталоны
индуктивности (L) с эталонами емкости на неизвестной
точно рабочей частоте.
Эталоны емкости применяются в измерениях высокой
точности,
поскольку
они
конструктивно
проще
прецизионных эталонов индуктивности, более компактны,
их легче экранировать, и они практически не создают
внешних электромагнитных полей.
Условия равновесия этого измерительного моста таковы:
Lx = R2*R3*C1 и Rx = (R2*R3) /R1 (рис.3).
Мост уравновешивается даже в случае "нечистого"
источника питания (т.е. источника сигнала, содержащего
гармоники основной частоты), если величина Lx не
зависит от частоты.

33. Трансформаторный измерительный мост

Рисунок 4. ТРАНСФОРМАТОРНЫЙ ИЗМЕРИТЕЛЬНЫЙ МОСТ
переменного тока для сравнения однотипных полных
сопротивлений

34.

Одно из преимуществ измерительных мостов переменного тока
- простота задания точного отношения напряжений посредством
трансформатора.
В отличие от делителей напряжения, построенных из
резисторов, конденсаторов или катушек индуктивности,
трансформаторы в течение длительного времени сохраняют
постоянным установленное отношение напряжений и редко
требуют повторной калибровки.
На
рис.
4
представлена
схема
трансформаторного
измерительного моста для сравнения двух однотипных полных
сопротивлений.
К недостаткам трансформаторного измерительного моста
можно
отнести
то,
что
отношение,
задаваемое
трансформатором, в какой-то степени зависит от частоты
сигнала.
Это
приводит
к
необходимости
проектировать
трансформаторные
измерительные
мосты
лишь
для
ограниченных частотных диапазонов, в которых гарантируется
паспортная точность.

35. ИЗМЕРЕНИЕ СИГНАЛОВ ПЕРЕМЕННОГО ТОКА

В случае изменяющихся во времени сигналов переменного тока
обычно требуется измерять некоторые их характеристики,
связанные с мгновенными значениями сигнала.
Чаще
всего
желательно
знать
среднеквадратические
(эффективные) значения электрических величин переменного
тока, поскольку мощности нагревания при напряжении 1В
постоянного тока соответствует мощность нагревания при
напряжении 1 В переменного тока.
Наряду с этим могут представлять интерес и другие величины,
например максимальное или среднее абсолютное значение.
Среднеквадратическое (эффективное) значение напряжения
(или силы переменного тока) определяется как корень
квадратный из усредненного по времени квадрата напряжения
(или силы тока):

36.

где Т - период сигнала Y(t).
Максимальное значение Yмакс - это наибольшее мгновенное значение
сигнала, а среднее абсолютное значение YAA - абсолютное значение,
усредненное по времени.
При синусоидальной форме колебаний Yэфф = 0,707Yмакс и
YAA = 0,637Yмакс.

37. Измерение напряжения и силы переменного тока

Почти все приборы для измерения напряжения и силы
переменного тока показывают значение, которое
предлагается рассматривать как эффективное значение
входного сигнала.
Однако в дешевых приборах зачастую на самом деле
измеряется среднее абсолютное или максимальное
значение сигнала, а шкала градуируется так, чтобы
показание
соответствовало
эквивалентному
эффективному значению в предположении, что входной
сигнал имеет синусоидальную форму.
Не следует упускать из виду, что точность таких приборов
крайне низка, если сигнал несинусоидален.

38.

Приборы, способные измерять истинное эффективное
значение сигналов переменного тока, могут быть
основаны на одном из трех принципов: электронного
умножения, дискретизации сигнала или теплового
преобразования.
Приборы, основанные на первых двух принципах, как
правило, реагируют на напряжение, а тепловые
электроизмерительные приборы - на ток.
При использовании добавочных и шунтовых резисторов
всеми приборами можно измерять как ток, так и
напряжение.

