Естественная и искусственная радиоактивности. Естественные радиоактивные элементы

    янЗакон сохр массы-Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции

    Атомно-молекулярное учение разработал М.В. Ломоносовв 1741 г. Основные положения закона:

1) все вещества состоят из «корпускул» (молекул);

2) молекулы состоят из «элементов» (атомов);

3) частицы – молекулы и атомы – находятся в непрерывном движении. Тепловое состояние тел есть результат движения их частиц;

4) молекулы простых веществ состоят из одинаковых атомов, а молекулы сложных веществ – из различных атомов. Атомно-молекулярное учение окончательно утвердилось в 1860 г.

    П ростые вещества - вещества, состоящие исключительно из атомов одного химического элемента, в отличие от сложных веществ. В зависимости от типа химической связи между атомами простые вещества могут быть металлами (Na, Mg, Al, Bi и др.) и неметаллами (H 2 , N 2 , Br 2 , Si и др.)

    Химический элемент - совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Менделеева.

    Закон постоянства состава - любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов

    Закон кратных отношений - один из стехиометрических законов химии: если два элемента образуют друг с другом более одного соединения, то массы одного из элементов, приходящиеся на одну и ту же массу другого элемента,

относятся как целые числа, обычно небольшие.

    Закон обьёмных отношен объемы вступающих в реакцию газов при одинаковых условиях (температуре и давлении) относятся друг к другу как целые числа.

    Атомная масса элемента - есть отношение массы его атома к 1/12 части массы атома 12С

Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения). Молекуля́рная ма́сса масса молекулы, выраженная в атомных единицах массы. Численно равна молярной массе.

Моль – это единица количества вещества. Это такое количество вещества (или его порция), которое содержит 6,02 · 1023 частиц (молекул, атомов или других частиц)

    Закон Авагадро в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул

    Моль – это единица количества вещества. Это такое количество вещества (или его порция), которое содержит 6,02 · 1023 частиц (молекул, атомов или других частиц)

    Эквивалент- это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях

    закон эквивалентов: все вещества реагируют в эквивалентных отношениях. Валентностью называется свойство атомов данного элемента присоединять или замещать в соединении определенное число атомов другого элемента

    Закон Авогадро позволяет определить число атомов, входящих в состав молекул простых газов. Путем изучения объемных отношений при реакциях, в которых участвуют водород, кислород, азот и хлор, было установлено, что молекулы этих газов двухатомны. Следовательно, определив относительную молекулярную массу любого из этих газов и разделив ее пополам, можно было сразу найти относительную атомную массу соответствующего элемента. Например, установили, что молекулярная масса хлора равна 70,90; отсюда атомная масса хлора равняется или 35,45.

    Вале́нтность способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов.

Внутр.э-это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы

Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

    энергетическое состояние электронов в атоме.

    Главное квантовое число - целое число, обозначающее номер энергетического уровня. Характеризует энергию электронов, занимающих данный энергетический уровень. Является первым в ряду квантовых чисел, который включает в себя главное, орбитальное имагнитное квантовые числа, а также спин

    Орбитальное квантовое число - в квантовой физике квантовое число ℓ, определяющее форму распределения амплитуды волновой функции электрона в атоме, то есть форму электронного облака. Определяет подуровень энергетического уровня, задаваемого главным (радиальным) квантовым числом n и может принимать значения

Является собственным значением оператора орбитального момента электрона, отличающегося от момента количества движенияэлектрона j лишь на оператор спина s :

    Энергия ионизации - представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома. На энергию ионизации атома наиболее существенное влияние оказывают следующие факторы:

    эффективный заряд ядра, являющийся функцией числа электронов в атоме, экранирующих ядро и расположенных на более глубоко лежащих внутренних орбиталях;

    радиальное расстояние от ядра до максимума зарядовой плотности наружного, наиболее слабо связанного с атомом и покидающего его при ионизации, электрона;

    мера проникающей способности этого электрона;

    межэлектронное отталкивание среди наружных (валентных) электронов.

    Сродство к электрону - количество энергии, выделяющееся при присоединении электрона к атому, молекуле пли радикалу. Сродство к электрону выражается обычно в электрон-вольтах. Значение величины Сродства к электрону важно для понимания природы химической связи и процессов образования отрицательных ионов. Чем больше Сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, у атомов неметаллов Сродство к электрону тем больше, чем ближе стоит элемент (неметалл) к инертному газу в периодической системе Д. И. Менделеева. Поэтому в пределах периода усиливаются неметаллические свойства по мере приближения к концу периода.

    Атом состоит из ядра и окружающего его электронного "облака". Находящиеся в электронном облаке электроны несут отрицательный электрический заряд. Протоны , входящие в состав ядра, несутположительный заряд.В любом атоме число протонов в ядре в точности равно числу электронов в электронном облаке, поэтому атом в целом – нейтральная частица, не несущая заряда.Атом может потерять один или несколько электронов или наоборот – захватить чужые электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом .

    Изото́пы (от др.-греч. ισος - «равный» , «одинаковый» , и τόπος - «место» ) - разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева: 16 8 O, 17 8 O, 18 8 O - три стабильных изотопа кислорода.

    Радиоактивные элементы и их распад.

