Если тангенциальная и нормальная. Нормальная и тангенциальная составляющие ускорения

Центростремительное ускорение - составляющая ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая составляющая, тангенциальное ускорение , характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение ». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой .

Наиболее простым примером центростремительного ускорения является вектор ускорения при равномерном движении по окружности (направленный к центру окружности).

Осестремительное ускорение в проекции на плоскость, перпендикулярную оси, предстаёт как центростремительное.

Элементарная формула [ | ]

a n = v 2 R {\displaystyle a_{n}={\frac {v^{2}}{R}}\ } a n = ω 2 R , {\displaystyle a_{n}=\omega ^{2}R\ ,}

где a n {\displaystyle a_{n}\ } - нормальное (центростремительное) ускорение, v {\displaystyle v\ } - (мгновенная) линейная скорость движения по траектории, ω {\displaystyle \omega \ } - (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, R {\displaystyle R\ } - радиус кривизны траектории в данной точке. (Связь между первой формулой и второй очевидна, учитывая v = ω R {\displaystyle v=\omega R\ } ).

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на e R {\displaystyle \mathbf {e} _{R}} - единичный вектор от центра кривизны траектории к данной её точке:

a n = v 2 R e R = v 2 R 2 R {\displaystyle \mathbf {a} _{n}={\frac {v^{2}}{R}}\mathbf {e} _{R}={\frac {v^{2}}{R^{2}}}\mathbf {R} } a n = ω 2 R . {\displaystyle \mathbf {a} _{n}=\omega ^{2}\mathbf {R} .}

Эти формулы равноприменимы как к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором случае надо иметь в виду, что центростремительное ускорение это не полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории движения (или перпендикулярная вектору мгновенной скорости); В полный же вектор ускорения входит еще и тангенциальная составляющая (тангенциальное ускорение ) a τ = d v / d t {\displaystyle a_{\tau }=dv/dt\ } , сонаправленная касательной к траектории движения (или, что то же, мгновенной скорости) .

Мотивация и вывод [ | ]

То, что разложение вектора ускорения на компоненты - одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) - может быть удобным и полезным, довольно очевидно само по себе. При движении с постоянной по модулю скоростью тангенциальная составляющая становится равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности.

Формальный вывод [ | ]

Разложение ускорения на тангенциальную и нормальную компоненты (вторая из которых и есть центростремительное или нормальное ускорение) можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

Здесь использовано обозначение для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

d l / d t = v {\displaystyle dl/dt=v\ }

и, из геометрических соображений,

d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.} v 2 R e n {\displaystyle {\frac {v^{2}}{R}}\mathbf {e} _{n}\ }

Нормальным (центростремительным) ускорением. При этом его смысл, смысл входящих в него объектов, а также доказательство того факта, что он действительно ортогонален касательному вектору (то есть что e n {\displaystyle \mathbf {e} _{n}\ } - действительно вектор нормали) - будет следовать из геометрических соображений (впрочем, то, что производная любого вектора постоянной длины по времени перпендикулярна самому этому вектору, - достаточно простой факт); в данном случае мы применяем это утверждение для d e τ d t {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dt}}}

Замечания [ | ]

Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

Приведенные здесь способы или их варианты могут быть использованы для введения таких понятий, как кривизна кривой и радиус кривизны кривой (поскольку в случае, когда кривая - окружность, R {\displaystyle R} совпадает с радиусом такой окружности; не слишком трудно также показать, что окружность в плоскости e τ , e n {\displaystyle \mathbf {e} _{\tau },\,e_{n}} с центром в направлении e n {\displaystyle e_{n}\ } от данной точки на расстоянии R {\displaystyle R} от неё - будет совпадать с данной кривой - траекторией - с точностью до второго порядка малости по расстоянию до данной точки).

.Тангенциальное ускорение – векторная физическая величина, характеризующая изменение скорости тела по абсолютному значению, численно равная первой производной от модуля скорости по времени и направленная по касательной к траектории в ту же сторону, что и скорость, если скорость возрастает, и противоположно скорости, если она убывает.

4

Нормальное ускорение

.Нормальное ускорение – векторная физическая величина, характеризующая изменение направления скорости, численно равная отношению квадрата скорости к радиусу кривизны траектории, направленная вдоль радиуса кривизны к центру кривизны:

.