39. Тепловые электроизмерительные приборы

Наивысшую точность измерения эффективных значений
напряжения
и
тока
обеспечивают
тепловые
электроизмерительные приборы. В них используется
тепловой преобразователь тока в виде небольшого
откачанного стеклянного баллончика с нагревательной
проволочкой (длиной 0,5-1 см), к средней части которой
крохотной бусинкой прикреплен горячий спай термопары.
Бусинка обеспечивает тепловой контакт и одновременно
электроизоляцию.
При повышении температуры, прямо связанном с
эффективным
значением
тока
в
нагревательной
проволочке, на выходе термопары возникает термо-ЭДС
(напряжение постоянного тока).
Такие преобразователи пригодны для измерения силы
переменного тока с частотой от 20 Гц до 10 МГц.

40.

На рис. 5 показана принципиальная схема теплового
электроизмерительного прибора с двумя подобранными
по параметрам тепловыми преобразователями тока.
При подаче на вход схемы напряжения переменного тока
Vас на выходе термопары преобразователя ТС1 возникает
напряжение постоянного тока, усилитель А создает
постоянный
ток
в
нагревательной
проволочке
преобразователя ТС2, при котором термопара последнего
дает такое же напряжение постоянного тока, и обычный
прибор постоянного тока измеряет выходной ток.

41.

Рисунок 5.ТЕПЛОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР для
измерения эффективных значений напряжения и силы переменного
тока.
С помощью добавочного резистора описанный измеритель тока можно
превратить в вольтметр. Поскольку тепловые электроизмерительные
приборы непосредственно измеряют токи лишь от 2 до 500 мА, для
измерения токов большей силы необходимы резисторные шунты.

42. Измерение мощности и энергии переменного тока

Мощность, потребляемая нагрузкой в цепи переменного
тока, равна среднему по времени произведению
мгновенных значений напряжения и тока нагрузки.
Если напряжение и ток изменяются синусоидально (как
это обычно и бывает), то мощность Р можно представить в
виде P = EI cosj, где Е и I - эффективные значения
напряжения и тока, а j - фазовый угол (угол сдвига)
синусоид напряжения и тока.
Если напряжение выражается в вольтах, а ток в амперах,
то мощность будет выражена в ваттах.
Множитель cosj, называемый коэффициентом мощности,
характеризует
степень
синхронности
колебаний
напряжения и тока.

43.

С
экономической
точки
зрения,
самая
важная
электрическая величина - энергия.
Энергия W определяется произведением мощности на
время ее потребления. В математической форме это
записывается так:
Если время (t1 - t2) измеряется в секундах, напряжение е в вольтах, а ток i - в амперах, то энергия W будет
выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 Вт*с).
Если же время измеряется в часах, то энергия - в ваттчасах. На практике электроэнергию удобнее выражать в
киловатт-часах (1 кВт*ч = 1000 Вт*ч).

44. Индукционные счетчики электроэнергии

Индукционный счетчик представляет собой не что иное,
как маломощный электродвигатель переменного тока с
двумя обмотками - токовой и обмоткой напряжения.
Проводящий диск, помещенный между обмотками,
вращается
под
действием
крутящего
момента,
пропорционального потребляемой мощности.
Этот момент уравновешивается токами, наводимыми в
диске постоянным магнитом, так что частота вращения
диска пропорциональна потребляемой мощности.

45.

Число оборотов диска за то или иное время
пропорционально полной электроэнергии, полученной за
это время потребителем.
Число оборотов диска считает механический счетчик,
который показывает электроэнергию в киловатт-часах.
Приборы такого типа широко применяются в качестве
бытовых счетчиков электроэнергии.
Их погрешность, как правило, составляет 0,5%; они
отличаются большим сроком службы при любых
допустимых уровнях тока.

Потребности науки и техники включают в себя проведение множества измерений, средства и методы которых постоянно развиваются и совершенствуются. Важнейшая роль в этой области принадлежит измерениям электрических величин, находящим широчайшее применение в самых различных отраслях.

Понятие об измерениях

Измерение любой физической величины производится путем сравнения ее с некоторой величиной того же рода явлений, принятой в качестве единицы измерения. Результат, полученный при сравнении, представляется в численном виде в соответствующих единицах.

Эта операция осуществляется с помощью специальных средств измерения - технических приспособлений, взаимодействующих с объектом, те или иные параметры которого требуется измерить. При этом используются определенные методы - приемы, посредством которых проводится сравнение измеряемой величины с единицей измерения.