Радиоактивный распад - спонтанное изменение состава нестабильных атомных ядер путём испускания элементарных частиц или ядерных фрагментов. Существуют альфа, бета и гамма распады. Соответственно они испускают альфа, бета и гамма частицы. Распад имеющий самую сильную проникающую способность, это гамма распад (не откланяются магнитным полем). Альфа – положительно заряженные частицы. Бета – отрицательно заряженные частицы.

Распад ядер радиоактивных элементов или изотопов может происходить тремя основными путями, и соответствующие реакции ядерного распада названы тремя первыми буквами греческого алфавита. При альфа-распаде выделяется атом гелия, состоящий из двух протонов и двух нейтронов, - его принято называть альфа-частицей. Поскольку альфа-распад влечет за собой понижение числа положительно заряженных протонов в атоме на два, ядро, испустившее альфа-частицу, превращается в ядро элемента, отстоящую на две позиции ниже от нее в периодической системе Менделеева. При бета-распаде ядро испускает электрон, а элемент продвигается на одну позицию вперед по периодической таблице (при этом, по существу, нейтрон превращается в протон с излучением этого самого электрона). Наконец, гамма-распад - это распад ядер с излучением фотонов высоких энергий, которые принято называть гамма-лучами. При этом ядро теряет энергию, но химический элемент не видоизменяется. Радиоактивный элемент - химический элемент, все изотопы которого радиоактивны.

  1. 37. Искусственная радиоактивность.

Искусственная радиоактивность - самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции. Все три типа излучений - a, b и g, характерные для естественной радиоактивности,- испускаются также и искусственно-радиоактивными веществами. Однако среди искусственно-радиоактивных веществ часто встречается еще иной тип распада, не свойственный естественно-радиоактивным элементам. Это - распад с испусканием позитронов - частиц, обладающих массой электрона, но несущих -положительный заряд. По абсолютной величине заряды позитрона и электрона равны. Искусственно-радиоактивные вещества могут получаться при весьма разнообразных ядерных реакциях. Примером может служить реакция захвата нейтронов серебром. Для проведения такой реакции достаточно поместить пластинку серебра поблизости от источника нейтронов, окруженного парафином.

  1. 38. Ядерные реакции.

Ядерная реакция - процесс образования новых ядер или частиц при их столкновениях. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

  1. 39. Теория химического строения.

У этой теории четыре положения: 1) Атомы в молекуле соединены в определённой последовательности в соответствии с их валентностью. Эта последовательность называется химическим строением . 2) Свойства вещества зависят не только от качественного и количественного состава молекулы, но и от её химического строения. Вещества, имеющие один и тот же состав, но разное строение, называются изомерами , а само их существование изомерией . 3) Атомы и группы атомов в молекуле взаимно влияют друг на друга непосредственно или посредством других атомов. 4) Строение вещества познаваемо, возможен синтез веществ с заданным строением. Бутлеров.1861 г.

  1. 40. Ковалентная связь.

Ковалентная связь - химическая связь, образованная перекрытием пары валентных электронных облаков. Обеспечивающие связь электронные облака называются общей электронной парой . Бывает полярной и неполярной. Важная характеристика ковалентной связи это её полярность. Если молекула состоит из 2 атомов, которые связаны полярной связью, то такая молекула – полярная молекула. Представляет собой диполь. Диполь – электро-нейтральная система в которой центры положительного и отрицательного заряда находятся на определённом расстоянии друг от друга. Полярность молекулы, количественно оценивается дипольным моментом, которые равен произведению длины диполя на значение эффективного заряда. Эффективный заряд = 1.6 * 10 -19 Кл. Способность молекул и отдельных связей полиризоватся под влиянием внешнего электрического поля называется полиризуемостью. Способность атома участвовать в образовании ограниченного числа ковалентных связей, называется насыщаемостью ковалентной связи. Направленность ковалентной связи обуславливает пространственную структуру молекул, т.е. перекрывание электронных облаков. Происходит только при определённой взаимной ориентации орбиталей обеспечивающей наибольшую электронную плотность в области перекрывания.

Естественная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час.

Откуда же берется естественная радиоактивность? Существует три основных источника:

1. Космическое излучение и солнечная радиация - это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник - атмосфера.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания.

3. Радон - это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Искусственная радиоактивность

В отличие от естественных источников радиации, искусственная радиоактивность возникла и распространяется исключительно силами людей. К основным техногенным радиоактивным источникам относят ядерное оружие, промышленные отходы, АЭС, медицинское оборудование, предметы старины, вывезенные из «запретных» зон после аварии Чернобыльской АЭС, некоторые драгоценные камни.

Радиоакти́вность- свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов. Соответствующее явление называется радиоактивным распадом. Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.



Альфа-,бета- и гамма распад.

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Альфа-распад – это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Бета-распад – это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Ядерные реакции.

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.

При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы).

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

Q = (M A + M B – M C – M D)c 2 = ΔMc 2 .

где M A и M B – массы исходных продуктов, M C и M D – массы конечных продуктов реакции. Величина ΔM называется дефектом масс. Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q < 0). Во втором случае первоначальная кинетическая энергия исходных продуктов должна превышать величину |Q |, которая называется порогом реакции .

Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина ΔM должна быть положительной.

Цепные реакции.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией .

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции.

Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу . В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг.

