Электростатические колебания. Электрические колебания и электромагнитные волны

Лишь в конце нашей эры человечество дошло до открытия и освоения электричества и пришло к выводу о существовании электромагнитных волн. Первые теорети-чески обосновал существование таких волн великий Герц. А первым, кто открыл эти волны (излучаемые грозовыми разрядами), был наш соотечественник Попов. Он изобрел прибор — грозоотметчик, который фиксировал мощные электромагнитные колебания, излучаемые грозовыми разрядами.

Он же чуть позже и почти одновременно с итальянцем Маркони понял, что электромагнитные волны можно использовать для передачи на большие расстояния полезной информации. В то время как опыты Попова А.С. по передаче информации с помощью электромагнитных вол имели уникальный характер, предприимчивый Маркой организовал целую отрасль промышленности, впервые начавшей выпускать электротехнические средства связи, основанные на передаче и приеме электромагнитных волн

Одно только открытие электромагнитных волн оправдывает затраты на науку за все время существования человечества! Об этом стоит помнить нынешним реформаторам России, поставившим нашу науку, и образование на голодный паек.

Электромагнитная волна — это перемещение меняющихся электрического и магнитного полей, в пространстве со скоростью света. Первые создатели теории элект-ромагнитных колебаний пытались строить аналогии между электромагнитными колебаниями и колебаниями механи-ческими и акустическими. Они полагали, что простран-ство заполнено некоей субстанцией — эфиром. Лиин позже пришло понимание того, что для распространения электромагнитных волн не нужен никакой посредник.

Тем не менее, удачное словечко «эфир» осталось е нашем обиходе. Впрочем, теперь оно скорее характеризует само по себе существование пространства, заполненного электромагнитными волнами, порожденными самыми раз-нообразными источниками — прежде всего радиостанци-ями, передающими речь, музыку, телевизионные изобра-жения, сигналы времени и т. д.

Электромагнитные колебания порождаются электри-ческими сигналами. Любой проводник, к которому подво-дится высокочастотный электрический сигнал, становит-ся антенной, излучающей в пространство (эфир) электромагнитные волны. На этом основана работа радио-передающих устройств.

Тот же проводник, находящийся в пространстве с электромагнитными волнами, становится антенной ра-диоприемника — на нем наводятся ЭДС в виде множества сигналов переменного тока. Если антенна приемника расположена рядом с антенной передатчика (это иногда случается), то наводимая ЭДС может достигать десятков вольт. Но когда радиостанция расположена за сотни и тысячи километров от приемника, она мала — лежит в пределах от нескольких микровольт до десятков милли-вольт. Задача приемника — выбрать из массы сигналов разных радиостанций и источников помех те сигналы, которые вам нужны, усилить их и превратить в звуковые колебания, излучаемые громкоговорителем или головны-ми телефонами.

Мы знаем, что длина электромагнитных волн бывает самой различной. Посмотрев на шкалу электромагнитных волн с указанием длин волн и частот различных излучений, мы различим 7 диапазонов: низкочастотные излучения, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.

  • Низкочастотные волны. Источники излучения: токи высокой частоты, генератор переменного тока, электрические машины. Применяются для плавки и закалки металлов, изготовление постоянных магнитов, в электротехнической промышленности.
  • Радиоволны возникают в антеннах радио- и телевизионных станций, мобильных телефонах, радарах и т. д. Применяются в радиосвязи, телевидении, радиолокации.
  • Инфракрасные волны излучают все нагретые тела. Применение: плавка, резка, сварка тугоплавких металлов с помощью лазеров, фотографирование в тумане и темноте, сушка древесины, фруктов и ягод, приборы ночного видения.
  • Видимое излучение. Источники — Солнце, электрическая и люминесцентная лампа, электрическая дуга,лазер. Применяется: освещение, фотоэффект, голография.
  • Ультрафиолетовые излучение. Источники: Солнце, космос, электрическая лампа, лазер. Оно способно убивать болезнетворные бактерии. Применяется для закаливания живых организмов.
  • Рентгеновское излучение.