Т

ак как векторыинаправлены под прямым углом, то (рис. 1. 17)

, (1.2.9)

5.Угловое ускорение – векторная физическая величина, характеризующая изменение угловой скорости, численно равная первой производной угловой скорости по времени и направленная вдоль оси вращения в ту же сторону, что и угловая скорость, если скорость возрастает, и противоположно ей, если она убывает.

Формулу вставить (1.2.10)

СИ:

Полное ускорение

(линейное)

Поскольку мы ограничиваемся рассмотрением вращения вокруг неподвижной оси, угловое ускорение не делится на составляющие подобно линейному.

Угловое ускорение

Связь между угловыми характеристиками

вращающегося тела и линейными

характеристиками движения его отдельных точек

Р

СИ:

ассмотрим одну из точек вращающегося тела, которая находится от оси вращения на расстоянииR, то есть движется по окружности радиуса R (рис. 1.18).

По истечении времени
точка А переместится в положение А 1 , пройдя расстояние
, радиус-вектор повернется на угол
. Центральный угол, опирающийся на дугу
, в радианной мере равен отношению длины дуги к радиусу кривизны этой дуги:

.

Это остается справедливым и для бесконечно малого интервала времени
:
. Далее, используя определения, легко получить:

; (1.2.11)

Связь между линейными и угловыми характеристиками


; (1.2.12)

. (1.2.13)

1.1.2. Классификация движений. Кинематические законы

Кинематическими законами будем называть законы, выражающие изменение кинематических характеристик движения с течением времени:

Закон пути
или
;

Закон скорости
или
;

Закон ускорения
или
.

Н

Ускорение

Ускорение гоночного автомобиля на старте 4-5 м/с 2

Ускорение реактивного самолета при посадке

6-8 м/ c 2

Ускорение свободного падения вблизи поверхности Солнца 274 м/ c 2

Ускорение снаряда в стволе орудия 10 5 м/ c 2

аиболее информативной характеристикой движения является ускорение, поэтому оно используется в качестве основания для классификации движений.

Нормальное ускорение несет информацию об изменении направления скорости, то есть об особенностях траектории движения:

- движение прямолинейное (направление скорости не меняется);

- движение криволинейное.

Тангенциальное ускорение определяет характер изменения модуля скорости с течением времени. По этому признаку принято выделять следующие виды движения:

- равномерное движение (абсолютное значение скорости не меняется);

- ускоренное движение

- неравномер- (скорость возрастает)

ное движе-
-замедленное движе

ние ние (скорость убывает).

Наиболее простыми частными случаями неравномерного движения являются движения, при которых

- тангенциальное ускорение не зависит от времени, остается постоянным во время движения – равнопеременное движение (равноускоренное или равнозамедленное);

или
- тангенциальное ускорение меняется с течением времени по закону синуса или косинуса – гармоническое колебательное движение (например, грузик на пружине).

Аналогично для вращательного движения:

- равномерное вращение;

- неравномерное вращение

Типы движения записать более компактно

-равноускоренное

вращение

- замедлен-

ное вращение;

- равнопе-

ременное вращение

Крутильные колебания (например, трифилярный подвес – диск, подвешенный на трех упругих нитях, и совершающий колебания в горизонтальной плоскости).

Если известен один из кинематических законов в аналитической форме, то можно найти другие, при этом возможны два типа задач:

I тип – по заданному закону пути
или
найти закон скорости
или
и закон ускорения
или
;

II тип – по заданному закону ускорения
или
найти закон скорости
или
и закон пути
или
.

Эти задачи являются взаимно обратными и решаются на основе применения обратных математических операций. Первый тип задач решается на основе определений, то есть путем применения операции дифференцирования.


- задано

- ?

- ?
.

Второй тип задач решается путем интегрирования. Если скорость есть первая производная от пути по времени, то путь по отношению к скорости можно найти как первообразную. Аналогично: ускорение есть производная от скорости по времени, тогда скорость по отношению к ускорению – первообразная. Математически эти действия выглядят так:

- приращение пути за бесконечно малый промежуток времени
. Для конечного интервала отдоинтегрируем:
. По правилам интегрирования
. Чтобы взять интеграл в правой части, нужно знать вид закона скорости, то есть
. Окончательно, для нахождения положения тела на траектории в произвольный момент времени получаем:

, где (1.2.14)

- изменение скорости за бесконечно малый промежуток времени
.

