Электрическое поле. Задачи на тему Напряженность электрического поля

Сборник задач взят из задачника Чертова, Воробьева за 1988 г .

1 Электрическое поле создано двумя точечными зарядами Q1= 30 нКл Q2=-10 нКл. Расстояние между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов
РЕШЕНИЕ

2 Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда 0,4 и 0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.
РЕШЕНИЕ

3 На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь каждой пластины конденсатора равна 100 см2. Определить силу, с которой притягиваются пластины. Поле между пластинами считать однородным
РЕШЕНИЕ

4 Электрическое поле создано бесконечной плоскостью, заряженной с поверхностной плотностью 400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью τ=100 нКл/м. На расстоянии 10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости
РЕШЕНИЕ

5 Точечный заряд Q=25 нКл находится в поле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью 2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см
РЕШЕНИЕ

6 Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью 30 нКл/м. На расстоянии a=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол β=30° с линией напряженности, проходящей через середину площадки.
РЕШЕНИЕ

7 Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и Q2=-0,5 нКл. Найти напряженность поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см и r3=15 см. Построить график E(r)
РЕШЕНИЕ

14.1 Определить напряженность электрического поля, создаваемого точечным зарядом Q=10 нКл на расстоянии r=10 см от него. Диэлектрик масло.
РЕШЕНИЕ

14.2 Расстояние между двумя точечными зарядами Q1=+8 нКл и Q2=-5,3 нКл равно 40 см. Вычислить напряженность поля в точке, лежащей посередине между зарядами. Чему равна напряженность, если второй заряд будет положительным?
РЕШЕНИЕ

14.3 Электрическое поле создано двумя точечными зарядами Q1=10 нКл и Q2=-20 нКл, находящимися на расстоянии d=20 см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на r1=30 см и от второго на r2=50 см.
РЕШЕНИЕ

14.4 Расстояние между двумя точечными положительными зарядами Q1=9Q и Q2=Q равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?
РЕШЕНИЕ

14.5 Два точечных заряда Q1=2Q и Q2=-Q находятся на расстоянии d друг от друга. Найти положение точки на прямой, проходящей через эти заряды, напряженность E поля в которой равна нулю
РЕШЕНИЕ

14.6 Электрическое поле создано двумя точечными зарядами Q1=40 нКл и Q2=-10 нКл, находящимися на расстоянии 10 см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на r1=12 см и от второго на r2=6 см.
РЕШЕНИЕ

14.7 Тонкое кольцо радиусом R=8 см несет заряд, равномерно распределенный с линейной плотностью т=10 нКл/м. Какова напряженность электрического поля в точке, равноудаленной от всех точек кольца на расстояние r= 10 см?
РЕШЕНИЕ

14.8 Полусфера несет заряд, равномерно распределенный с поверхностной плотностью 1 нКл/м2. Найти напряженность электрического поля в геометрическом центре полусферы.
РЕШЕНИЕ

14.9 На металлической сфере радиусом R=10 см находится заряд Q=1 нКл. Определить напряженность электрического поля в следующих точках: на расстоянии r1=8 см от центра сферы; на ее поверхности; на расстоянии r2=15 см от центра сферы. Построить график зависимости E от r.
РЕШЕНИЕ

14.10 Две концентрические металлические заряженные сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и Q2=-0,5 нКл. Найти напряженности E поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см, r3=15 см. Построить график зависимости E(r).
РЕШЕНИЕ

14.11 Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность заряда, если напряженность поля на расстоянии a=0,5 м от проволоки против ее середины равна 200 В/м.
РЕШЕНИЕ

14.12 Расстояние между двумя длинными тонкими проволоками, расположенными параллельно друг другу, равно 16 см. Проволоки равномерно заряжены разноименными зарядами с линейной плотностью т=150 мкКл/м. Какова напряженность поля в точке, удаленной на r=10 см как от первой, так и от второй проволоки?
РЕШЕНИЕ

14.13 Прямой металлический стержень диаметром d=5 см и длиной 4 м несет равномерно распределенный по его поверхности заряд Q=500 нКл. Определить напряженность E поля в точке, находящейся против середины стержня на расстоянии a=1 см от его поверхности.
РЕШЕНИЕ

14.14 Бесконечно длинная тонкостенная металлическая трубка радиусом R=2 см несет равномерно распределенный по поверхности заряд 1 нКл/м2. Определить напряженность E поля в точках, отстоящих от оси трубки на расстояниях r1=1 см, r2=3 см. Построить график зависимости E(r).
РЕШЕНИЕ

14.15 Две длинные тонкостенные коаксиальные трубки радиусами R1=2 см и R2=4 см несут заряды, равномерно распределенные по длине с линейными плотностями τ1=1 τ2=-0,5 нКл/м. Пространство между трубками заполнено эбонитом. Определить напряженность E поля в точках, находящихся на расстояниях r1= 1 см, r2=3 см, r3=5 см от оси трубок. Построить график зависимости E от r.
РЕШЕНИЕ