Искусственную радиоактивность открыли супруги Ирен (1897–1956) и Фредерик (1900–1958) Жолио-Кюри. 15 января 1934 года их заметка была представлена Ж. Перреном на заседании Парижской Академии наук. Ирен и Фредерик сумели установить, что после бомбардировки альфа-частицами некоторые легкие элементы - магний, бор, алюминий - испускают позитроны. Далее они попытались установить механизм этого испускания, которое отличалось по своему характеру от всех известных в то время случаев ядерных превращений. Ученые поместили источник альфа-частиц (препарат полония) на расстоянии одного миллиметра от алюминиевой фольги. Затем они подвергали ее облучению в течение примерно десяти минут. Счетчик Гейгера - Мюллера показал, что фольга испускает излучение, интенсивность которого падает во времени по экспоненциальной зависимости с периодом полураспада 3 минут 15 секунд. В экспериментах с бором и магнием периоды полураспада составили 14 и 2,5 минут соответственно.

А вот при опытах с водородом, литием, углеродом, бериллием, азотом, кислородом, фтором, натрием, кальцием, никелем и серебром таких явлений не обнаруживалось. Тем не менее супруги Жолио-Кюри сделали вывод о том, что излучение, вызванное бомбардировкой атомов алюминия, магния и бора, нельзя объяснить наличием какой-либо примеси в полониевом препарате. «Анализ излучения бора и алюминия в камере Вильсона показал, - пишут в своей книге „Биография атома“ К. Манолов и В. Тютюнник, - что оно представляет собой поток позитронов. Стало ясно, что ученые имеют дело с новым явлением, существенно отличавшимся от всех известных случаев ядерных превращений. Известные до того времени ядерные реакции носили взрывной характер, тогда как испускание положительных электронов некоторыми легкими элементами, подвергнутыми облучению альфа-лучами полония, продолжается в течение некоторого более или менее продолжительного времени после удаления источника альфа-лучей. В случае бора, например, это время достигает получаса».

Супруги Жолио-Кюри пришли к выводу, что здесь речь идет о самой настоящей радиоактивности, проявляющейся в испускании позитрона.

Нужны были новые доказательства, и, прежде всего, требовалось выделить соответствующий радиоактивный изотоп. Опираясь на исследования Резерфорда и Кокрофта, Ирен и Фредерику Жолио-Кюри удалось установить, что происходит с атомами алюминия при бомбардировке их альфа-частицами полония. Сначала альфа-частицы захватываются ядром атома алюминия, положительный заряд которого возрастает на две единицы, вследствие чего оно превращается в ядро радиоактивного атома фосфора, названного учеными «радиофосфором». Этот процесс сопровождается испусканием одного нейтрона, вот почему масса полученного изотопа возрастает не на четыре, а на три единицы и становится равной 30. Устойчивый изотоп фосфора имеет массу 31. «Радиофосфор» с зарядом 15 и массой 30 распадается с периодом полураспада 3 минут 15 секунд, излучая один позитрон и превращаясь в устойчивый изотоп кремния.

Единственным и неоспоримым доказательством того, что алюминий превращается в фосфор и потом в кремний с зарядом 14 и массой 30, могло быть только выделение этих элементов и их идентификация с помощью характерных для них качественных химических реакций. Для любого химика, работающего с устойчивыми соединениями, это было простой задачей, но у Ирен и Фредерика положение было совершенно иным: полученные ими атомы фосфора существовали чуть больше трех минут. Химики располагают множеством методов обнаружения этого элемента, но все они требуют длительных определений. Поэтому мнение химиков было единодушным: идентифицировать фосфор за такое короткое время невозможно.

Однако супруги Жолио-Кюри не признавали слова «невозможно». И хотя эта «неразрешимая» задача требовала непосильного труда, напряжения, виртуозной ловкости и бесконечного терпения, она была решена. Несмотря на чрезвычайно малый выход продуктов ядерных превращений и совершенно ничтожную массу вещества, претерпевшего превращение, - лишь несколько миллионов атомов, удалось установить химические свойства полученного радиоактивного фосфора.

Обнаружение искусственной радиоактивности сразу было оценено как одно из крупнейших открытий века. До этого радиоактивность, которая была присуща некоторым элементам, не могла быть ни вызвана, ни уничтожена, ни как-нибудь изменена человеком. Супруги Жолио-Кюри впервые искусственно вызвали радиоактивность, получив новые радиоактивные изотопы. Ученые предвидели большое теоретическое значение этого открытия и возможности его практических приложений в области биологии и медицины.

Уже в следующем году первооткрыватели искусственной радиоактивности Ирен и Фредерик Жолио-Кюри были удостоены Нобелевской премии по химии.

Продолжая эти исследования, итальянский ученый Ферми показал, что бомбардировка нейтронами вызывает искусственную радиоактивность в тяжелых металлах.

Энрико Ферми (1901–1954) родился в Риме. Еще в детстве Энрико обнаружил большие способности к математике и физике. Его выдающиеся познания в этих науках, приобретенные в основном в результате самообразования, позволили ему получить в 1918 году стипендию и поступить в Высшую нормальную школу при Пизанском университете. Затем Энрико получил временную должность преподавателя математики для химиков в Римском университете. В 1923 году он едет в командировку в Германию, в Геттинген, к Максу Борну.

По возвращении в Италию Ферми с января 1925 года до осени 1926 года работает во Флорентийском университете. Здесь он получает свою первую ученую степень «свободного доцента» и, что самое главное, создает свою знаменитую работу по квантовой статистике. В декабре 1926 года он занял должность профессора вновь учрежденной кафедры теоретической физики в Римском университете. Здесь он организовал коллектив молодых физиков: Разетти, Амальди, Сегре, Понтекорво и других, составивших итальянскую школу современной физики.