Для конечного интервала от до:

Разложение ускорения a (t) {\displaystyle \mathbf {a} (t)\ \ } на тангенциальное и нормальное a n {\displaystyle \mathbf {a} _{n}} ; ( τ {\displaystyle \mathbf {\tau } } - единичный касательный вектор).

Тангенциа́льное ускоре́ние - компонента ускорения , направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты , характеризующей изменение направления скорости. Тангенциальное ускорение равно произведению единичного вектора, направленного по скорости движения, на производную модуля скорости по времени. Таким образом, направлено в ту же сторону, что и вектор скорости при ускоренном движении (положительная производная) и в противоположную при замедленном (отрицательная производная).

Обозначается обычно символом, выбранным для ускорения, с добавлением индекса, обозначающего тангенциальную компоненту: a τ {\displaystyle \mathbf {a} _{\tau }\ \ } или a t {\displaystyle \mathbf {a} _{t}\ \ } , w τ {\displaystyle \mathbf {w} _{\tau }\ \ } , u τ {\displaystyle \mathbf {u} _{\tau }\ \ } и т. д.

Иногда используется не векторная форма, а скалярная - a τ {\displaystyle a_{\tau }\ \ } , обозначающая проекцию полного вектора ускорения на единичный вектор касательной к траектории, что соответствует коэффициенту разложения по сопутствующему базису .

Энциклопедичный YouTube

  • 1 / 5

    Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

    a τ = d v d t , {\displaystyle a_{\tau }={\frac {dv}{dt}},}

    где v = d l / d t {\displaystyle v\ =dl/dt} - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

    Если использовать для единичного касательного вектора обозначение e τ {\displaystyle \mathbf {e} _{\tau }\ } , то можно записать тангенциальное ускорение в векторном виде:

    a τ = d v d t e τ . {\displaystyle \mathbf {a} _{\tau }={\frac {dv}{dt}}\mathbf {e} _{\tau }.}

    Вывод

    Вывод 1

    Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\,\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение .

    Здесь использовано обозначение e n {\displaystyle e_{n}\ } для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

    d l / d t = v {\displaystyle dl/dt=v\ }

    и, из геометрических соображений,

    d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.}

    Вывод 2

    Если траектория гладкая (что предполагается), то:

    То и другое следует из того, что угол вектора к касательной будет не ниже первого порядка по . Отсюда сразу же следует искомая формула.

    Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых d t {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ } , поскольку угол отклонения этого вектора от касательной при малых d t {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .

    Замечания

    Абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

    Чтобы уметь решать различные задачи на движение тел по физике, необходимо знать определения физических величин, а также формулы, с помощью которых они связаны. В этой статье будут рассмотрены вопросы, что такое тангенциальная скорость, что такое полное ускорение и какие компоненты его составляют.

    Понятие о скорости

    Двумя основными величинами кинематики перемещения тел в пространстве являются скорость и ускорение. Скорость описывает быстроту перемещения, поэтому математическая форма записи для нее имеет следующий вид:

    Вам будет интересно:

    Здесь l¯ - является вектором перемещения. Иными словами, скорость - это производная по времени от пройденного пути.

    Как известно, всякое тело движется по воображаемой линии, которая называется траекторией. Вектор скорости всегда направлен по касательной к этой траектории, в какой бы точке не находилось движущееся тело.

    Существует несколько названий величины v¯, если рассматривать ее совместно с траекторией. Так, поскольку направлена она по касательной, то ее называют тангенциальной скоростью. Также о ней могут говорить, как о линейной физической величине в противоположность угловой скорости.

    Вычисляется скорость в метрах в секунду в СИ, однако на практике часто пользуются километрами в час.