Колебание, как категория физических представлений, является одним из основных понятий физики и определяется, в общем виде, как повторяющийся процесс изменения некой физической величины. Если эти изменения повторяющиеся, то это значит, что имеется некий промежуток времени, через который принимает то же самое значение. Этот промежуток времени называют

А собственно, почему колебания? Да потому, что если зафиксировать значение этой величины скажем в момент Т1, то в момент Тх она примет уже другое значение, скажем, увеличится, а еще через время она опять увеличится. Но увеличение не может быть вечным, ведь для повторяющегося процесса, наступит момент, когда эта физическая величина обязана повторится, т.е. опять примет такое же значение, как и в момент Т1, хотя по шкале времени это уже момент Т2.

Что же изменилось? Время. Прошел один временной отрезок, который будет повторяться, как временное расстояние между одинаковыми значениями физической величины. А что же произошло с физической величиной за этот промежуток времени - период? Да ничего страшного, она просто совершила одно колебание - прошла полный цикл своих изменений - от максимального до минимального значения. Если в процессе изменения от Т1 до Т2 время фиксировалось, то разность Т=Т2-Т1 дает численное выражение периода времени.

Хороший пример колебательного процесса - пружинный маятник. Грузик движется вверх - вниз, процесс повторяется, а значение физической величины, например, высота подъема маятника, колеблется между максимальным и минимальным значением.

Описание процесса колебания включает в себя параметры универсальные для колебаний любой природы. Это могут быть механические, электромагнитные колебания и т.д. При этом всегда важно понимать, что колебательный процесс для своего существования обязательно включает два объекта, каждый из которых может принимать и/или отдавать энергию - вот ту самую механическую или электромагнитную, о которых была речь выше. В каждый момент времени один из объектов отдает энергию, а второй принимает. При этом знергия меняет свою сущность на нечто очень похожее, но не то. Так, энергия маятника, переходит в энергию сжатой пружины, и они периодически меняются в процессе колебания, решая вечный вопрос партнерства - кому кого поднимать-опускать, т.е. отдавать или накапливать энергию.

Электромагнитные колебания уже в названии содержат указание на участников альянса - электрическое и а хранителями этих полей служат хорошо известные конденсатор и индуктивность. Соединенные в электрическую цепь, они представляют собой колебательный контур, в котором перекачка энергии совершается точно так же, как в маятнике - электрическая переходит в магнитное поле индуктивности и обратно.

Если система конденсатор-индуктивность предоставлена самой себе и в ней возникли электромагнитные колебания, то их период определяется параметрами системы, т.е. индуктивностью и емкостью - других нет. Говоря просто, чтобы «перелить» энергию из источника, скажем, конденсатора (а еще есть более точный аналог его названия - «емкость»), в индуктивность, нужно потратить время пропорциональное количеству запасенной энергии, т.е.емкости. Фактически величина этой «емкости» и есть параметр, от которого зависит период колебаний. Больше емкость, больше энергии - дольше длится перекачка энергии, дольше период электромагнитных колебаний.

Какие же физические величины входят в набор, определяющий описание во всех его проявлениях, в том числе и при колебательных процессах? Это составляющие поля: заряд, магнитная индукция, напряжение. Следует заметить, что электромагнитные колебания - это широчайший спектр явлений, которые мы, как правило, редко связываем между собой, хотя это та же самая сущность. И чем же они отличаются? Первое отличие любых колебаний между собой - это их период, сущность которого рассматривалась выше. В технике и науке принято говорить об обратной периоду величине, частоте - количестве колебаний в секунду. Системная единица измерения частоты - герц.

Так вот, вся шкала электромагнитных колебаний - последовательность частот электромагнитных излучений, которые распространяются в пространстве.

Условно выделяют следующие участки:

Радиоволны - спектральная зона от 30 кГц до 3000ГГц;

Инфракрасные лучи - участок более длинноволнового, чем свет, излучения;

Видимый свет;

Ультрафиолетовые лучи - участок более коротковолнового, чем свет излучения;

Рентгеновские лучи;

Гамма-лучи.

Весь приведенный диапазон излучений представляет собой электромагнитные излучения единой природы, но разной частоты. Разбивка на участки носит чисто утилитарный характер, который диктуется удобством технических и научных приложений.

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания .

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур .

