Электропроводность металлов. Теоретические сведения

Электронная проводимость металлов

Классификация проводников

ТЕМА 3 ФИЗИЧЕСКИЕ ЭФФЕКТЫ В ПРОВОДНИКАХ

Особенности проводимости металлов, тепловое и дрейфовое движение электропроводимости.

В электронной промышленности широко применяются металлы и их сплавы, из которых делают проводники.

Классифицируются по агрегатному состоянию: газообразные, жидкие, твёрдые.

Газообразные – пары веществ и газы при напряжённости электрического поля, ĸᴏᴛᴏᴩᴏᴇ обеспечивает ионизацию молекул. В них электрический ток создаётся как электронами, так и ионами. Используются в газоразрядных приборах.

Жидкие – растворы различных солей, кислот, щелочей, а также их расплавы (электролиты). Ток связан с переносом ионов, при этом состав электролита изменяется, а на электродах, погружённых в электролит, происходит выделœение вещества из раствора.

Твёрдые - ϶ᴛᴏ металлы, которые занимают в таблице Менделœеева более 75%. Ток в них создаётся только электронами, а в связи с этим нет переноса вещества от одного электрода к другому.

По применению металлические материалы подразделяются:

Металлы высокой проводимости;

Сплавы высокого сопротивления.

Металлы высокой проводимости : серебро, медь, алюминий, желœезо, золото.

Сверхпроводники (при низких t 0 C): алюминий, ртуть, свинœец, ниобий, соединœения с оловом, титаном, цирконием.

Сплавы высокого сопротивления :

Медно-марганцовые (манганин);

Медно-никелœевые (константаны);

Желœеза, никеля и хрома (нихромы).

Элементы первой группы таблицы Менделœеева одновалентны. Валентный электрон слабо связан со своим ядром и при любых внешних воздействиях разрывает связь с ядром и становится свободным. По этой причине в узлах кристаллической решётки находятся положительно заряженные атомы (ионы), а между ними перемещаются свободные электроны.

Ионы и электроны находятся в беспорядочном движении. Энергия этого движения представляет внутреннюю энергию тока.

Движение ионов, образующих решётку, состоит лишь в колебаниях около своих положений равновесия. Свободные электроны могут перемещаться по всœему объёму металла. При отсутствии внутри металла электрического поля, движение электронов хаотично, в каждый момент скорости различных электронов различны и имеют всœевозможные направления. Электроны подобны газу, в связи с этим их часто называют электронным газом.

Тепловое движение не вызывает никакого тока, так как вследствие полной хаотичности в каждом направлении будет двигаться столько же электронов, сколько в противоположном, и в связи с этим суммарный заряд, переносимый через любую площадку внутри, будет равен нулю.

В случае если на концах проводника создать разность потенциалов, ᴛ.ᴇ. создать внутри электрическое поле, то на каждый электрон будет действовать сила, каждый электрон получит дополнительные скорости, направленные в одну сторону. Движение станет направленным, ᴛ.ᴇ. будет электрический ток.

Вывод:

Хаотическое движение обусловлено воздействием внешних факторов (тепла). Направленное движение за счёт разности потенциалов принято называть дрейфовым.

Проводимость разных металлов различная, так как обусловлена:

Различным количеством свободных электронов в единице объёма;

Условиями движения электронов, связанных с различной длинной свободного пробега, ᴛ.ᴇ. пути, проходимого в среднем электроном между двумя соударениями с ионами.

На практике используют понятия: удельная проводимость и удельное сопротивление:

s - удельная проводимость, МСu/м

r - удельное сопротивление, Ом*мм 2 / м

r = 1/s = 1/еnm = 2mu т /е 2 n l ср,

где е – заряд электрона = 1,6 * 10 -19 ;

n – количество свободных электронов;

m - подвижность электрона, обусловленная электрическим полем;

m – масса электрона = 9,1 * 10 -31 кг;

l ср - средняя длина свободного пробега;

u т – средняя скорость теплового движения.

Значения u т ,n , в различных проводниках примерно одинаковы, к примеру:

n меди = 8,5*10 28 м -3 , n алюм = 8,3*10 28 м -3 , значение скорости теплового движения приблизительно u т = 10 5 м/с.

Для каждого металла существует определённый температурный коэффициент сопротивления при изменении Т 0 на 1 0 С, отнесённый к 10м начального сопротивления (a):

a = R 2 -R 1 / R 1 (T 2 -T 1) ,

где R 1 – сопротивление при T 1

R 2 – сопротивление при T 2

отсюда R 2 = R 1

Это соотношение справедливо для температур 100-150 0 С.