    Понятие об ускорении

    В отличие от скорости, которая характеризует быстроту прохождения телом траектории, ускорение - это величина, описывающая быстроту изменения скорости, что математически записывается так:

    Как и скорость, ускорение - это векторная характеристика. Однако его направление не связано с вектором скорости. Оно определяется изменением направления v¯. Если в процессе движения скорость не изменяет своего вектора, тогда ускорение a¯ будет направлено вдоль той же линии, что и скорость. Такое ускорение называют тангенциальным. Если же скорость будет менять направление, сохраняя при этом абсолютное значение, то ускорение будет направлено к центру кривизны траектории. Оно называется нормальным.

    Измеряется ускорение в м/с2. Например, известное всем ускорение свободного падения является тангенциальным при вертикальном подъеме или падении объекта. Его величина вблизи поверхности нашей планеты составляет 9,81 м/с2, то есть за каждую секунду падения скорость тела увеличивается на 9,81 м/с.

    Причиной появления ускорения является не скорость, а сила. Если сила F оказывает действие на тело массой m, то она неминуемо создаст ускорение a, которое можно вычислить так:

    Эта формула является прямым следствием из второго закона Ньютона.

    Полное, нормальное и тангенциальное ускорения

    Скорость и ускорение как физические величины были рассмотрены в предыдущих пунктах. Теперь мы подробнее изучим, какие компоненты составляют полное ускорение a¯.

    Предположим, что тело движется со скоростью v¯ по криволинейной траектории. Тогда будет справедливо равенство:

    Вектор u¯ имеет единичную длину и направлен вдоль касательной линии к траектории. Воспользовавшись таким представлением скорости v¯, получим равенство для полного ускорения:

    a¯ = dv¯/dt = d(v*u¯)/dt = dv/dt*u¯ + v*du¯/dt.

    Полученное в правом равенстве первое слагаемое называется тангенциальным ускорением. Скорость связана с ним тем фактом, что она количественно определяет изменение абсолютного значения величины v¯, не принимая во внимание ее направление.

    Второе слагаемое - это нормальное ускорение. Оно количественно описывает изменение вектора скорости, не принимая во внимание изменение ее модуля.

    Если обозначить как at и an тангенциальную и нормальную составляющие полного ускорения a, тогда модуль последнего можно вычислить по формуле:

    a = √(at2 + an2).

    Связь тангенциального ускорения и скорости

    Соответствующую связь описывают кинематические выражения. Например, в случае движения по прямой с постоянным ускорением, которое является тангенциальным (нормальная составляющая равна нулю), справедливы выражения:

    В случае движения по окружности с постоянным ускорением эти формулы так же справедливы.

    Таким образом, какой бы ни была траектория перемещения тела, тангенциальное ускорение через тангенциальную скорость рассчитывается, как производная по времени от ее модуля, то есть:

    Например, если скорость изменяется по закону v = 3*t3 + 4*t, тогда at будет равно:

    at = dv/dt = 9*t2 + 4.

    Скорость и нормальное ускорение

    Запишем в явном виде формулу для нормальной компоненты an, имеем:

    an¯ = v*du¯/dt = v*du¯/dl*dl/dt = v2/r*re¯

    Где re¯ - единичной длины вектор, который к центру кривизны траектории направлен. Это выражение устанавливает связь тангенциальной скорости и нормального ускорения. Видим, что последнее зависит от модуля v в данный момент времени и от радиуса кривизны r.

    Нормальное ускорение появляется всегда, когда изменяется вектор скорости, однако оно равно нулю, если этот вектор сохраняет направление. Говорить о величине an¯ имеет смысл только тогда, когда кривизна траектории является конечной величиной.

    Выше мы отмечали, что при движении по прямой линии нормальное ускорение отсутствует. Однако в природе существует тип траектории, при движении по которой an имеет конечную величину, а at = 0 при |v¯| = const. Этой траекторией является окружность. Например, вращение с постоянной частотой металлического вала, карусели или планеты вокруг собственной оси происходит с постоянным нормальным ускорением an и нулевым тангенциальным ускорением at.

    Движение материальной точки по криволинейной траектории всегда является ускоренным, поскольку если даже скорость не изменяется по численному значению, то всегда изменяется по направлению.

    В общем случае ускорение при криволинейном движении можно представить в виде векторной суммы касательного (или тангенциального) ускорения t и нормального ускорения n : = t + n - рис. 1.4.