14.16 На отрезке тонкого прямого проводника длиной 10 см равномерно распределен заряд с линейной плотностью τ=3 мкКл/м. Вычислить напряженность E, создаваемую этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.
РЕШЕНИЕ

14.17 Тонкий стержень длиной l=12 см заряжен с линейной плотностью τ=200 нКл/м. Найти напряженность электрического поля в точке, находящейся на расстоянии r=5 см от стержня против его середины.
РЕШЕНИЕ

14.18 Тонкий стержень длиной l=10 см заряжен с линейной плотностью τ=400 нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре к стержню, проведенном через один из его концов, на расстоянии r=8 см от этого конца.
РЕШЕНИЕ

14.19 Электрическое поле создано зарядом тонкого равномерно заряженного стержня, изогнутого по трем сторонам квадрата. Длина стороны квадрата равна 20 см. Линейная плотность т зарядов равна 500 нКл/м. Вычислить напряженность E поля в точке A.
РЕШЕНИЕ

14.20 Два прямых тонких стержня длиной 12 см и 16 см каждый заряжены с линейной плотностью т=400 нКл/м. Стержни образуют прямой угол. Найти напряженность E поля в точке A (рис. 14.10).
РЕШЕНИЕ

14.21 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд 1 нКл/м2. Определить напряженность E поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
РЕШЕНИЕ

14.22 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями 1 нКл/м2 и 3 нКл/м2. Определить напряженность E поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
РЕШЕНИЕ

14.23 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями 2 нКл/м2 и -5 нКл/м2. Определить напряженность поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам
РЕШЕНИЕ

14.24 Две прямоугольные одинаковые параллельные пластины, длины сторон которых a=10 см и b = 15 см, расположены на малом по сравнению с линейными размерами пластин расстоянии друг от друга. На одной из пластин равномерно распределен заряд Q1 =50 нКл, на другой заряд Q2= 150 нКл. Определить напряженность электрического поля между пластинами
РЕШЕНИЕ

14.25 Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью 10 нКл/м2 и -30 нКл/м2. Определить силу взаимодействия между пластинами, приходящуюся на площадь, равную 1 м2.
РЕШЕНИЕ

14.26 Две круглые параллельные пластины радиусом R=10 см находятся на малом по сравнению с радиусом расстоянии друг от друга. Пластинам сообщили одинаковые по модулю, но противоположные по знаку заряды Q1=Q2=Q. Определить этот заряд, если пластины притягиваются с силой F=2 мН. Считать, что заряды распределяются по пластинам равномерно.
РЕШЕНИЕ

14.27 Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью 10 нКл/м3. Определить напряженность и смещение электрического поля в точках на расстоянии r1=3 см от центра сферы; на поверхности сферы; на расстоянии r2=10 см от центра сферы. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ

14.28 Полый стеклянный шар несет равномерно распределенный по объему заряд. Его объемная плотность 100 нКл/м3. Внутренний радиус R1 шара равен 5 см, наружный R2=10 см. Вычислить напряженность E и смещение D электрического поля в точках, отстоящих от центра сферы на расстоянии r1=3 см; r2=6 см; r3=12 см. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ

14.29 Длинный парафиновый цилиндр радиусом R=2 см несет заряд, равномерно распределенный по объему с объемной плотностью 10 нКл/м3. Определить напряженность E и смещение D электрического поля в точках, находящихся от оси цилиндра на расстоянии r1=1 см; r2=3 см. Обе точки равноудалены от концов цилиндра. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ

14.30 Большая плоская пластина толщиной d=1 см несет заряд, равномерно распределенный по объему с объемной плотностью 100 нКл/м3. Найти напряженность электрического поля вблизи центральной части пластины вне ее, на малом расстоянии от поверхности.
РЕШЕНИЕ

14.31 Лист стекла толщиной d=2 см равномерно заряжен с объемной плотностью 1 мкКл/м3. Определить напряженность E и смещение D электрического поля в точках A, B, C. Построить график зависимости E(x) ось x координат перпендикулярна поверхности листа стекла
РЕШЕНИЕ

14.32 На некотором расстоянии a=5 см от бесконечной проводящей плоскости находится точечный заряд Q=1 нКл. Определить силу, действующую на заряд со стороны индуцированного им заряда на плоскости.
РЕШЕНИЕ

14.33 На расстоянии a=10 см от бесконечной проводящей плоскости находится точечный заряд Q=20 нКл. Вычислить напряженность электрического поля в точке, удаленной от плоскости на расстояние а и от заряда Q на расстояние 2а.
РЕШЕНИЕ