Существует несколько признаков, служащих основой для классификации измерений электрических величин по видам:

  • Количество актов измерения. Здесь существенна их однократность или многократность.
  • Степень точности. Различают технические, контрольно-поверочные, максимально точные измерения, а также равноточные и неравноточные.
  • Характер изменения измеряемой величины во времени. Согласно этому критерию измерения бывают статические и динамические. Путем динамических измерений получают мгновенные значения величин, меняющихся во времени, а статических - некоторые постоянные значения.
  • Представление результата. Измерения электрических величин могут быть выражены в относительной или в абсолютной форме.
  • Способ получения искомого результата. По данному признаку измерения делятся на прямые (в них результат получается непосредственно) и косвенные, при которых прямо измеряются величины, связанные с искомой величиной какой-либо функциональной зависимостью. В последнем случае искомая физическая величина вычисляется по полученным результатам. Так, измерение силы тока с помощью амперметра - это пример прямого измерения, а мощности - косвенного.

Средства измерения

Приспособления, предназначенные для измерения, должны обладать нормированными характеристиками, а также сохранять на протяжении определенного времени либо воспроизводить единицу той величины, для измерения которой они предназначены.

Средства измерения электрических величин подразделяются на несколько категорий в зависимости от назначения:

  • Меры. Данные средства служат для воспроизведения величины некоторого заданного размера - как, например, резистор, воспроизводящий с известной погрешностью определенное сопротивление.
  • формирующие сигнал в форме, удобной для хранения, преобразования, передачи. Для непосредственного восприятия информация такого рода недоступна.
  • Электроизмерительные приборы. Эти средства предназначены для представления информации в доступной наблюдателю форме. Они могут быть переносными или стационарными, аналоговыми или цифровыми, регистрирующими или сигнализирующими.
  • Электроизмерительные установки представляют собой комплексы вышеперечисленных средств и дополнительных устройств, сосредоточенные в одном месте. Установки позволяют проводить более сложные измерения (например, магнитных характеристик или удельного сопротивления), служат как поверочные или эталонные устройства.
  • Электроизмерительные системы тоже являются совокупностью различных средств. Однако, в отличие от установок, приборы для измерения электрических величин и прочие средства в составе системы рассредоточены. С помощью систем можно измерять несколько величин, хранить, обрабатывать и передавать сигналы измерительной информации.

При необходимости решения какой-либо конкретной сложной измерительной задачи формируют измерительно-вычислительные комплексы, объединяющие ряд устройств и электронно-вычислительную аппаратуру.

Характеристики измерительных средств

Устройства измерительной аппаратуры обладают определенными свойствами, важными для выполнения их непосредственных функций. К ним относятся:

  • такие как чувствительность и ее порог, диапазон измерения электрической величины, погрешность прибора, цена деления, быстродействие и др.
  • Динамические характеристики, например амплитудные (зависимость амплитуды выходного сигнала прибора от амплитуды на входе) или фазовые (зависимость фазового сдвига от частоты сигнала).
  • Эксплуатационные характеристики, отражающие меру соответствия прибора требованиям эксплуатации в определенных условиях. К ним относятся такие свойства, как достоверность показаний, надежность (работоспособность, долговечность и безотказность аппарата), ремонтопригодность, электрическая безопасность, экономичность.

Совокупность характеристик аппаратуры устанавливается соответствующими нормативно-техническими документами для каждого типа устройств.

Применяемые методы

Измерение электрических величин производится посредством различных методов, которые также можно классифицировать по следующим критериям:

  • Род физических явлений, на основе которого измерение проводится (электрические или магнитные явления).
  • Характер взаимодействия измерительного средства с объектом. В зависимости от него различают контактные и бесконтактные методы измерения электрических величин.
  • Режим проведения измерения. В соответствии с ним измерения бывают динамическими и статическими.
  • Разработаны как методы непосредственной оценки, когда искомая величина прямо определяется прибором (к примеру, амперметром), так и более точные методы (нулевые, дифференциальные, противопоставления, замещения), в которых она выявляется путем сравнения с известной величиной. В качестве приборов сравнения служат компенсаторы и электроизмерительные мосты постоянного и переменного тока.