    Касательное ускорение характеризует быстроту изменения скорости по модулю. Значение этого ускорения будет:

    Нормальное ускорение характеризует быстроту изменения скорости по направлению. Численное значение этого ускорения, где r - радиус соприкасающейся окружности, т.е. окружности, проведенной через три бесконечно близкие точки B ¢, A, B , лежащих на кривой (рис. 1.5). Вектор n направлен по нормали к траектории к центру кривизны (центру соприкасающейся окружности).

    Численное значение полного ускорения

    где - угловая скорость.

    где -угловое ускорение.

    Угловое ускорение численно равно изменению угловой скорости за единицу времени.

    В заключение приведём таблицу, в которой устанавливается аналогия между линейными и угловыми кинематическими параметрами движения.

    Конец работы -

    Эта тема принадлежит разделу:

    Краткий курс физики

    Министерство образования и науки Украины.. одесская национальная морская академия..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Основные единицы СИ
    В настоящее время общепринятой является Международная система единиц - СИ. Эта система содержит семь основных единиц: метр, килограмм, секунда, моль, ампер, кельвин, кандела и две дополнительные -

    Механика
    Механика - наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними. Под механическим движением понимают изменение с течением времени взаимного пол

    Законы Ньютона
    Динамика - раздел механики, в котором изучается движение материальных тел под воздействием приложенных к ним сил. В основе механики лежат законы Ньютона. Первый закон Ньютона

    Закон сохранения импульса
    Рассмотрим вывод закона сохранения импульса на основе второго и третьего законов Ньютона.

    Связь между работой и изменением кинетической энергии
    Рис. 3.3 Пусть тело массой т движется вдоль оси х под

    Связь между работой и изменением потенциальной энергии
    Рис. 3.4 Эту связь мы установим на примере работы силы тяжес

    Закон сохранения механической энергии
    Рассмотрим замкнутую консервативную систему тел. Это означает, что на тела системы не действуют внешние силы, а внутренние силы по своей природе являются консервативными. Полной механическ

    Соударения
    Рассмотрим важный случай взаимодействия твёрдых тел - соударения. Соударением (ударом) называется явление конечного изменения скоростей твёрдых тел за весьма малые промежутки времени при их непо

    Основной закон динамики вращательного движения
    Рис. 4.3 Для вывода этого закона рассмотрим простейший случа

    Закон сохранения момента импульса
    Рассмотрим изолированное тело, т.е. такое тело на которое не действует внешний момент сил. Тогда Mdt = 0 и из (4.5) следует d(Iw)=0, т.е. Iw=const. Если изолированная система состоит

    Гироскоп
    Гироскопом называется симметричное твёрдое тело, вращающееся вокруг оси, совпадающей с осью симметрии тела, проходящей через центр масс, и соответствующей наибольшему собственному моменту инерции.

    Общая характеристика колебательных процессов. Гармонические колебания
    Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени. В технике устройства, использующие колебательные процессы могут выполнять оп

    Колебания пружинного маятника
    Рис. 6.1 Укрепим на конце пружины тело массой m, которое мож

    Энергия гармонического колебания
    Рассмотрим теперь на примере пружинного маятника процессы изменения энергии в гармоническом колебании. Очевидно, что полная энергия пружинного маятника W=Wk+Wp, где кинетическая

    Сложение гармонических колебаний одинакового направления
    Решение ряда вопросов, в частности, сложение нескольких колебаний одинакового направления, значительно облегчается, если изображать колебания графически, в виде векторов на плоскости. Полученная та

    Затухающие колебания
    В реальных условиях в системах, совершающих колебания, всегда присутствуют силы сопротивления. В результате система постепенно расходует свою энергию на выполнение работы против сил сопротивления и

    Вынужденные колебания
    В реальных условиях колеблющаяся система постепенно теряет энергию на преодоление сил трения, поэтому колебания являются затухающими. Чтобы колебания были незатухающими, необходимо каким-то образом

    Упругие (механические) волны
    Процесс распространения возмущений в веществе или поле, сопровождающийся переносом энергии, называется волной. Упругие волны - процесс распространения в упругой среде механически

    Интерференция волн
    Интерференцией называется явление наложения волн от двух когерентных источников, в результате которого происходит перераспределение интенсивности волн в пространстве, т.е. возникают интерференци