14.34 Точечный заряд Q=40 нКл находится на расстоянии 30 см от бесконечной проводящей плоскости. Какова напряженность E электрического поля в точке A (рис. 14.12)?
РЕШЕНИЕ

14.35 Большая металлическая пластина расположена в вертикальной плоскости и соединена с землей. На расстоянии a=10 см от пластины находится неподвижная точка, к которой на нити длиной ℓ=12 см подвешен маленький шарик массой m=0,1 г. При сообщении шарику заряда Q он притянулся к пластине, в результате чего нить отклонилась от вертикали на угол α=30°. Найти заряд Q шарика.
РЕШЕНИЕ

14.36 Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью τ=2 мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом по сравнению с ее длиной, находится точечный заряд Q=0,1 мкКл. Определить силу F, действующую на заряд.
РЕШЕНИЕ

14.37 Большая металлическая пластина несет равномерно распределенный по поверхности заряд 10 нКл/м2. На малом расстоянии от пластины находится точечный заряд Q=100 нКл. Найти силу F, действующую на заряд.
РЕШЕНИЕ

14.38 Точечный заряд Q=1 мкКл находится вблизи большой равномерно заряженной пластины против ее середины. Вычислить поверхностную плотность заряда пластины, если на точечный заряд действует сила F=60 мН.
РЕШЕНИЕ

14.39 Между пластинами плоского конденсатора находится точечный заряд Q=30 нКл. Поле конденсатора действует на заряд с силой F1=10 мН. Определить силу F2 взаимного притяжения пластин, если площадь 5 каждой пластины равна 100 см2.
РЕШЕНИЕ

14.40 Параллельно бесконечной пластине, несущей заряд, равномерно распределенный по площади с поверхностной плотностью 20 нКл/м2. расположена тонкая нить с равномерно распределенным по длине зарядом (т=0,4 нКл/м). Определить силу F, действующую на отрезок нити длиной ℓ=1 м.
РЕШЕНИЕ

14.41 Две одинаковые круглые пластины площадью по 100 см2 каждая расположены параллельно друг другу. Заряд Q1 одной пластины равен +100 нКл, другой Q2=-100 нКл. Определить силу F взаимного притяжения пластин в двух случаях, когда расстояние между ними: 1) r1=2 см; 2) r2=10 м.
РЕШЕНИЕ

14.42 Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление производят пластины на стекло перед пробоем, если напряженность E электрического поля перед пробоем равна 30 МВ/м?
РЕШЕНИЕ

14.43 Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями τ1=0,1 мкКл/м и τ2=0,2 мкКл/м. Определить силу взаимодействия, приходящуюся на отрезок нити длиной 1 м. Расстояние между нитями равно 10 см.
РЕШЕНИЕ

14.44 Прямая, бесконечная, тонкая нить несет равномерно распределенный по длине заряд 1 мкКл/м. В плоскости, содержащей нить, перпендикулярно нити находится тонкий стержень длиной l. Ближайший к нити конец стержня находится на расстоянии l от нее. Определить силу, действующую на стержень, если он заряжен с линейной плотностью τ2=0,1 мкКл/м.
РЕШЕНИЕ

14.45 Металлический шар имеет заряд Q1=0,1 мкКл. На расстоянии, равном радиусу шара, от его поверхности находится конец нити, вытянутой вдоль силовой линии. Нить несет равномерно распределенный по длине заряд Q2= 10 нКл. Длина нити равна радиусу шара. Определить силу F, действующую на нить, если радиус шара равен 10 см.
РЕШЕНИЕ

14.46 Соосно с бесконечной прямой равномерно заряженной линией 0,5 мкКл/м расположено полукольцо с равномерно распределенным зарядом 20 нКл/м. Определить силу F взаимодействия нити с полукольцом.
РЕШЕНИЕ

14.47 Бесконечная прямая нить несет равномерно распределенный заряд с линейной плотностью τ1=1 мкКл/м. Соосно с нитью расположено тонкое кольцо, заряженное равномерно с линейной плотностью τ2=10 нКл/м. Определить силу, растягивающую кольцо. Взаимодействием между отдельными элементами кольца пренебречь.
РЕШЕНИЕ

14.48 Две бесконечно длинные равномерно заряженные тонкие нити τ1=τ2=τ=1 мкКл/м скрещены под прямым углом друг к другу. Определить силу их взаимодействия.
РЕШЕНИЕ

14.49 Бесконечная плоскость несет заряд, равномерно распределенный с поверхностной плотностью 1 мкКл/м2. На некотором расстоянии от плоскости параллельно ей расположен круг радиусом r = 10 см. Вычислить поток ФЕ вектора напряженности через этот круг.
РЕШЕНИЕ

14.50 Плоская квадратная пластина со стороной длиной a, равной 10 см, находится на некотором расстоянии от бесконечной равномерно заряженной 1 мкКл/м2 плоскости. Плоскость пластины составляет угол 30 с линиями поля. Найти поток электрического смещения через эту пластину.
РЕШЕНИЕ