Электронная проводимость металлов - понятие и виды. Классификация и особенности категории "Электронная проводимость металлов" 2017, 2018.

Проводниковые материалы

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состояние от каждого атома металла переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводчика, вследствие чего он нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля - Ленца. Таким образом, электронная теория металлов дала возможность аналитически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить и связь между электропроводностью и теплопроводностью металлов. Кроме того, некоторые опыты подтвердили гипотезу об электронном газе в металлах, а именно:

1 . При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников, не наблюдается проникновения атомов одного металла в другой.

2 . При нагреве металлов до высоких температур скорость теплового движения свободных электронов увеличивается, и наиболее быстрые из них могут вылетать из металла, преодолевая силы поверхностного потенциального барьера.

3 . В момент неожиданной остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появлению разности потенциалов на концах заторможенного проводника, и стрелка подключаемого к ним измерительного прибора отклоняется по шкале.

4 . Исследуя поведение металлических проводников в магнитном поле, установили, что вследствие искривления траектории электронов в металлической пластинке, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется электрическое сопротивление проводника.

Классификация и основные свойства проводниковых материалов

К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:

1. удельная проводимость g или обратная ей величина удельное сопротивление r;

2. температурный коэффициент удельного сопротивления ТК r или a r ;

3. коэффициент теплопроводности g т;

4. контактная разность потенциалов и термоэлектродвижущая сила (термо – ЭДС);



5. работа выхода электронов из металла;

6. предел прочности при растяжении s р и относительное удлинение перед разрывом Dl/l .

Удельная проводимость и удельное сопротивление проводников. Связь плотности тока J (в амперах на квадратный метр) и напряженности электрического поля (в вольтах на метр) в проводнике дается известной формулой:

J= gE. (1)

(дифференциальная форма закона Ома); здесь g (в сименсах на метр) параметр проводникового материала, называемый его удельной проводимостью: в соответствии с законом Ома у металлических проводников не зависит от напряженности электрического поля Е при изменении последней в весьма широких пределах. Величина r = 1/g, обратная удельной проводимости и называемая удельным сопротивлением, для имеющего сопротивление R проводника длиной l с постоянным поперечным сечением S вычисляется по формуле 2:

r = RS/l (2)

Удельное сопротивление измеряется в Ом – метрах. Для измерения r проводниковых материалов разрешается пользоваться внесистемной единицей Ом×мм 2 /м; очевидно, что проволока из материала длиной 1 м с поперечным сечением 1 мм 2 имеет сопротивление в Омах, численно равно r материала в Ом×мм 2 /м.

Диапазон значений удельного сопротивления r металлических проводников (при нормальной температуре) довольно узок: от 0,016 для серебра и до примерно 10 мкОм×м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Удельная проводимость металлических проводников согласно классической теории металлов может быть выражена следующим образом:

g = (e 2 n 0 l)/(2mv T ) (3)

где е - заряд электрона; n 0 - число свободных электронов в единице объема металла; l - средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; т - масса электрона; v T - средняя скорость теплового движения свободного электрона в металле.

Преобразование выражения (3) на основе положений квантовой механики приводит к формуле (4):

g = K 0 2/3 l (4)

где K - численный коэффициент; остальные обозначения - прежние.

Для различных металлов скорости хаотического теплового движения электронов v T (при определенной температуре) примерно одинаковы. Незначительно различаются также и концентрации свободных электронов п 0 (например, для меди и никеля это различие меньше 10%). Поэтому значение удельной проводимости у (или удельного сопротивления r) в основном зависит от средней длины свободного пробега электронов в данном проводнике l, которая, в свою очередь, определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению r. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием около четверти длины электронной волны. Нарушения меньших размеров не вызывают заметного рассеяния волн. В металлическом проводнике, где длина волны электрона около 0,5 нм, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов, и, следовательно, приводит к росту r материала.

Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т.е. уменьшается средняя длина свободного пробега электрона l. уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис.1). Иными словами, температурный коэффициент удельного сопротивления металлов, (кельвин в минус первой степени) положителен.

Рисунок 1 - Зависимость удельного сопротивления r меди от температуры

TKr =a r = (1/r) (d r/dT ) (5)

Согласно выводам электронной теории металлов значения a r ., чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту расширения идеальных газов, т.е. 1/273»0,0037 К -1 . При изменении температуры в узких диапазонах на практике допустима кусочно-линейная аппроксимация зависимости r (Т); в этом случае принимают, что

r 2 = r 1 (6)

где r 1 , и r 2 - удельные сопротивления проводникового материала при температурах Т 1 , и T 2 , соответственно (при этом T 2 > Т 1);

a r - так называемый средний температурный коэффициент удельного сопротивления данного материала в диапазоне температур от Т 1 , до Т 2 .