Электроизмерительные приборы: виды и особенности

Измерение основных электрических величин требует большого разнообразия приборов. В зависимости от физического принципа, положенного в основу их работы, все они делятся на следующие группы:

  • Электромеханические приборы обязательно имеют в конструкции подвижную часть. К этой большой группе измерительных средств относятся электродинамические, ферродинамические, магнитоэлектрические, электромагнитные, электростатические, индукционные приборы. Например, магнитоэлектрический принцип, применяющийся очень широко, может быть положен в основу таких устройств, как вольтметры, амперметры, омметры, гальванометры. На индукционном принципе основаны счетчики электроэнергии, частотомеры и т. д.
  • Электронные приборы отличаются наличием дополнительных блоков: преобразователей физических величин, усилителей, преобразователей и пр. Как правило, в приборах этого типа измеряемая величина преобразуется в напряжение, и конструктивной основой их служит вольтметр. Электронные измерительные приборы применяются в качестве частотомеров, измерителей емкости, сопротивления, индуктивности, осциллографов.
  • Термоэлектрические приборы сочетают в своей конструкции измерительное устройство магнитоэлектрического типа и термопреобразователь, образуемый термопарой и нагревателем, через который протекает измеряемый ток. Приборы этого типа используются в основном при измерениях высокочастотных токов.
  • Электрохимические. Принцип их работы базируется на процессах, которые протекают на электродах либо в исследуемой среде в межэлектродном пространстве. Применяются приборы этого типа для измерения электропроводности, количества электричества и некоторых неэлектрических величин.

По функциональным особенностям различают следующие виды приборов для измерения электрических величин:

  • Показывающие (сигнализирующие) - это устройства, позволяющие производить только непосредственное считывание измерительной информации, такие как ваттметры или амперметры.
  • Регистрирующие - приборы, допускающие возможность регистрации показаний, например, электронные осциллографы.

По типу сигнала приборы делятся на аналоговые и цифровые. Если устройство вырабатывает сигнал, представляющий собой непрерывную функцию измеряемой величины, оно является аналоговым, например, вольтметр, показания которого выдаются при помощи шкалы со стрелкой. В том случае, если в устройстве автоматически вырабатывается сигнал в виде потока дискретных значений, поступающий на дисплей в численной форме, говорят о цифровом измерительном средстве.

Цифровые приборы имеют некоторые недостатки по сравнению с аналоговыми: меньшая надежность, потребность в источнике питания, более высокая стоимость. Однако их отличают и существенные преимущества, в целом делающие применение цифровых устройств более предпочтительным: удобство эксплуатации, высокая точность и помехоустойчивость, возможность универсализации, сочетания с ЭВМ и дистанционной передачи сигнала без потери точности.

Погрешности и точность приборов

Важнейшая характеристика электроизмерительного прибора - класс электрических величин, как и любых других, не может производиться без учета погрешностей технического устройства, а также дополнительных факторов (коэффициентов), влияющих на точность измерения. Предельные значения приведенных погрешностей, допускаемые для данного типа прибора, называются нормированными и выражаются в процентах. Они и определяют класс точности конкретного прибора.

Стандартные классы, которыми принято маркировать шкалы измерительных устройств, следующие: 4,0; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05. В соответствии с ними установлено разделение по назначению: приборы, принадлежащие к классам от 0,05 до 0,2, относятся к образцовым, классами 0,5 и 1,0 обладают лабораторные приборы, и, наконец, устройства классов 1,5-4,0 являются техническими.

При выборе измерительного прибора необходимо, чтобы он соответствовал по классу решаемой задаче, при этом верхний предел измерения должен быть как можно ближе к численному значению искомой величины. То есть чем большего отклонения стрелки прибора удается достичь, тем меньше будет относительная погрешность проводимого измерения. Если в распоряжении имеются только приборы низкого класса, выбирать следует такой, который обладает наименьшим рабочим диапазоном. Используя данные способы, измерения электрических величин можно провести достаточно точно. При этом также нужно учитывать тип шкалы прибора (равномерная или неравномерная, как, например, шкалы омметров).