14.51 В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток вектора напряженности через часть сферической поверхности площадью S=20 см2
РЕШЕНИЕ

14.52 В вершине конуса с телесным углом 0,5 ср находится точечный заряд Q=30 нКл. Вычислить поток электрического смещения через площадку, ограниченную линией пересечения поверхности конуса с любой другой поверхностью.
РЕШЕНИЕ

14.53 Прямоугольная плоская площадка со сторонами, длины а и b которых равны 3 и 2 см соответственно, находится на расстоянии R= 1 м от точечного заряда Q=1 мкКл. Площадка ориентирована так, что линии напряженности составляют угол 30 с ее поверхностью. Найти поток вектора напряженности через площадку
РЕШЕНИЕ

14.54 Электрическое поле создано точечным зарядом Q=0,1 мкКл. Определить поток электрического смещения через круглую площадку радиусом R =30 см. Заряд равноудален от краев площадки и находится на расстоянии a=40 см от ее центра
РЕШЕНИЕ

14.55 Заряд Q=1 мкКл равноудален от краев круглой площадки на расстоянии r=20 см. Радиус площадки равен 12 см. Определить среднее значение напряженности E в пределах площадки
РЕШЕНИЕ

14.56 Электрическое поле создано бесконечной прямой равномерно заряженной линией 0,3 мкКл/м. Определить поток электрического смещения через прямоугольную площадку, две большие стороны которой параллельны заряженной линии и одинаково удалены от нее на расстояние r=20 см. Стороны площадки имеют размеры a=20 см, b=40 см

В большинстве конденсаторов между пластинами проложен изолирующий материал (диэлектрик), например, бумага или пластмассовая пленка. Этим достигается сразу несколько целей. Во-первых, диэлектрики лучше противостоят электрическому пробою, чем воздух, и к конденсатору можно приложить более высокое напряжение без утечки заряда через зазор между обкладками. Во-вторых, при наличии прокладки из диэлектрика пластины можно расположить ближе друг к другу без опасения, что они могут соприкасаться. Наконец, экспериментально обнаружено, что при заполнении пространства между пластинами диэлектриком его емкость увеличивается в К раз, т.е.

С = КС 0 , (25.7)

где С 0 - емкость, отвечающая вакууму между обкладками, а С - емкость в случае, когда пространство между пластинами заполнено диэлектриком. Множитель К называют относительной диэлектрической проницаемостью; значения К для ряда диэлектриков приведены в табл. 25.1.
Обратите внимание на то, что для воздуха при давлении 1 атм К = 1,0006, и поэтому емкость конденсатора с воздушным зазором очень мало отличается от емкости этого конденсатора в вакууме.

Для плоского конденсатора:

С = Кε 0 A/d - [плоский конденсатор] (25.8),

когда пространство между пластинами целиком заполнено диэлектриком с диэлектрической проницаемостью К . Величина Кε 0 так часто встречается в формулах, что нередко вводят величину

ε = Кε 0 , (25.9)

которую называют абсолютной диэлектрической проницаемостью. Тогда емкость плоского конденсатора принимает вид

C = εA/d

Напомним, что ε 0 - это электрическая постоянная. Плотность энергии, запасенной электрическим полем Е

Влияние диэлектрика на емкость впервые всесторонне исследовал Фарадей. Он обнаружил, что, когда пространство между пластинами конденсатора заполнено диэлектриком, на пластинах при том же напряжении накапливается несколько больший заряд, нежели когда между пластинами воздух. Иначе говоря, если заряд на каждой пластине конденсатора с воздушным промежутком равен Q 0 , то после введения диэлектрика и подключения конденсатора к батарее с прежним напряжением V 0 заряд каждой из пластин увеличится до

Q = KQ 0 [при постоянном напряжении] .

Это соответствует формуле (25.7), поскольку после введения диэлектрика емкость равна

C = Q/V 0 = KQ 0 /V 0 = KC 0

где С 0 = Q 0 /V 0 - емкость в отсутствие диэлектрика.

Рассмотрим теперь несколько иной случай (выше мы, вводя диэлектрик, поддерживали напряжение постоянным). Пусть пластины конденсатора, подключенного к батарее с напряжением V 0 , приобретают заряд

Q 0 = CV 0 .

Прежде чем ввести диэлектрик, отключим конденсатор от батареи. После введения диэлектрика (который заполняет все пространство между пластинами) заряд Q 0 на каждой из пластин не изменится. В этом случае мы обнаружим, что разность потенциалов между пластинами уменьшится в К раз:

V = V 0 /K

Емкость же вновь будет равна

Оба этих результата согласуются с выражением (25.7).

