Электродный потенциал. Измерение электродных потенциалов

Электродный потенциал - это разность электростатических потенциалов между электролитом и электродом. Возникновение такого потенциала обусловлено пространственным разделением зарядов, которые имеют противоположные знаки на границе разделения фаз с образованием электрического двойного слоя.

Пространственное разделение зарядов на границе между металлическим электродом и связано с такими явлениями, как перенос ионов из металла в раствор в процессе установления электрохимического равновесия, а также адсорбция ионов из электролита на поверхность электрода; смещение газа за пределы ионной положительно заряженной кристаллической решетки; некулоновская адсорбция ионов или молекул жидкости на электроде. Благодаря последним двум явлениям электродный потенциал никогда не бывает равным нулю, даже при условии, когда заряд металлической поверхности равняется величина потенциала отдельно взятого электрода не определяется, для этого применяют метод сравнения эталонного и исследуемого электродов. Электродный потенциал приравнивается к величине , полученной в электрохимической цепи.

Для растворов на водной основе принято использовать водородные электроды. Стандартные элементы такого типа применяют в качестве эталонов при разнообразных электрохимических измерениях, а также в гальванических устройствах. Водородный электрод - это проволока или пластина из металла, который хорошо поглощает газообразный водород (часто используют палладий или платину). Такая пластина-проволока насыщается при атмосферном давлении водородом, после чего погружается в водный раствор, богатый ионами водорода. Потенциал такой пластины пропорционален концентрации ионов в растворе. Элемент является эталоном, относительно него отсчитывается электродный потенциал химической реакции.

При сборке на базе водородного и определяемого приборов на поверхности протекает реакция (обратимая), что означает или процесс восстановления, или окисления. Тип процесса зависит от потенциала протекающей реакции определяемого элемента. Потенциал водородного электрода принимают равным нулю, когда давление водорода составляет одну атмосферу, концентрация протонов раствора - один моль на литр, а температура - 298 К. Если исследуемый элемент в эталонных условиях, то есть когда активность ионов, влияющих на потенциал, составляет единицу, а давление газа - 0,101 МПа, значение такого потенциала называют стандартным.

Измеряя ЭДС гальванического электрода в стандартных условиях, вычисляют стандартный электродный потенциал химической реакции. Обычно эту величину измеряют в условиях, когда все термодинамические активности потенциалопределяющей реакции равны единице, а составляет 0,01*105Па. Потенциал проверяемого элемента считают положительным, если в режиме «источника тока» во внешней цепи слева направо движутся электроны, а в электролите - положительно заряженные частицы.

Возможность активного электрохимического взаимодействия металла с электролитом обусловлена наличием ионов металла в электролите и свободных электронов в самом металле.

При непосредственном контакте металла с электролитом на поверхности их раздела возникает некоторый скачок потенциала (разность потенциалов). Механизм возникновения скачка потенциала на металле по современным воззрениям представлен на рисунке 1

Каждому металлу при его взаимодействии с электролитом присуща определенная электролитическая упругость растворения, т. е. способность посылать в окружающий раствор свои положительно заряженные ионы.

Величина упругости растворения для различных металлов различна и зависит от химической природы самого металла, свойств электролита, температуры и других внешних условий.

Упругости растворения отвечает обратный процесс, т. е. переход ионов данного металла из раствора и осаждение их на поверхности металла.

Противодействие раствора электролитической упругости растворения носит название осмотического давления на металл.

Если пластинку какого-либо металла, например цинка, поместить в электролит, содержащий ионы Zn-в концентрации, при которой упругость растворения Р будет больше осмотического давления р, то в электролит перейдет некоторое количество ионов

Zn-Zn(в растворе) +2 электрона (в металле).

В результате этого процесса пластинка цинка приобретет отрицательный заряд (фиг. 1, а).

Отделившиеся от пластинки цинка положительно заряженные ионы группируются около ее поверхности под влиянием электростатического притяжения отрицательно заряженного металла.