Когда в Римском университете в 1927 году была учреждена первая кафедра теоретической физики, Ферми, успевший обрести международный авторитет, был избран ее главой.

Здесь в столице Италии Ферми сплотил вокруг себя несколько выдающихся ученых и основал первую в стране школу современной физики. В международных научных кругах ее стали называть группой Ферми. Через два года Ферми был назначен Бенито Муссолини на почетную должность члена вновь созданной Королевской академии Италии.

В 1938 году Ферми была присуждена Нобелевская премия по физике. В решении Нобелевского комитета говорилось, что премия присуждена Ферми «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами».

Об искусственной радиоактивности Энрико Ферми узнал сразу же, весной 1934 года, как только супруги Жолио-Кюри опубликовали свои результаты. Ферми решил повторить опыты Жолио-Кюри, но пошел совершенно иным путем, применив в качестве бомбардирующих частиц нейтроны. Позже Ферми так объяснил причины недоверия к нейтронам со стороны других физиков и свою собственную счастливую догадку:

«Применение нейтронов как бомбардирующих частиц страдает недостатком: число нейтронов, которым можно практически располагать, неизмеримо меньше числа альфа-частиц, получаемых от радиоактивных источников, или числа протонов и дейтронов, ускоряемых в высоковольтных устройствах. Но этот недостаток частично компенсируется большей эффективностью нейтронов при проведении искусственных ядерных превращений Нейтроны обладают также и другим преимуществом. Они в большой степени способны вызывать ядерные превращения. Число элементов, которые могут быть активированы нейтронами, значительно превосходит число элементов, которые можно активировать с помощью других видов частиц».

Весной 1934 года Ферми начал облучать элементы нейтронами. «Нейтронные пушки» Ферми представляли собой маленькие трубочки длиной несколько сантиметров. Их заполняли «смесью» тонкодисперсного порошка бериллия и эманации радия. Вот как Ферми описывал один из таких источников нейтронов:

«Это была стеклянная трубочка размером всего 1,5 см… в которой находились зерна бериллия; прежде чем запаять трубочку, надо было ввести в нее некоторое количество эманации радия. Альфа-частицы, испускаемые радоном, в большом числе сталкиваются с атомами бериллия и дают нейтроны…

Опыт выполняется следующим образом. В непосредственной близости от источника нейтронов помещают пластинку алюминия, или железа, или вообще того элемента, который желательно изучить, и оставляют на несколько минут, часов или дней (в зависимости от конкретного случая). Нейтроны, вылетающие из источника, сталкиваются с ядрами вещества. При этом происходит множество ядерных реакций самого различного типа…»

Как все это выглядело на практике? Исследуемый образец находился заданное время под интенсивным воздействием нейтронного облучения, затем кто-либо из сотрудников Ферми буквально бегом переносил образец к счетчику Гейгера-Мюллера, расположенному в другой лаборатории, и регистрировал импульсы счетчика. Ведь многие новые искусственные радиоизотопы были короткоживущими.

В первом сообщении, датированном 25 марта 1934 года, Ферми сообщил, что бомбардируя алюминий и фтор, получил изотопы натрия и азота, испускающие электроны (а не позитроны, как у Жолио-Кюри). Метод нейтронной бомбардировки оказался очень эффективным, и Ферми писал, что эта высокая эффективность в осуществлении расщепления «вполне компенсирует слабость существующих нейтронных источников по сравнению с источниками альфа-частиц и протонов».

В сущности, многое было известно. Нейтроны попадали в ядро обстреливаемого атома, превращали его в нестабильный изотоп, который спонтанно распадался и излучал. В этом излучении и таилось неизвестное: некоторые из искусственно полученных изотопов излучали бета-лучи, другие - гамма-лучи, третьи - альфа-частицы. С каждым днем число искусственно полученных радиоактивных изотопов возрастало. Каждую новую ядерную реакцию необходимо было осмыслить, чтобы разобраться в сложных превращениях атомов Для каждой реакции надо было установить характер излучения, потому что, только зная его, можно представить схему радиоактивного распада и предсказать элемент, который получится в конечном результате. Затем приходила очередь химиков. Они должны были идентифицировать полученные атомы. На это тоже требовалось время.

С помощью своей «нейтронной пушки» Ферми подверг бомбардировке фтор, алюминий, кремний, фосфор, хлор, железо, кобальт, серебро и йод. Все эти элементы активировались, и во многих случаях Ферми мог указать химическую природу образовавшегося радиоактивного элемента. Ему удалось этим методом активизировать 47 из 68 изученных элементов.

Воодушевленный успехом, он в сотрудничестве с Ф. Разетти и О. Д"Агостино предпринял нейтронную бомбардировку тяжелых элементов: тория и урана. «Опыты показали, что оба элемента, предварительно очищенные от обычных активных примесей, могут сильно активизироваться при бомбардировке нейтронами».

22 октября 1934 года Ферми сделал фундаментальное открытие. Поместив между источником нейтронов и активируемым серебряным цилиндром парафиновый клин, Ферми заметил, что клин не уменьшает активность нейтронов, а несколько увеличивает ее. Ферми сделал вывод, что этот эффект, по-видимому, обусловлен наличием водорода в парафине, и решил проверить, как будет влиять на активность расщепления большое количество водородсодержащих элементов. Проведя опыт сначала с парафином, потом с водой, Ферми констатировал увеличение активности в сотни раз. Опыты Ферми обнаружили огромную эффективность медленных нейтронов.