Электрическое поле внутри диэлектрика также изменяется. При отсутствии диэлектрика между пластинами напряженность электрического поля между обкладками плоского конденсатора определяется формулой (24.3):

Е 0 = V 0 /d ,

где V 0 - разность потенциалов между пластинами, a d - расстояние между ними.
Если конденсатор изолирован, так что заряд на пластинах после введения диэлектрика не изменяется, то разность потенциалов упадет до значения V = V 0 /K . Напряженность электрического поля в диэлектрике теперь будет равна

E = V/d = V 0 /Kd или Е = E 0 /К [в диэлектрике]. (25.10)

Таким образом, напряженность электрического поля внутри диэлектрика также ослабляется в К раз. Электрическое поле внутри диэлектрика (изолятора) ослабляется, но, не до нуля, как в случае проводника.

Происходящее в диэлектрике можно объяснить с молекулярной точки зрения. Рассмотрим конденсатор, обкладки которого разделены воздушным "промежутком. На одной обкладке имеется заряд +Q , на другой заряд -Q (рис. 25.7, а).

Конденсатор изолирован (не подключен к батарее). Разность потенциалов между пластинами V 0 определяется выражением (25.1): Q = C 0 V 0 . (Индекс 0 соответствует воздуху между пластинами.) Введем теперь между пластинами диэлектрик (рис. 25.7, b). Молекулы диэлектрика могут быть полярными - иначе говоря, они могут обладать постоянным дипольным моментом, будучи нейтральными. В электрическом поле возникнет вращательный момент, который будет стремиться развернуть диполи параллельно полю (рис. 25.7, b); тепловое движение препятствует идеальной ориентации всех молекул, однако, чем сильнее поле, тем выше будет степень выстроенности молекул. Даже если молекулы не полярны, в электрическом поле между обкладками у них произойдет разделение заряда, и молекулы приобретут индуцированный (наведенный) дипольный момент: электроны, не отрываясь от молекулы, сместятся в сторону положительной обкладки. Поэтому картина всегда будет такой, как показано на рис. 25.7, b. В конечном итоге все выглядит так, как если бы на обращенной к положительной обкладке внешней стороне диэлектрика имелся результирующий отрицательный заряд, а на противоположной - положительный (рис. 25.7, c). Из-за появления на диэлектрике этого индуцированного заряда часть электрических силовых линий не пройдет сквозь диэлектрик, а будет заканчиваться (или начинаться) на зарядах, наведенных на его поверхности. Соответственно напряженность электрического поля внутри диэлектрика окажется меньше, чем в воздухе.

Можно представить себе эту картину и по-иному (рис. 25.7, d). Напряженность электрического поля внутри диэлектрика представляет собой векторную сумму напряженности поля Е 0 , создаваемого «свободными» зарядами на обкладках, и напряженности поля Е инд , создаваемого зарядами, индуцированными в диэлектрике; поскольку эти поля направлены в противоположные стороны, результирующая напряженность электрического поля внутри диэлектрика Е 0 - Е инд будет меньше Е 0 . Точное соотношение дается формулой (25.10):

Из соображений симметрии ясно, что, если размеры пластин велики по сравнению с расстоянием между ними, заряд, индуцированный на поверхности диэлектрика, не зависит от того, заполняет ли диэлектрик все пространство между пластинами или нет, если только его поверхности параллельны обкладкам. Формула (25.10) справедлива и в этом случае, хотя равенство V = V 0 /K уже не верно (почему?). Электрическое поле между двумя параллельными пластинами связано с поверхностной плотностью заряда σ выражением

Е = σ/е 0 (разд. 23.3).

Таким образом, где σ = Q/A - поверхностная плотность заряда на обкладке, а Q - полный заряд проводника, называемый часто свободным зарядом (поскольку в проводнике заряды могут свободно перемещаться). Аналогично мы определим поверхностную плотность индуцированного заряда σ инд

Е инд = σ инд /ε 0

где E инд - напряженность электрического поля, создаваемого индуцированным зарядом Q инд = σ инд A на поверхности диэлектрика (рис. 25.7, г); Q инд называют обычно связанным зарядом (так как в диэлектрике (изоляторе) заряды не могут свободно перемещаться). Поскольку, как показано выше, Е инд = Е 0 (1 - 1/К) , получаем

Так как К больше 1, индуцированный на диэлектрике заряд всегда меньше заряда на обкладках конденсатора.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

Понятия электрического поля аналогичны понятиям гравитационного поля. Если поместить пробный заряд на расстоянииот источника поля – заряда, то действующая насо сторонысила будет равна

. (2.12)

Разделив
на, мы получим величину, характеризующую:

. (2.13)

Эта новая величина, равная силе, действующей на единичный заряд, называется напряженностью электрического поля , создаваемого источником. Обозначимчерез. Тогда напряженность электрического поля однородного сферического зарядана расстоянии от него

(2.14)

Разумеется, величина, характеризующая электрическое поле, является вектором. Направление условно выбирается вдоль направления силы, которая действует в поле на положительный пробный заряд. Поэтому вектор напряженности поля, созданного положительным зарядом, направлен от источника поля, а поля, созданного отрицательным зарядом, – к источнику (рис.2.10).