В равновесном положении на границе металл - электролит образуется двойной электрический слой: поверхность металла заряжена отрицательно, окружающий его слой электролита положительно; между цинком и электролитом возникла некоторая разность потенциалов. Переходя к принятым обозначениям, получим:

где Е - заряд электрода.

При обратном соотношении упругости растворения и осмотического давления, т. е. при Р <С р (рисунок 1,6), возможном при некоторой иной концентрации электролита, ионы цинка начнут осаждаться на поверхности металла, сообщая ему положительный заряд. При этом прилегающий к поверхности металла слой электролита зарядится отрицательно за счет отрицательных зарядов анионов SO 4 , которые сгруппируются около металла.

В результате установившегося равновесия опять образуется двойной электрический слой, причем заряд металла по отношению к заряду раствора будет положительным:

В случае равенства упругости растворения металла и осмотического давления его ионов обмена зарядами между металлом и электролитом не произойдет - в результате не возникнет между ними и разности потенциалов, т. е. при Р = р Е = 0.

Возникающая разность потенциалов называется электродным потенциалом или пограничным скачком потенциала.

Величина равновесного электродного потенциала, т. е. потенциала металла, находящегося в растворе собственной соли, зависит от концентрации ионов в этом электролите.

При погружении металла в раствор, содержащий ионы другого металла, на границе металл - электролит также будет происходить скачок потенциала. Однако потенциал металла в этом случае сильно отличается от его равновесного электродного потенциала и называется неравновесным.

Электродвижущая сила (э. д. с.) любого гальванического элемента, состоящего из двух различных электродов, равна разности скачков потенциалов на границе раздела между электролитом и каждым из электродов в отдельности.

Значение потенциала одиночного электрода относительно раствора может быть определено измерением э. д. с. цепи, состоящей из данного электрода и другого так называемого стандартного электрода, потенциал которого известен. В качестве стандартного принимается потенциал нормального водородного электрода, условно равный нулю.

Потенциал металла, измеренный в нормальном (с концентрацией 1 г - эквивалент на 1 л) растворе собственной соли я отнесенный к нормальному водородному электроду, называется нормальным электродным потенциалом.

Теоретические аспекты электрохимических процессов

Какие процессы называются электрохимическими?

Все электрохимические процессы можно разделить на две противоположные группы: процессы электролиза, при которых под действием внешнего источника электроэнергии происходят химические реакции, и процессы возникновения электродвижущей силы и электрического тока вследствие определенных химических реакций.

В первой группе процессов электрическая энергия превращается в химическую, во второй ‒ наоборот, химическая ‒ в электрическую.

Все электрохимические реакции происходят при протекании электрического тока в цепи. Этот круг обязательно состоит из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках ток переносят электроны, в растворе электролитов ‒ ионы. Непрерывность протекания тока в цепи обеспечивается только тогда, когда происходят процессы на электродах, т.е. на границе металл ‒ электролит. На одном электроде происходит процесс приема электронов ‒ восстановление, на втором электроде - процесс отдачи электронов, т.е. окисления.

Особенностью электрохимических процессов, в отличие от обычных химических, является пространственное разделение процессов окисления и восстановления. Из этих процессов, которые не могут происходить друг без друга, и состоит в целом химический процесс в электрохимической системе.

В чем заключается сущность механизма образования электродного потенциала?

Гальванический элемент (химический источник тока) – это устройство, в котором химическая энергия окислительно-восстановительной реакции превращается в электрическую. Гальванический элемент состоит из двух электродов (полуэлементов).

Система, в которой металл погружен в раствор собственной соли, называется электродом или полуэлементом . При погружении металлической пластинки в раствор собственной соли имеют место два основных процесса. Первый процесс – это ионизация металла пластинки, где в узлах кристаллической решетки находятся ионы – атомы:



Ионизация происходит под действием полярных молекул растворителя (воды). Образующиеся при этом электроны концентрируются на пластинке, заряжая ее отрицательно, а образующиеся катионы металла переходят с пластинки в раствор и концентрируются возле пластинки (рис. 1).