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C , катушки индуктивности L и проводника с сопротивлением R

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε . Когда ключ K находится в положении 1, конденсатор заряжается до напряжения. После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L . При определенных условиях этот процесс может иметь колебательный характер

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими , т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U 0 то в начальный момент времени t 1 =0 на обкладках конденсатора установятся амплитудные значения напряжения U 0 и заряда q 0 = CU 0 .

Полная энергия W системы равна энергии электрического поля W эл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I 0 в момент времени t 2 =T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля W м:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t 3 =T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q 0 , напряжение тоже равно первоначальному U = U 0 , а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q (t ) конденсатора и смещения x (t ) груза от положения равновесия, а также графики тока I (t ) и скорости груза υ(t ) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими , то есть происходят по закону

q (t ) = q 0 cos(ωt + φ 0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний и период колебаний - формула Томпсона

Амплитуда q 0 и начальная фаза φ 0 определяются начальными условиями , то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q (t ) = q 0 cosω 0 t

U (t ) = U 0 cosω 0 t

Для катушки индуктивности:

i (t ) = I 0 cos(ω 0 t + π/2)

U (t ) = U 0 cos(ω 0 t + π)

Вспомомним основные характеристики колебательного движения :

q 0, U 0 , I 0 - амплитуда – модуль наибольшего значения колеблющейся величины

Т - период – минимальный промежуток времени через который процесс полностью повторяется

ν - Частота – число колебаний в единицу времени

ω - Циклическая частота – число колебаний за 2п секунд

φ - фаза колебаний - величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

Электрические колебания и электромагнитные волны

Колебательные изменения в электрической цепи величин заряда, тока или напряжения называют электрическими колебаниями. Переменные электрический ток является одним из видов электрических колебаний.

Электрические колебания высокой частоты получают в большинстве случаев с помощью колебательного контура.

Колебательный контур представляет замкнутую цепь, состоящую из индуктивности L и емкости C .

Период собственных колебаний контура:

а ток в контуре изменяется но закону затухающих колебаний:

При воздействии на колебательный контур переменной ЭДС в контуре устанавливаются вынужденные колебания. Амплитуда вынужденных колебаний тока при постоянных значениях L , C , R зависит от отношения собственной частоты колебаний контура и частоты изменения синусоидальной ЭДС (рис.1).

Согласно закону Био–Савара–Лапласа ток проводимости создает магнитное поле с замкнутыми силовыми линиями. Такое поле называется вихревым .

Переменный ток проводимости создает переменное магнитное поле. Переменный ток в отличие от постоянного проходит через конденсатор; но этот ток не является током проводимости; он называется током смещении . Ток смещения представляет собой изменяющееся но времени электрическое поле; он создает переменное магнитное поле, как и переменный ток проводимости. Плотность тока смещения:

В каждой точке пространства изменение во времени индукции электрического поля создает переменное вихревое магнитное поле (рис.2а). Векторы B возникающего магнитного ноля лежат в плоскости, перпендикулярной к вектору D . Математическое уравнение, выражающее эту закономерность, называется первым уравнением Максвелла .

При электромагнитной индукции возникает электрическое поле с замкнутыми силовыми линиями (вихревое ноле), которое проявляется как ЭДС индукции. В каждой точке пространства изменение во времени вектора индукции магнитного поля создает переменное вихревое электрическое поле (рис.2б). Векторы D возникающего электрического поля лежат в плоскости, перпендикулярной к вектору B . Математическое уравнение, описывающее эту закономерность, называется вторым уравнением Максвелла .

Совокупность переменных электрических и магнитных полей, которые неразрывно связаны друг с другом, называется электромагнитным полем.

Из уравнений Максвелла следует, что возникшее в какой-либо точке изменение во времени электрического (или магнитного) поля будет перемещаться от одной точки к другой, при этом будут происходить взаимные превращения электрических и магнитных полей.

Электромагнитные волны представляют собой процесс одновременного распространения в пространстве изменяющихся электрического и магнитного полей. Векторы напряженностей электрического и магнитного полей (E и H ) к электромагнитной волне перпендикулярны друг к другу, а вектор v скорости распространения перпендикулярен к плоскости, в которой лежат оба вектора E и H (рис.3), Это справедливо при распространении электромагнитных волн и неограниченном пространстве.

Скорость распространения электромагнитных волн в вакууме не зависит от длины волны и равна

Скорость электромагнитных волн в различных средах меньше скорости в вакууме.