Размерность равна

[]=ед. СГСЭ заряда/см 2 =

Ед. СГСЭ потенциала/см=

Дин/ед. СГСЭ заряда.

Если ввести в это электрическое поле пробный заряд , то на него будет действовать сила

. (2.15)

Вектор напряженности электрического поля подчиняется принципу суперпозиции: полный вектор

где
- векторы напряженности полей отдельных зарядов в данной точке, вычисленные независимо для каждого из зарядов. Гравитационное и электрическое поля независимы друг от друга. Эти поля могут сосуществовать в данной точке пространства, и одно из полей ни в коей мере не влияет на другое. Суммарная сила, действующая на пробную частицу, обладающую и массой и зарядом, есть векторная сумма двух сили, но не имеет смысла суммировать векторыи, поскольку они имеют разную размерность, т.е. несоизмеримы. Измеримы, а потому и имеют физический смысл лишь силы.

Потенциальная энергия заряда , находящегося на расстоянииот другого заряда (назовем его источником поля)равна

. (2.17)

Разделим это выражение на и назовем новую величинуэлектрическим потенциалом
:

. (2.18)

есть потенциальная энергия единицы заряда и имеет размерность

[
]=ед. СГСЭ заряда/см=

Ед. СГСЭ потенциала

Эрг/ ед. СГСЭ заряда.

Электрический потенциал удовлетворяет принципу суперпозиции: полный потенциал

Из классической теории известно, что работа по перемещению заряда из одной точки в другую в электростатическом поле равна разности потенциальных энергий
в этих двух точках. Соответствующая работа, необходимая для перемещения между этими точками единичного заряда, равна изменению потенциала
.

, (2.20)

где есть разность потенциалов илинапряжение между двумя точками.

Единицы измерения различных электрических величин представлены в таблице 2.1.

Единицы измерения электрических величин - Таблица 2.1

Величина

Единица в системе СГСЭ

Единица в системе СИ

ньютон (Н)

ед. СГСЭ заряда

кулон (Кл)

ед. СГСЭ потенциала/см

вольт/метр (В/м)

ед. СГСЭ потенциала

1 Н=10 5 дин; 1 ед. СГСЭ потенциала=300В;

1 КЛ=3·10 9 ед. СГСЭ заряда

Полученные выше выражения для напряженностей, сил и потенциалов как гравитационного, так и электрического полей справедливы в случаях, когда массы или заряды источников этих полей распределены по сфере либо являются точечными, т.е. имеют бесконечно малые размеры.

Однако реальные физические тела не имеют правильной сферической формы и не являются точечными. Поэтому полученные выше соотношения для них не подходят. Однако благодаря принципу суперпозиции полей любое протяженное тело можно рассматривать как совокупность большого числа «точечных» тел и вычислять поля суммированием вкладов от всех них.

Пробная масса в гравитационном поле всегда испытывает силу притяжения к источнику этого поля, потому силовые линии поля тяготения всегда направлены к источнику. Электрический пробный заряд может либо отталкиваться, либо притягиваться к заряду – источнику поля в зависимости от знаков обоих зарядов. Условились выбирать направление силовых линий электрического поля таким, чтобы оно совпадало с направлением силы, действующей при любом знаке заряда источника на положительный пробный заряд. Силовые линии в случае положительно заряженного источника поля направлены по радиусам от него, а в случае отрицательно заряженного источника – по радиусам к нему. Это соглашение совпадает с тем, что принято для вектора напряженности электрического поля.

Куда тянутся силовые линии? Если бы мы располагали изолированным зарядом, то силовые линии в виде прямых уходили бы в бесконечность. Но существование изолированного заряда физически невозможно. Вся Вселенная в целом состоит из одинакового числа положительных и отрицательных зарядов и поэтому электрически нейтральна. Отдельные тела могут быть заряжены, но это достигается пространственным разделением положительных и отрицательных зарядов в первоначально нейтральных телах.

Рассмотрим случай двух тел с равными и разноименными зарядами. Как обычно, можно построить картину силовых линий, измерив или вычислив величину и направление силы, действующей на положительно заряженное пробное тело. Силовые линии при этом исходят из тела с положительным зарядом и по плавным кривым входят в отрицательно заряженное тело. Следовательно, электрические силовые линии начинаются на положительных и оканчиваются на отрицательных зарядах. В этом заключается один из важнейших результатов теоретической электростатики. Он отличается от случая гравитационного поля, где нет определенных точек, где силовые линии начинались бы, и вместе с тем они простираются до бесконечности.