Основные электрические величины и единицы их измерения

Чаще всего электрические измерения связаны со следующим набором величин:

  • Сила тока (или просто ток) I. Данной величиной обозначается количество электрического заряда, проходящего через сечение проводника за 1 секунду. Измерение величины электрического тока проводится в амперах (A) при помощи амперметров, авометров (тестеров, так называемых «цешек»), цифровых мультиметров, измерительных трансформаторов.
  • Количество электричества (заряд) q. Эта величина определяет, в какой мере то или иное физическое тело может являться источником электромагнитного поля. Электрический заряд измеряется в кулонах (Кл). 1 Кл (ампер-секунда) = 1 А ∙ 1 с. Приборами для измерения служат электрометры либо электронные зарядометры (кулон-метры).
  • Напряжение U. Выражает разность потенциалов (энергии зарядов), существующую между двумя различными точками электрического поля. Для данной электрической величины единицей измерения служит вольт (В). Если для того, чтобы из одной точки переместить в другую заряд в 1 кулон, поле совершает работу в 1 джоуль (то есть затрачивается соответствующая энергия), то разность потенциалов - напряжение - между этими точками составляет 1 вольт: 1 В = 1 Дж/1 Кл. Измерение величины электрического напряжения производится посредством вольтметров, цифровых либо аналоговых (тестеры) мультиметров.
  • Сопротивление R. Характеризует способность проводника препятствовать прохождению через него электрического тока. Единица сопротивления - ом. 1 Ом - это сопротивление проводника, имеющего напряжение на концах в 1 вольт, к току величиной в 1 ампер: 1 Ом = 1 В/1 А. Сопротивление прямо пропорционально сечению и длине проводника. Для измерения его используются омметры, авометры, мультиметры.
  • Электропроводность (проводимость) G - величина, обратная сопротивлению. Измеряется в сименсах (См): 1 См = 1 Ом -1 .
  • Емкость C - это мера способности проводника накапливать заряд, также одна из основных электрических величин. Единицей измерения ее служит фарад (Ф). Для конденсатора эта величина определяется как взаимная емкость обкладок и равна отношению накопленного заряда к разности потенциалов на обкладках. Емкость плоского конденсатора растет с увеличением площади обкладок и с уменьшением расстояния между ними. Если при заряде в 1 кулон на обкладках создается напряжение величиной 1 вольт, то емкость такого конденсатора будет равна 1 фараду: 1 Ф = 1 Кл/1 В. Измерение производят при помощи специальных приборов - измерителей емкости или цифровых мультиметров.
  • Мощность P - величина, отражающая скорость, с которой осуществляется передача (преобразование) электрической энергии. В качестве системной единицы мощности принят ватт (Вт; 1 Вт = 1Дж/с). Эта величина также может быть выражена через произведение напряжения и силы тока: 1 Вт = 1 В ∙ 1 А. Для цепей переменного тока различают активную (потребляемую) мощность P a , реактивную P ra (не принимает участия в работе тока) и полную мощность P. При измерениях для них используют следующие единицы: ватт, вар (расшифровывается как «вольт-ампер реактивный») и, соответственно, вольт-ампер В∙А. Размерность их одинакова, и служат они для различения указанных величин. Приборы для измерения мощности - аналоговые или цифровые ваттметры. Косвенные измерения (например, с помощью амперметра) применимы далеко не всегда. Для определения такой важной величины, как коэффициент мощности (выражается через угол фазового сдвига) применяют приборы, называемые фазометрами.
  • Частота f. Это характеристика переменного тока, показывающая количество циклов изменения его величины и направления (в общем случае) за период в 1 секунду. За единицу частоты принята обратная секунда, или герц (Гц): 1 Гц = 1 с -1 . Измеряют данную величину посредством обширного класса приборов, называемых частотомерами.

Магнитные величины

Магнетизм теснейшим образом связан с электричеством, поскольку и то, и другое представляют собой проявления единого фундаментального физического процесса - электромагнетизма. Поэтому столь же тесная связь свойственна методам и средствам измерения электрических и магнитных величин. Но есть и нюансы. Как правило, при определении последних практически проводится электрическое измерение. Магнитную величину получают косвенным путем из функционального соотношения, связывающего ее с электрической.