Изменение удельного сопротивления металлов при плавлении. При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления r, как это видно, например, для меди, из рис. 1; однако у некоторых металлов r при плавлении уменьшается. Удельное сопротивление увеличивается при плавлении у тех металлов, у которых при плавлении увеличивается объем, т.е. уменьшается плотность; и, наоборот, у металлов, уменьшающих свой объем при плавлении, - галлия, висмута, сурьмы r уменьшается.

Удельное сопротивление сплавов . Как уже указывалось, примеси, и нарушения правильной структуры металлов увеличивают их удельное сопротивление. Значительное возрастание r наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, т. е. при (утверждении совместно кристаллизуются, и атомы одного металла входят в кристаллическую решетку другого.

Теплопроводность металлов . За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют и электропроводность металлов и число которых в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности g T металлов намного больше, чем коэффициент теплопроводности диэлектриков. Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость у металла, тем больше должен быть и его коэффициент теплопроводности. Легко также видеть, что при повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость g уменьшаются, отношение коэффициента теплопроводности металла к его удельной проводимости g T /g должно возрастать. Математически это выражается законом Видемана - Франца - Лоренца:

g T /g = LoT (7)

где Т -термодинамическая температура, К; Lo -число Лоренца, равное

Lo=(p 2 k 2)/(3e 2) (8)

Подставляя в формулу (8) значения постоянной Больцмана k =1,38×10 23 Дж/К и заряда электрона е = 1,6×10 -19 Кл, получаем Lo = 2,45×10 -8 B 2 K 2 .

Термоэлектродвижущая сила . При соприкосновении двух различных металлических проводников между ними возникает контактная разность потенциалов. Причина появления этой разности потенциалов заключается в различии значений работы выхода электронов из различных металлов, а также в том, что концентрация электронов, а, следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна

U AB =U B - U A + (kT/e) ln (n 0A /n 0B) (9)

где U A и U B - потенциалы соприкасающихся металлов; n 0 A и n 0 B - концентрации электронов в металлах А и В; k - постоянная Больцмана; e -абсолютная величина заряда электрона.

Если температуры «спаев» одинаковы, то сумма разности потенциалов в замкнутой цепи равна нулю. Иначе обстоит дело, когда один из спаев имеет температуру T 1 , а другой - температуру Т 2 (рис. 2).

Рисунок 2 - Схема термопары

В этом случае между спаями возникает термо – ЭДС, равная

U = (k/e) (T 1 - T 2) ln (n 0A /n 0B) (10)

Что можно записать в виде

U = y (T 1 – T 2) (11)

где y - постоянный для данной пары проводников коэффициент термо-ЭДС, т.е. термо-ЭДС должна быть пропорциональна разности температур спаев.

Температурный коэффициент линейного расширения проводников. Этот коэффициент, интересен не только при рассмотрении работы различных сопряженных материалов в той или иной конструкции (возможность растрескивания или нарушения вакуум-плотного соединения со стеклами, керамикой при изменении температуры и т.п.). Он необходим также и для расчета температурного коэффициента электрического сопротивления провода

TKR = a R = a r - a l (12)

В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.

Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда - ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер - это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.


Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).

Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.

Наиболее высокой электропроводностью обладают , и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) - перемещением ионов - частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.

Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.

Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.

Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.

Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив - имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от , а вот скорость распространения электрического тока по проводнику как раз равна скорости света.

Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля - от соседа к соседу.

Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.


Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.

Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном - намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.


Единица изменения сопротивления - Ом. Сопротивление R = 1 Ом - это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом - столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.


Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность - это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.

Единица измерения электропроводности G (проводимости) - Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.


Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие , величина которого «р» характеризует проводящие свойства того или иного вещества.

Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.


Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м - для удельного сопротивления, и См*м/мм2 - для удельной электропроводности.

Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.

Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.

Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.

Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.

При понижении температуры - наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других - сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.

Позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.

Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.

Надеемся, что наша статья была для вас полезной, и теперь вы легко сможете вычислить сопротивление и проводимость любого провода при любой температуре.

Владимирский промышленно-коммерческий лицей

Реферат

Электрический ток в проводниках и полупроводниках

Выполнил:

Сазанов Сергей

11 “Б” класс

г. Владимир, 2000 г.

I. Введение

Слово «ток» означает движение или течение чего-то. Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока. В настоящее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводниковый, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источника тока. Один полюс источника тока заряжается положительно, другой - отрицательно.