Форму силовых линий для различных геометрических конфигураций можно определить различными способами, дающими наглядные изображения полей. Например, в масле взвешивают пыльцу растений, а затем эту взвесь заливают вокруг изучаемой системы зарядов. Электрическое поле вызывает разделение зарядов на частичках. Один конец частички становится отрицательно, а другой – положительно заряженным, но в целом частичка остается электрически нейтральной. Такое явление называется электрической поляризацией. Поляризованные частички пыльцы ориентируются вдоль силовых линий, делая тем самым видимой их форму. Ряд конфигураций, полученных таким способом, показан на рис.2.11.

При изучении рис. 2.11,а видно, что картина силовых линий поля двух одинаково заряженных тел такая же, как для случая двух одинаковых масс (рис.2.7). Рис.2.11 иллюстрирует два общих результата.

1. Электрическое поле внутри сплошного или полого проводника, по которому не течет ток, равно нулю (рис.2.11,в и г). Рассмотрим вначале сплошной проводник.

Если внутрь такого проводника внести некоторый заряд и если заряды могут свободно перемешаться, то вследствие взаимного отталкивания они разбегутся к поверхности. Если этот поверхностный заряд создаст поле внутри проводника, то оно заставит двигаться электроны проводимости и тогда появится электрический ток. Но это находится в противоречии со сделанным допущением, что в проводнике нет тока.

Теперь рассмотрим полый проводник в виде шара. Если шар зарядить, то заряд равномерно распределится по его поверхности. На пробный заряд, помещенный в центре шара, сила действовать не будет. В этой точке результирующая сила и напряженность поля равны нулю. Однако, что можно сказать о поле в других точках полости? Рассмотрим случай, представленный рис. 2.12.

Определим результирующую силу, действующую на пробный заряд в точке .

Рис.2.11. Силовые линии электрического поля различных заряженных тел: а – два одноименных заряда; б – два разноименных заряда; в – заряженное кольцо; г – заряженный проводник произвольной формы; д – заряженная пластина; е – пара разноименно заряженных пластин

Построим два концентрических конуса, направленных в противоположные стороны с общей вершиной в точке . Эти конусы вырезают площадки на противоположных сторонах сферы. Поскольку заряд распределен по поверхности сферы равномерно, сила, действующая на пробный заряд от каждого из вырезанных сегментов шара, пропорциональна площади сегмента. Обе силы направлены противоположно друг другу. Но сегмент с большей площадью отстоит от точкидальше, чем сегмент с меньшей площадью. Увеличение силы, действующей на пробный заряд, с ростом площади сегмента (пропорционально) компенсируется уменьшением её из-за большей удаленности сегмента (пропорционально
). В результате обе силы оказываются равными так, что результирующая сила равна нулю. Эту аргументацию можно распространить и на остальную поверхность сферы. В результате оказывается, что на пробный заряд не будет действовать сила. Точно такой же вывод получается и для всех прочих точек внутри шара. Следовательно, электрическое поле внутри сферической оболочки отсутствует. Применяя более сложный математический метод, можно получить такой же результат не только для сферы, но и для любой другой замкнутой поверхности.

Билет №19. Электрическое поле: напряженность электрического поля, лини напряженности электрического поля, напряженность электрического поля заряженной плоскости, сферы, шара, напряженность электрического поля между разноименно заряженными пластинами.

Электрическое поле - особый вид материи, существующий вокруг заряженных тел и проявляющий себя по взаимодействию с другими заряженными телами.

Свойства:

    Распространяется до бесконечности С расстоянием ослабевает Не обнаруживается органами чувств человека

Напряженность электрического поля (E) –

Силовая характеристика электрического поля;

Физическая величина, равная отношению силы, с которой электрическое поле действует на точечный электрический заряд, к значению этого заряда.

Зависит от:

    Величины заряда, создающего поле Расстояния до заряда Среды, в которой находиться поле

Где q1 — заряд, на который действует сила .

Линии напряженности электрического поля – силовые линии электрического поля, касательные к которым совпадают с направлением вектора напряженности. Линии направлены от «+» заряда к «-». По густоте линий можно судить о силе электрического поля.

Определяя направление вектора в различных точках пространства, можно представить картину распределения линий напряженности электрического поля. Для двух одноименных зарядов эта картина имеет вид, показанный на рисунке 131, для разноименных — на рисунке 132.


Напряженность электрического поля заряженной плоскости.