Рисунок1 – Схема металлического электрода

Второй процесс – это взаимодействие молекул растворителя с ионами металла, т.е. сольватация образующихся ионов:

При погружении пластинки металла в раствор вначале преобладает процесс ионизации металла, но со временем скорость прямой реакции уменьшается, а растет скорость обратной реакции, пока между этими процессами не установится динамическое равновесие

При этом на границе металл-раствор (твердая фаза - жидкость) устанавливается равновесный двойной электрический слой (ДЭС), состоящий из положительных ионов и электронов. Условное обозначение системы металл-раствор – Ме/Ме n + , где вертикальной чертой отмечена граница раздела твердая фаза-раствор.

Электродный потенциал. Стандартный электродный потенциал. Ряд стандартных электродных потенциалов

Между положительными ионами и электронами возникает скачок потенциала, который называется электродным потенциалом. Потенциал, возникающий в условиях равновесия электродной реакции, называется равновесным электродным потенциалом .

Значение электродного потенциала, возникающего на границе металл-раствор, зависит от природы металла, активности ионов этого металла и от температуры.

Абсолютное значение электродного потенциала в настоящее время измерить или рассчитать невозможно. Но можно определить значение электродного потенциала относительно какого-либо электрода, выбранного в качестве стандарта. Согласно международному соглашению таким стандартом служит стандартный (нормальный) водородный электрод, потенциал которого условно принят за нуль: = 0.0 В.

Стандартный водородный электрод представляет собой платиновую пластинку, покрытую платиновой чернью и опущенную в раствор Н 2 SO 4 или HCI с = 1 моль/л, через который все время пропускается газообразный Н 2 под давлением 101.3 кПа при 298 К (рис. 2).

Рисунок 2 – Водородный электрод

Платина, отличающаяся высокой химической стойкостью, в электродном процессе не участвует. Ее роль сводится к адсорбции на своей поверхности водорода и переносу электронов. На поверхности платины протекает процесс:

H 2 ⇄ 2Н + + 2 .

Если пластинку любого металла соединить со стандартным водородным электродом, то получим значение стандартного электродного потенциала данного металла.

Располагая металлы в порядке увеличения стандартных электродных потенциалов, получают электрохимический ряд напряжений металлов. Металлы, стоящие в ряду напряжений после водорода, не способны вытеснять водород из кислот. Вытеснение металла из солей другим металлом осуществляется только в том случае, если вытесняющий металл расположен в ряду напряжений до вытесняемого. Чем дальше друг от друга удалены металлы в электрохимическом ряду напряжений (т.е. чем больше разница между стандартными потенциалами металлов), тем больше ЭДС гальванического элемента, в котором эти металлы использованы.

Стандартные потенциалы являются количественной мерой окислительно-восстановительной способности системы. Чем выше значение φ 0 , тем большей окислительной способностью обладает окисленная форма данной пары. Восстановительные свойства сильнее выражены у восстановленной формы в паре с меньшим значением φ 0 .

Все металлы в ряду напряжений делятся на: активные (литий – алюминий), средней активности (до водорода), неактивные.

Для определения направления и полноты протекания окислительно-восстановительных реакций между окислительно-восстановительными системами в водных растворах используются значения электродных потенциалов этих систем.

Механизм возникновения электродных потенциалов, их количественное определение, процессы, которые сопровождаются возникновением электрического тока или вызваны электрическим током, изучаются особым разделом химии – электрохимией.

К электрохимическим относятся явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов), например, при погружении металлической пластинки в воду.