Но, помимо замечательных экспериментальных результатов, в этом же году Ферми достиг замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей». Авторское резюме статьи гласит: «Предлагается количественная теория бета-распада, основанная на существовании нейтрино: при этом испускание электронов и нейтрино рассматривается по аналогии с эмиссией светового кванта возбужденным атомом в теории излучения. Выведены формулы из времени жизни ядра и для формы непрерывного спектра бета-лучей; полученные формулы сравниваются с экспериментом».

Ферми в этой теории дал жизнь гипотезе нейтрино и протонно-нейтронной модели ядра, приняв также гипотезу изотонического спина, предложенную Гейзенбергом для этой модели. Опираясь на высказанные Ферми идеи, Хидеки Юкава предсказал в 1935 году существование новой элементарной частицы, известной ныне под названием пи-мезона, или пиона.

Радиоактивность - это свойство атомных ядер определенных химических элементов самопроизвольно превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным. Нельзя повлиять на течение процесса радиоактивного распада, не изменив состояния атомного ядра. На скорость течения радиоактивных превращенийне оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного полей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.

Радиоактивные явления, происходящие в природе, называют естественной радиоактивностью (космическая радиация и излучения природных радионуклидов, рассеянных в земных породах, почве, воде, воздухе, строительных и других материалах, живых организмах). Например, изотоп 40 K широко рассеян в почвах и прочно удерживается глинами вследствие процессов сорбции. Глинистые почвы почти везде богаче радиоактивными элементами, чем песчаные и известняки. Радиоактивные тяжелые элементы (U, Th, Ra) содержатся преимущественно в горных гранитных породах. Радиоактивные элементы распространены в природе в ничтожных количествах. В земной коре естественно-радиоактивные элементы есть преимущественно в урановых рудах, и почти все они являются изотопами тяжелых элементов с атомным номером более 83. Цепи радиоактивных распадов начинаются с урана - радия (- Ra), тория () или актиния().

Аналогичные процессы, происходящие в искусственно полученных веществах (через соответствующие ядерные реакции), называют искусственной радиоактивностью (сжигание угля, разработка месторождений радиоактивных руд, применение радионуклидов в различных отраслях экономики, работа ядерно-технических установок, ядерные взрывы в мирных целях (строительство подземных хранилищ, нефтедобыча, строительство каналов), аварии на объектах, содержащих радиоактивные вещества, ядерные отходы АЭС, промышленности, флота, испытание ядерного оружия (при ядерных взрывах образуется около 250 изотопов 35 элементов (из них 225 радиоактивных) как непосредственных осколков деления ядер тяжелых элементов (235 U, 239 Pu, 233 U, 238 U), так и продуктов их распада. Количество радиоактивных продуктов деления (РПД) возраста­ет соответственно мощности ядерного заряда. Часть образовавшихся РПД распадается в ближайшие секунды и минуты после взрыва, другая часть имеет период полураспада порядка нескольких часов. Радионуклиды, такие как 86 Rb, 89 Sr, 91 Y, 95 Cd, 125 Sn. l 25 Te, l 31 I, 133 Xe, l 36 Cs, 140 Ba, 141 Ce, 156 Eu, 161 Yb, обладают периодом полураспада в несколько дней, a 85 Kr, 90 Sr, 106 Ru, 125 Sb, 137 Cs, l 47 Pm, l 5 l Sm, l 55 Eu – от одного года до нескольких десятков лет. Группа, состоящая из 87 Rb, 93 Zr, l 29 I, 135 Cs, 144 Nd, 137 Sm, характеризуется чрезвычайно медленным распадом, продолжающимся миллионы лет)). Искусственные радионуклиды по различным причинам попадают в окружающую среду, повышая тем самым радиационный фон. Кроме того, они включаются в биологические системы и поступают непосредственно в организм животных и человека. Все это создает опасность для нормальной жизнедеятельности живого организма.

Внешние и внутренние источники, действуя непрерывно, сообщают организму определенную поглощенную дозу. Большую часть облучения от источников естественной радиации человек получает за счет земных источников - в среднем более 5/6 годовой эффективной эквивалентной дозы, получаемой населением (в основном внутреннее облучение). Оставшаяся часть приходится на космическое излучение (главным образом внешнее облучение). Эффективная эквивалентная доза от воздействия космического излучения составляет около 300 мкЗв/год (для живу­щих на уровне моря), для живущих выше 2 тыс. м над уровнем моря эта величина в несколько раз больше. Среднегодовая безопасная доза для человека составляет около 1,2 мГр на гонады и 1,3 мГр на скелет.

Все известные радиоактивные элементы разделяют на две группы: естественные и искусственные (техногенные).

Внутреннее облучение.

Земная радиация.

В природе существует три ряда (семейства) радиоактивных веществ: ряд урана-радия, ряд тория и ряд актиния. В каждом ряду с течением времени атомы претерпевают последовательные радиоактивные распады, испуская на каждой ступени α- или β- частицы (с сопровождением γ- излучения или без него) и превращаясь в атомы других химических элементов.