    Стоячие волны
    Частным случаем интерференции является образование стоячих волн. Стоячие волны возникают при интерференции двух встречных когерентных волн с одинаковой амплитудой. Такая ситуация может возни

    Эффект Допплера в акустике
    Звуковыми волнами называют упругие волны с частотами от 16 до 20000 Гц, воспринимаемые органами слуха человека. Звуковые волны в жидких и газообразных средах являются продольными. В твёрды

    Основное уравнение молекулярно-кинетической теории газов
    Рассмотрим в качестве простейшей физической модели идеальный газ. Идеальным называется такой газ, для которого выполняются следующие условия: 1) размеры молекул настолько малы, ч

    Распределение молекул по скоростям
    Рис.16.1 Предположим, чтонам удалось измерить скорости всех

    Барометрическая формула
    Рассмотрим поведение идеального газа в поле силы тяжести. Как известно, по мере подъёма от поверхности Земли давление атмосферы уменьшается. Найдём зависимость давления атмосферы от высоты

    Распределение Больцмана
    Выразим давление газа на высотах h иh0 через соответствующее число молекул в единице объёмап ип0, считая, что на разных высотахT=const: P =

    Первое начало термодинамики и его применение к изопроцессам
    Первое начало термодинамики - это обобщение закона сохранения энергии с учётом тепловых процессов. Его формулировка: количество теплоты, сообщённое системе, расходуется на выполнение работы

    Число степеней свободы. Внутренняя энергия идеального газа
    Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при её движении в п

    Адиабатный процесс
    Адиабатным называется процесс, происходящий без теплообмена с окружающей средой. В адиабатном процессеdQ = 0, поэтому первое начало термодинамики применительно к этому процессу прин

    Обратимые и необратимые процессы. Круговые процессы (циклы). Принцип действия тепловой машины
    Обратимыми называются такие процессы, которые удовлетворяют следующим условиям. 1. После прохождения этих процессов и возвращения термодинамической системы в исходное состояние в

    Идеальная тепловая машина Карно
    Рис. 25.1 В 1827 г. французский военный инженер С. Карно, ре

    Второе начало термодинамики
    Первое начало термодинамики, которое является обобщением закона сохранения энергии с учётом тепловых процессов, не указывает на направленность протекания различных процессов в природе. Так, первое

    Невозможен процесс, единственным результатом которого была бы передача теплоты от холодного тела к горячему
    В холодильной машине теплота передаётся от холодного тела (морозильной камеры) в более нагретую окружающую среду. Казалось бы, что это противоречит второму началу термодинамики. На самом деле проти

    Энтропия
    Введём теперь новый параметр состояния термодинамической системы - энтропию, которая принципиально отличается от других параметров состояния направленностью своего изменения. Элементарное измене

    Дискретность электрического заряда. Закон сохранения электрического заряда
    Источником электростатического поля служит электрический заряд - внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия.

    Энергия электростатического поля
    Найдём вначале энергию заряженного плоского конденсатора. Очевидно, что эта энергия численно равна работе, которую нужно совершить, чтобы разрядить конденсатор.

    Основные характеристики тока
    Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила тока численно равна заряду, прошедшему через поперечное сечение проводника за единицу

    Закон Ома для однородного участка цепи
    Однородным называется участок цепи, не содержащий источника ЭДС. Ом экспериментально установил, что сила тока на однородном участке цепи пропорциональна напряжению и обратно пропорц

    Закон Джоуля - Ленца
    Джоуль и независимо от него Ленц экспериментально установили, что количество теплоты, выделенной в проводнике с сопротивлением R за время dt, пропорционально квадрату силы тока, сопротивлен

    Правила Кирхгофа
    Рис. 39.1 Для расчёта сложных цепей постоянного тока применя

    Контактная разность потенциалов
    Если два разнородных металлических проводника привести в контакт, то электроны получают возможность переходить из одного проводника в другой и обратно. Равновесное состояние такой системы

    Эффект Зеебека
    Рис. 41.1 В замкнутой цепи из двух разнородных металлов на г

    Эффект Пельтье
    Второе термоэлектрическое явление - эффект Пельтъе состоит в том, что при пропускании электрического тока через контакт двух разнородных проводников в нём происходит выделение или поглощени