Важным примером системы зарядов является заряженная плоскость. В качестве бесконечной плоскости мы можем рассматривать любую плоскую пластину, если расстояние от точки, в которой ищется поле, до пластины много меньше размеров самой пластины. Заряженная плоскость характеризуется величиной поверхностной плотности заряда (у). Что это такое? Возьмём небольшой участок плоскости площадью S. Пусть заряд этого участка равен q. Тогда поверхностная плотность заряда определяется как отношение заряда к площади: у =

Иными словами, поверхностная плотность заряда — это заряд единицы площади. Вектор напряжённости поля равномерно заряженной плоскости перпендикулярен плоскости; он направлен от плоскости, если плоскость заряжена положительно, и к плоскости, если плоскость заряжена отрицательно:

Самое удивительное заключается в том, что величина напряжённости поля не зависит от расстояния до плоскости. Она равна:Эта формула справедлива для . В среде с диэлектрической проницаемостью е поле, как обычно, уменьшается в е раз:

Напряженность электрического поля равномерно заряженной сферической поверхности.

Сферическая поверхность ра­диуса R с общим зарядом Q заряжена равно­мерно. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому линии напря­женности направлены радиально. Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r > R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса, , откуда:.

Напряженность электрического поля между разноименно заряженными пластинами.

Конденсаторы. Простейшие способы разделения разноименных электрических зарядов — электризация при соприкосновении, электростатическая индукция — позволяют получить на поверхности тел лишь сравнительно небольшое число свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.

Конденсатор — это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, так как равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению (рис. 145).

Взаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле .

Электрическое поле заряда – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим . Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.

Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды. Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.

Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.

Потенциал. Разность потенциалов. Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

в электрическом поле

Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.

Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны. Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е. смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.

Полярные и неполярные диэлектрики

К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные , кислород, водород, бензол.

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.

Проводники в электрическом поле

Проводниками называются тела, способные пропускать через себя электрические заряды. Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.

Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд. Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд. Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией .

При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю. Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.

Электроемкость, конденсатор

Электроемкость – количественная мера способности проводника удерживать заряд.

Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая индукция – позволяют получить на поверхности тел не большое количество свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы .

Конденсатор – это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, т. к. равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.

Электрический ток

Это направленное движение заряженных частиц. В металлах носителями тока являются свободные электроны, в электролитах – отрицательные и положительные ионы, в полупроводниках – электроны и дырки, в газах – ионы и электроны. Количественной характеристикой тока является сила тока.

Источниками могут служить – гальванический элемент(происходят хим. реакции и внутренняя энергия, превращается в электрическую) и аккумулятор(для зарядки через него пропускают постоянный ток, в результате химической реакции один электрод становиться положительно заряженным, другой – отрицательно.

Действия электрического тока : тепловое, химическое, магнитное.

Направление электрического тока : от + к –

Поэтому достаточным условием для существования тока является наличие электрического поля и свободных носителей заряда. О наличии тока можно судить по явлениям, которые его сопровождают: Проводник, по которому течет ток, нагревается. Электрический ток может изменять химический состав проводника.

Силовое воздействие на соседние точки и намагниченные тела.

При существовании электрического поля внутри проводника, на концах его существует разность потенциалов. Если она не меняется, то в проводнике устанавливается постоянный электрический ток.

Сила тока

Сила тока – отношение заряда, пронесенного через поперечное сечение проводника за интервал времени, к этому интервалу времени.

Сила тока, как и заряд, величина скалярная. Она может быть как положительной, так и отрицательной. За положительное направление силы тока принято движение положительных зарядов. Если с течением времени сила тока не меняется, то ток называется постоянным .

Электродвижущая сила

Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток.

Во внешней цепи электрические заряды движутся под действием сил электрического поля. Но, чтобы поддерживать разность потенциалов на концах внешней цепи, необходимо перемещать электрические заряды внутри источника тока против сил электрического поля. Такое перемещение может осуществляться только под действием сил неэлектростатической природы.

Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами . Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических процессов, происходящих на границе раздела электрод – электролит. В машине постоянного тока сторонней силой является сила Лоренца.

Последовательное и параллельное соединение проводников

Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.

При последовательном соединении электрическая цепь не имеет разветвлений, все проводники включают в цепь поочередно друг за другом.

Сила тока во всех проводниках одинакова, так как в проводниках электрический заряд не накапливается и через поперечное сечение проводника за определенное время проходит один и тот же заряд.

При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

При параллельном соединении электрическая цепь имеет разветвления (точку разветвления называют узлом). Начала и концы проводников имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково. Сила тока равна сумме сил токов во всех параллельно включенных проводниках, так как в узле электрический заряд не накапливается, поступающий за единицу времени в узел заряд равен заряду, уходящему из узла за то же время.

Химические источники э. д. с. (аккумуляторы, элементы) включаются между собой последовательно, параллельно и смешанно.

Последовательное соединение источников э. д. с. На рисунке представлены три соединенных между собой аккумулятора. Такое соединение аккумуляторов, когда минус каждого предыдущего источника соединен с плюсом последующего источника, называется последовательным соединением. Группа соединенных между собой аккумуляторов или элементов называется батареей.