II. Электрическая проводимость различных веществ

Наряду с металлами хорошими проводниками, т.е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизированный газ – плазма. Эти проводники также широко используются в технике.

Кроме проводников и диэлектриков, имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

До недавнего времени полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, можно даже сказать, что в радиотехнике произошла революция, когда сначала теоретически, а затем экспериментально была открыта и изучена легко осуществимая возможность управления электрической проводимостью полупроводников.

Полупроводники применяют в качестве элементов, преобразующих ток в радиоприемниках, вычислительных машинах и т.д.

III. Электронная проводимость металлов

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика – порядка 10 28 1/м 3 . Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10 -4 м/с.

Экспериментальное доказательство существования свободных электронов в металлах.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов присоединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. . Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе , найденным ранее из других опытов.

Движение электронов в металле.

Электроны под влиянием постоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, т.к. со стороны ионов кристаллической решетки на электроны действует некоторая тормозящая сила. Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.

Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти существующую этой энергии температуру по формуле , то получим температуру порядка . Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики.

Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью из-за торможения со стороны кристаллической решетки. Скорость упорядоченного движения прямо пропорциональна напряженности поля в проводнике.

IV. Зависимость сопротивления проводника от температуры

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной , сопротивление проводника равно , а при температуре оно равно , то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры: .

Коэффициент пропорциональности называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов .

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры: .

Так как мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 1).

Рис. 1
Хотя коэффициент довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов просто необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем, температурный коэффициент сопротивления очень мал:

; удельное сопротивление константана велико: . Такие сплавы используют для изготовления эталонных сопротивлений и добавочных сопротивлений к измерительным приборам, т.е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве основного рабочего элемента такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Удельное сопротивление металлов растет линейно с увеличением температуры. У растворов электролитов оно уменьшается при увеличении температуры.

V. Сверхпроводимость

Рис. 2
В 1911 г. голландский физик Камерлинг-Оннес открыл замечательное явление – сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре очень резко падает до нуля (рис. 2). Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. Сверхпроводимость наблюдается при очень низких температурах – около .

Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же не сверхпроводящем проводнике электрический ток прекращается.

Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая этого состояния, нельзя.

Если бы удалось создать сверхпроводящие материалы при температурах, близких к комнатным, то была бы решена проблема передачи энергии по проводам без потерь. В настоящее время физики работают над ее решением.

Многие металлы и сплавы при температурах ниже полностью теряют сопротивление, т.е. становятся сверхпроводниками. Недавно была открыта высокотемпературная сверхпроводимость.

VI. Электрический ток в полупроводниках

Рис. 3
Наиболее отчетливо полупроводники отличаются от проводников характеров зависимости электропроводимости от температуры. Измерения показывают, что у ряда элементов (кремний, германий, селен и др.) и соединений (PbS, CdS и др.) удельное сопротивление с увеличением температуры не растет, как у металлов, а, наоборот, чрезвычайно резко уменьшается (рис. 3). Такие вещества и называют полупроводниками.

Строение полупроводников.

Для того чтобы включить транзисторный приемник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого придется вникнуть в природу связей, удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний – четырехвалентный элемент. Это означает, что во внешней оболочке атома имеются четыре электрона, сравнительно слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырем. Плоская схема структуры кристалла кремния изображена на рисунке 4.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью. В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отщепляют от атомов (коллективизируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.

Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к электрической решетке, и внешнее электрическое поле не оказывает заметное влияние на их движение. Аналогичное строение имеет кристалл германия.

Электронная проводимость.

При нагревании кремния кинетическая энергия валентных электронов повышается, и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторенные пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток (рис. 5).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700К число свободных электронов увеличивается от 10 17 до 10 24 1/м 3 . Это приводит к уменьшению сопротивления.

Дырочная проводимость.

При разрыве связи образуется вакантное место с недостающим электроном. Его называют дыркой. В дырке имеются избыточный положительный заряд по сравнению с остальными, нормальными связями.

Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью.

Мы рассмотрели механизм проводимости идеальных полупроводников. Проводимость при этих условиях называют собственной проводимостью полупроводников.

Проводимость чистых полупроводников (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость).

Список литературы

1. Г. Я. Мякишев, Б. Б. Буховцев: «Физика 10 кл.», Просвещение, М. 1990 г.

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению . В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах : [См]=.

Виды электропроводимости:

Электронная проводимость , где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

Ионная проводимость . Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

Дырочная проводимость . Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.


Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.