Существование в природе этих трех рядов определяется наличием в каждом случае родоначального нуклида, период полураспада которого сравним с возрастом Земли. В уран-радиевом ряду родоначальником является изотоп урана -238 (238 U) с периодом полураспада 4,5 · 10 9 лет. Актиноуран (235 U) служит родоначальником ряда урана с периодом полураспада 7,1 · 10 8 лет. Изотоп тория-232 (232 Th) с периодом полураспада 1,4 · 10 10 лет является исходным элементом в ториевом ряду. Стабильными конечными продуктами каждого ряда превращений являются изотопы свинца - соответственно 206 Pb, 207 Pb, 208 Pb.

В настоящее время на Земле сохранилось 23 долгоживущих радиоактивных элемента с периодами полураспада от 10 7 лет и выше. Физические характеристики некоторых из них представлены в таблице 11.1.

Таблица 11.1.

Физические характеристики некоторых долгоживущих радиоактивных элементов.

Радиоактивные изотопы, изначально присутствующие на Земле.
Радионуклид Весовое содержание в земной коре Период полураспада, лет: Тип распада:
Уран -238 3 · 10 -6 4.5 · 10 9 -распад
Торий-232 8 · 10 -6 1.4 · 10 10 -распад, -распад
Калий-40 3 · 10 -16 1.3 · 10 9 ( - распад, -распад
Ванадий -50 4.5 · 10 -7 5 · 10 14 -распад
Рубидий -87 8.4 · 10 -5 4.7 · 10 10 -распад
Индий-115 1 · 10 -7 6 · 10 14 -распад
Лантан-138 1.6 · 10 -8 1.1 · 10 11 -распад, -распад
Самарий -147 1.2 · 10 -6 1.2 · 10 11 -распад
Лютеций-176 3 · 10 -8 2.1 · 10 10 -распад, -распад

В трех радиоактивных семействах: урана (238 U), тория (232 Th) и актиния (235 Ас) в процессах радиоактивного распада постоянно образуется 40 радиоактивных изотопов. Средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников, составляет около 0.35 мЗв, т.е. чуть больше средней индивидуальной дозы, обусловленной облучением из-за космического фона на уровне моря.


Однако уровень земной радиации неодинаков в различных районах. Так, например, в 200 километрах к северу от Сан-Пауло (Бразилия) есть небольшая возвышенность, где уровень радиации в 800 раз превосходит средний и достигает 260 мЗв в год. На юго-западе Индии 70 000 человек живут на узкой прибрежной полосе, вдоль которой тянутся пески, богатые торием. Эта группа лиц получает в среднем 3.8 мЗв в год на человека. Как показали исследования, во Франции, ФРГ, Италии, Японии и США около 95% населения живут в местах с дозой облучения от 0.3 до 0.6 мЗв в год. Около 3% получает в среднем 1 мЗв в год и около 1.5% более 1.4 мЗв в год.

Структура и величины средних за год эффективных доз облучения населения Украины от природных источников ионизирующего излучения приведены на рисунке 11.1.

Средняя годовая доза облучения составляет 4,88 мЗв, а с учетом последних данных по содержанию радона - 220 (220 Rn) в воздухе жилых помещений значение средней годовой дозы облучения составляет 5,3 мЗв в год.


В разных странах мира величины средних доз различаются от 2,0 мЗв/год (Англия) до ~ 7,8 мЗв/год (Финляндия). Но общим является то, что наибольший вклад в дозу вызван наличием радона, радиоактивного газа, продукта распада природного радия.

Космические лучи.

Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы. Это первичное космическое излучение. При взаимодействуя с атмосферой Земли образуется вторичное излучение.

Доза облучения от первичного космического излучения на уровне моря составляет 2.4 нЗв/час, при этом большинство населения получает дозу, равную около 0.35 мЗв в год.

Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого - магнитное поле Земли, отклоняющее заряженные частицы космического излучения.

Величина дозы радиоактивного облучения, получаемая человеком, зависит от географического местоположения, образа жизни и характера труда. Например на высоте 8 км мощность эффективной дозы составляет 2 мкЗв/час, что приводит к дополнительному облучению при авиаперевозках.

При вторичном облучении, в результате ядерных реакций образуются радиоактивные ядра - космогенные радионуклиды.

Например, n + 14 N 3 H + 12 C , p + 14 N n + 14 C

В создание дозы наибольший вклад вносят 3 H, 7 Be, 14 C и 22 Na которые поступают вместе с пищей в организм человека (табл.11.2.)

Таблица 11.2.

Среднее годовое поступление космогенных радионуклидов в организм человека.

Взрослый человек потребляет с пищей 95 кг углерода в год при средней активности на единицу массы углерода 230 Бк/кг. Суммарный вклад космогенных радионуклидов в индивидуальную дозу составляет около 15 мкЗв/год.

Радон.

Наиболее весомым из всех естественных источников радиации (рис. 11.2.) является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) — радон - 222 (222 Rn). Человек подвергается воздействию радона и продуктов его распада в основном за счет внутреннего облучения при поступлении радионуклидов в организм через органы дыхания и, в меньшей мере, с продуктами питания. Поступив в организм при вдохе, он вызывает облучение слизистых тканей легких. При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.

Человек получает 3,8 мЗв в год за счет внутреннего облучения радоном, что составляет 77, 9% среднегодовой дозы облучения от естественных источников радиации.

Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении - это сами строительные материалы (бетон, кирпич, пемза, гранит и другие.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и других источников.

Сравнить мощность излучения различных источников радона поможет следующая диаграмма

Рис. 11.2. Диаграмма мощности излучения различных источников радона.

Внутреннее облучение от радионуклидов земного происхождения.