Для всех металлов характерно свойство в большей или меньшей степени растворяться в воде. При этом в воду переходят положительно заряженные ионы металла, в результате чего пластинка (из-за появления в ней избыточных электронов) заряжается отрицательно. Гидратированные катионы металла скапливаются возле поверхности пластинки на границе раздела двух фаз (металл-раствор). Возникает двойной электрический слой, характеризующийся некоторой разностью электростатических потенциалов. Как известно, энергию, которую необходимо затратить (положительный потенциал) или которую можно получить (отрицательный потенциал) при переносе единицы электричества из бесконечности в данную точку, называют электрическим потенциалом. Между пластинкой и раствором устанавливается окислительно-восстановительное равновесие:

. (9.1)

При погружении металла в раствор его соли также возникает двойной

электрический слой, но в этом случае возможны два механизма его образования. Если концентрация катионов металла в растворе мала или металл довольно активный, вследствие чего равновесие процесса, указанного выше, сдвинуто вправо, то металлическая пластинка заряжается отрицательно:

В том случае, когда концентрация катионов металла в растворе велика или металл малоактивный, равновесие указанного процесса сдвигается влево и металлическая пластинка заряжается положительно:

В любом случае на границе раздела двух фаз образуется двойной электрический слой. Разность (скачок) потенциалов, возникающая между металлом и жидкой фазой, называется электродным потенциалом Е. Потенциалу металла приписывается тот знак, который возникает на его поверхности в двойном электрическом слое.

Пластинка металла и раствор его соли (т.е. катионы этого металла) вместе составляют единую окислительно-восстановительную систему, характеризующуюся определенным электродным потенциалом, который зависит от природы металла, концентрации его ионов в растворе, от температуры и рН среды.

При определении скачка потенциала в окислительно-восстановительных системах, не содержащих твердой фазы (например, MnO4-/Mn2+ или Cr2O72-/Cr3+), используют инертные электроды (благородные металлы, графит). В этом случае инертные электроды, адсорбируя из раствора молекулы, атомы или ионы, играют роль твердой фазы, обеспечивающей возникновение скачка потенциалов на межфазной границе.

Экспериментально определить абсолютное значение электродного потенциала невозможно. Поэтому на практике измеряется разность потенциалов между электродным потенциалом исследуемой системы и потенциалом электрода сравнения. В качестве стандартного электрода сравнения обычно используют водородный электрод. Он изготавливается из губчатой платины, погруженной в раствор H2SO4 c активностью ионов водорода, равной единице (что соответствует примерно их концентрации, равной 1 моль/л). Через раствор при 298 К (25 оС) под давлением в 101,325 кПа пропускается газообразный водород, который поглощается губчатой платиновой пластиной.

Рис.9.1 Гальваническая цепь для измерения электродного потенциала:

I – водородный электрод, II – солевой мостик, III – измеряемый электрод.

Таким образом, поверхность платинового электрода фактически насыщена водородом, в результате чего в системе устанавливается равновесие:

, (9.2)

которое характеризуется определенным значением скачка потенциала на межфазной границе. Электродный потенциал, отвечающий данным условиям, получил название стандартного водородного потенциала

, а его численное значение условно принято равным нулю. Потенциал водородного электрода воспроизводится с очень высокой точностью.

Сочетая электрод, представляющий исследуемую окислительно-восстановительную систему, со стандартным водородным электродом, определяют электродный потенциал Е данной системы. Для того, чтобы можно было сравнивать окислительно-восстановительные свойства различных систем по их электродным потенциалам, необходимо, чтобы последние также были измерены при стандартных условиях. Таковыми обычно являются концентрация ионов, равная 1 моль/л, давление газообразных веществ 101,325 кПа и температура 298,15 К. Потенциалы, измеренные в таких условиях, носят название стандартных электродных потенциалов и обозначаются Ео. Они часто называются также окислительно-восстановительными или редокс-потенциалами, представляя собой разность между редокс-потенциалом системы при стандартных условиях и потенциалом стандартного водородного электрода.

Знак конкретного Ео соответствует заряду электрода по отношению к стандартному водородному электроду.

Стандартный электродный потенциал – это потенциал данного электродного процесса при концентрациях всех участвующих в нем веществ, равных единице.