Эталонными величинами в данной области измерений служат магнитная индукция, напряженность поля и магнитный поток. Они могут быть преобразованы с помощью измерительной катушки прибора в ЭДС, которая и измеряется, после чего производится вычисление искомых величин.

  • Магнитный поток измеряют посредством таких приборов, как веберметры (фотогальванические, магнитоэлектрические, аналоговые электронные и цифровые) и высокочувствительные баллистические гальванометры.
  • Индукция и напряженность магнитного поля измеряются при помощи тесламетров, оснащенных преобразователями различного типа.

Измерение электрических и магнитных величин, состоящих в непосредственной взаимосвязи, позволяет решать многие научные и технические задачи, например, исследование атомного ядра и магнитного поля Солнца, Земли и планет, изучение магнитных свойств различных материалов, контроль качества и прочие.

Неэлектрические величины

Удобство электрических методов дает возможность успешно распространять их и на измерения всевозможных физических величин неэлектрического характера, таких как температура, размеры (линейные и угловые), деформация и многие другие, а также исследовать химические процессы и состав веществ.

Приборы для электрического измерения неэлектрических величин обычно представляют собой комплекс из датчика - преобразователя в какой-либо параметр цепи (напряжение, сопротивление) и электроизмерительного устройства. Существует множество типов преобразователей, благодаря которым можно измерять самые разные величины. Вот лишь несколько их примеров:

  • Реостатные датчики. В таких преобразователях при воздействии измеряемой величины (например, при изменении уровня жидкости или же ее объема) перемещается движок реостата, изменяя тем самым сопротивление.
  • Терморезисторы. Сопротивление датчика в аппаратах этого типа изменяется под воздействием температуры. Применяются для измерения скорости газового потока, температуры, для определения состава газовых смесей.
  • Тензосопротивления позволяют проводить измерения деформации проволоки.
  • Фотодатчики, преобразующие изменение освещенности, температуры либо перемещение в измеряемый затем фототок.
  • Емкостные преобразователи, используемые как датчики химического состава воздуха, перемещения, влажности, давления.
  • работают по принципу возникновения ЭДС в некоторых кристаллических материалах при механическом воздействии на них.
  • Индукционные датчики основаны на преобразовании таких величин, как скорость или ускорение, в индуктированную ЭДС.

Развитие электроизмерительных средств и методов

Большое многообразие средств измерения электрических величин обусловлено множеством различных явлений, в которых эти параметры играют существенную роль. Электрические процессы и явления имеют чрезвычайно широкий диапазон использования во всех отраслях - нельзя указать такую область человеческой деятельности, где они не находили бы применения. Этим и определяется все более расширяющийся круг задач электрических измерений физических величин. Непрерывно растет разнообразие и совершенствование средств и методов решения этих задач. Особенно быстро и успешно развивается такое направление измерительной техники, как измерение неэлектрических величин электрическими методами.

Современная электроизмерительная техника развивается в направлении повышения точности, помехоустойчивости и быстродействия, а также все большей автоматизации измерительного процесса и обработки его результатов. Средства измерений прошли путь от простейших электромеханических приспособлений до электронных и цифровых приборов, и далее до новейших измерительно-вычислительных комплексов с использованием микропроцессорной техники. При этом повышение роли программной составляющей измерительных устройств является, очевидно, основной тенденцией развития.

При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

Измерить электрическую, магнитную или какую-либо иную величину - это значит сравнить ее с другой однородной величиной, принятой за единицу.

В этой статье рассмотрена классификация измерений, наиболее важная для . К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

Виды электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X -значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F(Xl, Х2 ... Хn ), где Y - искомое значение измеряемой величины; Х1 , Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20

Методы электрических измерений

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

Примером может служить измерение длины . В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .

Содержание статьи

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ, измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств – измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).

ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.

Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

ЦИФРОВЫЕ ПРИБОРЫ

Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.

Аналого-цифровые преобразователи.

Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от ~10мкс до ~1 мс. Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

Методы дискретизации.

Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала («в реальном времени»), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.

Цифровые вольтметры и мультиметры.

Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. «Полуцелый» знак (разряд) – это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1–2 В может показывать напряжение до 1,999 В.

Измерители полных сопротивлений.

Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.