В организме человека постоянно присутствуют радионуклиды земного происхождения, поступающие через органы дыхания и пищеварения. Наибольший вклад в формирование дозы внутреннего облучения вносят 40 К, 87 Rb, и нуклиды рядов распада 238 U и 232 Th (табл.11.3.).

Таблица 11.3.

Среднегодовая эффективная эквивалентная доза внутреннего облучения

Для Украины средняя годовая доза внутреннего облучения составляет 200мкЗв, что составляет 4,1% от суммарной дозы природных источников.

Искусственная радиоактивноть.

Врезультате деятельности человека во внешней среде появились искусственные радионуклиды и источники излучения.

В природную среду стали поступать в больших количествах естественные радионуклиды, извлекаемые из недр Земли минеральные и органические природные ресурсы :

Геотермические электростанции, создающие в среднем выброс около 4 · 10 14 Бк изотопа 222 Rn на 1 ГВт выработанной электроэнергии;

Фосфорные удобрения, содержащие 226 Ra и 238 U (до 70 Бк/кг в Кольском апатите и 400 Бк/кг в фосфорите);

Сжигаемый в жилых домах и электростанциях газ и уголь, содержит естественные радионуклиды 40 К, 232 U и 238 U в равновесии с их продуктами распада.

За последние несколько десятилетий человек создал несколько тысяч радионуклидов и начал использовать их в научных исследованиях, в технике, медицинских целях и других целях. Это приводит к увеличению дозы облучения, получаемой как отдельными людьми, так и населением в целом. Иногда облучение за счет источников, созданных человеком, оказывается в тысячи раз интенсивнее, чем от природных источников.
В настоящее время основной вклад в дозу от источников, созданных человеком, вносит внешнее радиактивное облучение при диагностике и лечении.

Средняя эффективная эквивалентная доза, получаемая от всех источников облучения в медицине, в промышленно развитых странах составляет 1 мЗв в год на каждого жителя, т.е. примерно половину средней дозы от естественных источников.

Роль различных искусственных источников излучений в создании радиационного фона иллюстрируется таблице 11.4.

Таблица 11.4.

Среднегодовые дозы, получаемые от естественного радиационного фона и различных искусственных источников излучения.

Испытания ядерного оружия.

Радиологические последствия испытаний ядерного оружия определяются количеством испытаний, суммарными энерговыделением и активностью осколков деления, видами взрывов (воздушные, наземные, подводные, надводные, подземные) и геофизическими факторами окружающей среды в период испытаний (район, метеообстановка, миграция радионуклидов и другие.). Испытания ядерного оружия, которые особенно интенсивно проводились в период 1954-1958 и 1961-1962 гг. стали одной из основных причин повышения радиационного фона Земли и, как следствие этого, глобального повышения доз внешнего и внутреннего облучения населения.

В США, СССР, Франции, Великобритании и Китае в общей сложности проведено не менее 2060 испытаний атомных и термоядерных зарядов в атмосфере, под водой и в недрах Земли, из них непосредственно в атмосфере 501 испытание.

По оценкам международных организаций во второй половине 20-го века за счет ядерных испытаний во внешнюю среду поступило 1.81 · 10 21 Бк продуктов ядерного деления (ПЯД), из них на долю атмосферных испытаний приходится 99.84 %. Распространение радионуклидов приняло планетарные масштабы (рис. 11.3.-11.4.).

Продукты ядерного деления представляют собой сложную смесь более чем 200 радиоактивных изотопов 36 элементов (от цинка до гадолиния). Большую часть активности составляют короткоживущие радионуклиды. Так, через 7, через 49 и через 343 суток после взрыва активность ПЯД снижается соответственно в 10, 100 и 1000 раз по сравнению с активностью через час после взрыва. Выход наиболее биологически значимых радионуклидов приведен в таблице 11.5.

Экологическое значение разных радиоактивных изотопов совершенно различно. Радиоактивные вещества с коротким периодом полураспада менее (2 суток) не представляют большой опасности, так как они сохраняют высокий уровень радиации в зараженном биотопе непродолжительное время. Вещества с очень длинным периодом полураспада, например 238 U, также почти безопасны, поскольку они в единицу времени испускают очень слабое излучение.

Наиболее опасными радионуклидами являются те, у которых период полураспада изменяется от нескольких недель до нескольких лет (таблица 11.5.). Этого времени достаточно для того, чтобы упомянутые элементы смогли проникнуть р различные организмы и накопиться в пищевых цепях.

Следует также отметить высокую радиотоксичность для тех элементов, которые являются аналогами биогенных элементов.

Рис. 11.3. Содержание стронция-90 и цезия-137 в продуктах питания и суммарная годовая мощность ядерных взрывов атмосфере.
Рис.11.4. Содержание цезия-137 в различных продуктах питания: А - зерновые продукты, Б - мясо, В - молоко, Г - фрукты, Д - овощи.
Таблица 11.5. Выход некоторых продуктов деления при ядерном взрыве.
Элемент Заряд Период полураспада Выход на одно деление,% Активность на 1 Мт, (10 15 Бк)
Стронций-89 50.5 сут 2.56
Стронций-90 28.6 лет 3.5 3.9
Цирконий-95 64 сут 5.07
Рутений-103 39.5 сут 5.2
Рутений-106 368 сут 2.44
Иод-131 8 сут 2.90
Цезий-136 13.2 сут 0.036
Цезий-137 30.2 лет 5.57 5.9
Барий-140 12.8 сут 5.18
Церий-141 32.5 сут 4.58
Церий-144 284 сут 4.69
Водород-3 12.3 лет 0.01 2.6 · 10 -2

Атомная энергетика.