Стандартные электродные потенциалы окислительно-восстановительных систем приводятся в справочной литературе. Эти системы записаны в форме уравнений полуреакций восстановления, в левой части которых находятся атомы, ионы или молекулы, принимающие электроны (окисленная форма):

= Red. (9.3)

Эти системы в таблицах расположены в порядке возрастания величин их потенциалов, что соответствует падению восстановительной и росту окислительной активности. Система с большим электродным потенциалом всегда является окислителем по отношению к системе с меньшим потенциалом.

Выделяя из этого ряда окислительно-восстановительные системы типа Меn+/Me и располагая их в порядке возрастания стандартных электродных потенциалов, получают электрохимический ряд напряжений металлов: Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H2, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Электрохимический ряд напряжений характеризует свойства металлов в водных растворах:

чем меньше электродный потенциал металла, тем легче он окисляется и труднее восстанавливается из своих ионов;

металлы, имеющие отрицательные электродные потенциалы, т.е. стоящие в ряду напряжений левее водорода, способны вытеснять его из разбавленных растворов кислот;

каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые имеют более высокий электродный потенциал.

При условиях, отличающихся от стандартных, численное значение равновесного электродного потенциала для окислительно-восстановительной системы, записанной в форме

, определяется по уравнению Нернста: (9.4) и - соответственно электродный и стандартный потенциалы системы; R – универсальная газовая постоянная; Т – абсолютная температура; F – постоянная Фарадея; n – число электронов, участвующих в окислительно-восстановительном процессе.

С(Red) и C(Ox) – молярные концентрации соответственно восстановленной и окисленной форм соединения.

В конце статьи, вы поймете, и в состоянии описать- Что такое стандартный электродный потенциал, как мы измеряем и что необходимость стандартного электродного потенциала.

Электрохимии является филиалом химии, которая занимается производством электроэнергии, когда происходит химическая реакция. Весь процесс осуществляется в контейнере или судно называется как клетка. Когда мы строим клетку, используя образец Daniel клетки. Мы объединяем два различных полуэлемент. Каждая половина ячейки состоит из металлического стержня, смоченного в электролите. Если потенциальный стержень создан. Это приведет к формирование батареи. Эти батареи обеспечивают электрический ток для запуска автомобилей, чтобы привести множество продуктов, такие как карманные калькулятор цифровых часов радио и магнитофон и т.д..

Что такое электродный потенциал

  • оксидирование – Потеря электронов.
  • снижение – получение электронов.

Электродный потенциал развивается только тогда, когда существует разность потенциалов между электродом и электролитом. Если мы поместить медный металлический стержень в CuSO 4 решение. Эти атомы меди имеют поведение (тенденция) потерять электроны образуют Cu 2+ ионы, которые идут в раствор в результате окисления.

с(s) → С 2+ + 2е –

Скоро, избыточные электроны будут накапливаться на электроде, и он будет приобретать отрицательный заряд. Электроны, присутствующие на электроде также будут иметь тенденцию привлекать положительные ионы (с 2+ ионы) присутствует в растворе. Это означает, что электрод не будет держать на потери электронов и равновесие будет в конечном счете, устанавливается.

Когда такое равновесие будет достигнуто, разделение положительных и отрицательных зарядов будет происходить, приводит к разности потенциалов между металлическим стержнем и его ионов, присутствующих в растворе называется электродным потенциалом.

Стандартный потенциал снижения

Следует помнить, что:

  • Электрод может подвергаться окислению.
  • Электрод может также проходить снижение за счет получения электронов.

Электрод может подвергаться окислению, теряя электроны, положительные ионы, присутствующие в растворе, может также принимать электроны от электрода и в результате отсутствия электронов на электроде, чем инициалы. таким образом, придавая положительный заряд на нем. В результате, электрод теперь будет притягивать электроны из раствора и его притягивающей электроны или принимая тенденцию называется восстановительным потенциалом. таким образом, Есть два типа электродных потенциалов т.е., Окислительный потенциал и потенциал сокращения.

Окисление потенциал. Это тенденция электрода потерять электроны и в результате, он окисляется.

потенциал сокращения. Это тенденция электрода, чтобы принимать электроны, и в результате, он получает снижается.