АНАЛОГОВЫЕ ПРИБОРЫ

Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример – автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.

Магнитоэлектрические приборы.

В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ 5 до 25ґ 35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части.

Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.

Гальванометры.

К магнитоэлектрическим приборам относятся и гальванометры – высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

РЕГИСТРИРУЮЩИЕ ПРИБОРЫ

Регистрирующие приборы записывают «историю» изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами – в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.

ИЗМЕРИТЕЛЬНЫЕ МОСТЫ

Измерительный мост – это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой – нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.

Двойной измерительный мост постоянного тока.

К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р 1 , р 2 резистора R s и р 3 , p 4 резистора R x на рис. 2) к току через их токовые зажимы (с 1 , с 2 и с 3 , с 4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с 2 и с 3 . Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M /m = N /n . Затем, изменяя сопротивление R s , сводят разбаланс к нулю и находят

R x = R s (N /M ).

Измерительные мосты переменного тока.

Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50–60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла – Вина.

Измерительный мост Максвелла – Вина.

Такой измерительный мост позволяет сравнивать эталоны индуктивности (L ) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: L x = R 2 R 3 C 1 и R x = (R 2 R 3) /R 1 (рис. 3). Мост уравновешивается даже в случае «нечистого» источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина L x не зависит от частоты.

Трансформаторный измерительный мост.

Одно из преимуществ измерительных мостов переменного тока – простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.

Заземление и экранирование.

Типичные нуль-детекторы.

В измерительных мостах переменного тока чаще всего применяются нуль-детекторы двух типов. Нуль-детектор одного из них представляет собой резонансный усилитель с аналоговым выходным прибором, показывающим уровень сигнала. Нуль-детектор другого типа – это фазочувствительный детектор, который разделяет сигнал разбаланса на активную и реактивную составляющие и пригоден в тех случаях, когда требуется точно уравновешивать только одну из неизвестных составляющих (скажем, индуктивность L , но не сопротивление R катушки индуктивности).

ИЗМЕРЕНИЕ СИГНАЛОВ ПЕРЕМЕННОГО ТОКА

В случае изменяющихся во времени сигналов переменного тока обычно требуется измерять некоторые их характеристики, связанные с мгновенными значениями сигнала. Чаще всего желательно знать среднеквадратические (эффективные) значения электрических величин переменного тока, поскольку мощности нагревания при напряжении 1 В постоянного тока соответствует мощность нагревания при напряжении 1 В (эфф.) переменного тока. Наряду с этим могут представлять интерес и другие величины, например максимальное или среднее абсолютное значение. Среднеквадратическое (эффективное) значение напряжения (или силы) переменного тока определяется как корень квадратный из усредненного по времени квадрата напряжения (или силы тока):

где Т – период сигнала Y (t ). Максимальное значение Y макс – это наибольшее мгновенное значение сигнала, а среднее абсолютное значение Y AA – абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Y эфф = 0,707Y макс и Y AA = 0,637Y макс.

Измерение напряжения и силы переменного тока.

Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы – на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.

Электронное умножение.

Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.

Дискретизация сигнала.

Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01–0,1%.

Тепловые электроизмерительные приборы.

Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5–1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц.

На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока V ас на выходе термопары преобразователя ТС 1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС 2 , при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.

С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.

Измерение мощности и энергии переменного тока.

Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj , где Е и I – эффективные значения напряжения и тока, а j – фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj , называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока.

С экономической точки зрения, самая важная электрическая величина – энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

Если время (t 1 - t 2) измеряется в секундах, напряжение е – в вольтах, а ток i – в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧ с). Если же время измеряется в часах, то энергия – в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВтЧ ч = 1000 ВтЧ ч).

Счетчики электроэнергии с разделением времени.

В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал - Y ) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.

Дискретизирующие ваттметры и счетчики электроэнергии.

Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e (k ), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i (k ) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:

Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.

Индукционные счетчики электроэнергии.

Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.

Литература:

Атамалян Э.Г. и др. Приборы и методы измерения электрических величин . М., 1982
Малиновский В.Н. и др. Электрические измерения . М., 1985
Авдеев Б.Я. и др. Основы метрологии и электрические измерения . Л., 1987