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции. Преимущество атомной энергетики состоит в том, что она требует существенно меньших количеств исходного сырья и земельных площадей, чем тепловые станции (таблица 11.6.), не загрязняет атмосферу дымом и сажей.

Опасность состоит в возможности возникновения катастрофических аварий реактора, а также в реально не решенной проблеме утилизации радиоактивных отходов и утечке в окружающую среду небольшого количества радиоактивности.

Таблица 11.6.

Расход природных ресурсов для производства 1 ГВт в год электроэнергии в угольном и ядерном топливных циклах

При прямоточном охлаждении.

К концу 1984 г. в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 220 ГВт или 13% суммарной мощности всех источников электроэнергии. К 1994 году в мире работало 432 атомных реактора, их суммарная мощность составила 340 ГВт.

Прогнозируемые перспективы развития ядерной энергетики мире показаны в таблице 11.7.

Таблица 11.7.

Перспективы развития ядерной энергетики в мире.

В условиях нормальной эксплуатации АЭС выбросы радионуклидов во внешнюю среду незначительны и состоят в основном из радионуклидов йода и инертных радиоактивных газов (Хе, Сг), периоды полураспада которых в основном не превышают нескольких суток. 90% всей дозы облучения, возможной в результате выброса на атомной станции и обусловленной короткоживущими изотопами, население получает в течение года после выброса, 98% - в течение 5 лет. Почти вся доза приходится на людей, живущих вблизи АЭС. Дозы облучения обычно значительно ниже установленных пределов для отдельных лиц из населения (0.5 бэр/год).

Долгоживущие продукты выброса (137 Сз, 90 Ce, 85 Кг и другие.) распространяются по всему земному шару. Оценка ожидаемой коллективной эквивалентной дозы от облучения такими изотопами составляет 670 чел-Зв на каждый ГигаВатт вырабатываемой электроэнергии.

Приведенные выше оценки получены в предположении, что ядерные реакторы работают нормально. Вклады различных источников облучения в этом случае приведены на рисунке 11.5.

Рис.11.5. Вклады различных источников радиации

Количество радиоактивных веществ, поступивших в окружающую среду при аварии, существенно больше. Известно, что за период с 1971 по 1984 гг. в 14 странах мира произошла 151 авария на АЭС.

26 апреля 1986 г. на Чернобыльской атомной электростанции произошла авария с разрушением активной зоны реактора, что привело к выбросу части накопившихся в активной зоне радиоактивных продуктов в атмосферу .

В результате аварии в окружающую среду было выброшено от5 до 30 % ядерного топлива. Кроме того, часть содержимого реактора расплавилась и переместилась через разломы внизу корпуса реактора за его пределы.

Кроме топлива, в активной зоне в момент аварии содержались продукты деления и трансурановые элементы — различные радиоактивные изотопы, накопившиеся во время работы реактора. Именно они представляют наибольшую радиационную опасность.

Большая их часть осталась внутри реактора, но наиболее летучие вещества были выброшены наружу, в том числе:

Все благородные газы, содержавшиеся в реакторе;

Примерно55 % йода в виде смеси пара и твёрдых частиц, а также в составе органических соединений;

Цезий и теллур в виде аэрозолей.

Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14Ч 1018 Бк (14 ЭБк), в том числе:

1,8 ЭБк йода-131,

0,085 ЭБк цезия-137,

0,01 ЭБк стронция-90 и

0,003 ЭБк изотопов плутония;

На долю благородных газов приходилось около половины от суммарной активности (Рис. 11. 6.).

Рис.11.6 Доза внешнего гамма - облучения , получаемого человеком около Чернобыльской станции.

Загрязнению подверглось более 200 тыс. км², примерно 70 % — на территории Белоруссии, России и Украины. Радиоактивные вещества распространялись в виде аэрозолей, которые постепенно осаждались на поверхность земли. Большая часть стронция и плутония выпала в пределах 100 км от станции, так как они содержались в основном в более крупных частицах. Иод и цезий распространились на более широкую территорию.

С точки зрения воздействия на население в первые недели после аварии наибольшую опасность представлял радиоактивный иод, имеющий сравнительно малый период полураспада (восемь дней) и теллур. В настоящее время (и в ближайшие десятилетия) наибольшую опасность представляют изотопы стронция и цезия с периодом полураспада около 30 лет. Наибольшие концентрации цезия-137 обнаружены в поверхностном слое почвы, откуда он попадает в растения и грибы. Загрязнению также подвергаются насекомые и животные, которые ими питаются. Радиоактивные изотопы плутония и америция сохранятся в почве в течение сотен, а возможно и тысяч лет.

Значительному загрязнению подверглись леса. Из-за того, что в лесной экосистеме цезий постоянно рециркулирует, а не выводится из неё, уровни загрязнения лесных продуктов, таких как грибы, ягоды и дичь, остаются опасными. Уровень загрязнения рек и большинства озёр в настоящее время низкий. Однако в некоторых «замкнутых» озёрах, из которых нет стока, концентрация цезия в воде и рыбе ещё в течение десятилетий может представлять опасность.

Загрязнение не ограничилось 30-километровой зоной. Было отмечено повышенное содержание цезия-137 в лишайнике и мясе оленей в арктических областях России, Норвегии, Финляндии и Швеции.