Что такое стандартный электродный потенциал – Определение

В целом, электрод называется в стандартных условиях, если:

  • концентрация электролита раствор 1 молярный (1M)
  • Давление газа / газов, вовлеченное одна атмосфера
  • Температура постоянна (в общем 298 К).

Как рассчитать стандартные ячейки потенциал

Следует отметить, что мы не можем измерить потенциал клеток непосредственно связано со следующими причинами:

  • Половина клеток ли окисление или восстановление Полуэлемент не может работать по своему владеет и может работать только при подключении к другой половине ячейки.
  • Электрон высвобождения или принимая тенденцию электрода только относительная тенденцию, а не абсолютная тенденцию.

таким образом, мы не можем определить абсолютную стандартный электродный потенциал электрода. Для того, чтобы решить проблема, опорный электрод необходимо, и должны быть возложены на него. The обычно используется опорный электрод стандартного водородного электрода (ОНА) также называемый нормальный водород электрод (NHE) и его стандартный электродный потенциал (окисления, а также снижение) принимается равным нулю.

Определение E o Значение цинка

Гальванический элемент установлен, в котором цинк электрод помещают в 1М ZnSO 4 Раствор представляет собой одну половину ячейки в то время как стандартный водородный электрод, как другая половина ячейки. В этом случае, чтение с помощью вольтметра 0.76 В и направление потока электронов от цинка к водороду электрону (противоположный поток тока, как показан вольтметр). таким образом, цинк будет выступать в качестве анода и стандартный водородный электрод выступает в качестве катода.

Электронно прочь = Анод.

  • Е o клетка = E o катод – Е o анод
  • 0.76 знак равно 0 + Е o анод
  • Е o анод знак равно -0.76V
  • таким образом, стандартный восстановительный потенциал цинка (Zn 2+ /Zn) является -0-76 V.
Cell Notation
Zn (s) | Zn 2+ (водн) || 2ЧАС + (водн) | ЧАС 2 1 бар

В случае, прогиб в сторону водородного электрода, это означает, что поток электронов от водородного электрода в направлении металлического электрода. В таком случае, водородный электрод будет выступать в качестве анода и металлического электрода в качестве катода.

Стандартный электродный потенциал Таблица

Значения представляют собой стандартные потенциалы сокращения электрода. Их стандартный потенциал окисления будет иметь такое же значение, но с противоположным знаком. Эти значения являются последней конвенцией, принятой IUPAC, как стандартные восстановление и окисление потенциалы также называют как стандартный электродный потенциал.

Стандартный водородный электрод

В стандартном водородном электроде, платиновый провод, покрытый тонкодисперсной платины под названием платиновой черни герметизируется в стеклянной трубке. Это влечет за собой платиновую фольгу на одном конце. Провод погружают в водном растворе, содержащем 1 мольный Н + концентрация ионов (как обычно 1 М HCl используется). Чистый газообразный водород под давлением 1 бар постоянно пропускают через раствор: Температура Раствор выдерживают при 298 К. Стандартный водородный электрод может действовать как в качестве катода и анод. Когда он должен действовать как окисление анода должно иметь место, и действовать в качестве катодного восстановления происходит.

Стандартный водородный электрод также известен как обратимый электрод.

Обратитесь к следующему видео для стандартного водородного электрода

Нормальный водородный электрод

Более ранние разработки в области electrochemistry.There является использовать нормальный водородный электрод(NHE) имеющий потенциал нулевого электрода. Нормальный водородный электрод (NHE) построен таким образом, имея платиновый электрод в раствор 1 N сильной кислоты. С течением времени, он был изменен.

Короче резюме,

  • Нормальный водородный электрод – Электрод потенциал платины с точки зрения 1 Раствор N кислоты.
  • Стандартный водородный электрод- Электрод потенциал платины с точки зрения 1 М раствор кислоты.

Это все об основах – Что такое стандартный электродный потенциал, как мы измеряем и что необходимость стандартного электродного потенциала.

Если вы хотите чувствовать себя свободно делиться с другими.