Факторы ионизирующего излучения. Чем измеряют радиацию

Атомная энергия достаточно активно используется с мирными целями, например, в работе рентгеновского аппарата, ускорительной установки, что позволило распространять ионизирующие излучения в народном хозяйстве. Учитывая то, что человек ежедневно подвергается его воздействию, необходимо узнать, какими могу быт последствия опасного контакта и как обезопасить себя.

Основная характеристика

Ионизирующее излучение – это разновидность энергии лучистой, попадающей в конкретную среду, вызывая процесс ионизации в организме. Подобная характеристика ионизирующих излучений подходит для рентгеновских лучей, радиоактивных и высоких энергий, а также многое другое.

Ионизирующее излучение оказывает непосредственное влияние на организм человека. Несмотря на то что ионизирующее излучение может применяться в медицине, оно чрезвычайно опасно, о чем свидетельствует его характеристика и свойства.

Известными разновидностями являются облучения радиоактивные, которые появляются по причине произвольного расщепления атомного ядра, что вызывает трансформацию химических, физических свойств. Вещества, которые могут распадаться, считаются радиоактивными.

Они бывают искусственными (семьсот элементов), естественными (пятьдесят элементов) – торий, уран, радий. Следует отметить, что у них имеются канцерогенные свойства, выделяются токсины в результате воздействия на человека могут стать причиной рака, лучевой болезни.

Необходимо отметить следующие виды ионизирующих излучений, которые оказывают воздействие на организм человека:

Альфа

Считаются положительно заряженными ионами гелия, которые появляются в случае распада ядер тяжелых элементов. Защита от ионизирующих излучений осуществляется с помощью бумажного листка, ткани.

Бета

– поток отрицательно заряженных электронов, которые появляются в случае распада радиоактивных элементов: искусственных, естественных. Поражающий фактор намного выше, чем у предыдущего вида. В качестве защиты понадобится толстый экран, более прочный. К таким излучениям относятся позитроны.

Гамма

– жесткое электромагнитное колебание, появляющееся впоследствии распада ядер радиоактивных веществ. Наблюдается высокий проникающий фактор, является самым опасным излучением из трех перечисленных для организма человека. Чтобы экранировать лучи, нужно воспользоваться специальными устройствами. Для этого понадобятся хорошие и прочные материалы: вода, свинец и бетон.

Рентгеновское

Ионизирующее излучение формируется в процессе работы с трубкой, сложными установками. Характеристика напоминает гамма лучи. Отличие заключается в происхождении, длине волны. Присутствует проникающий фактор.

Нейтронное

Излучение нейтронное – это поток незаряженных нейтронов, которые входя в состав ядер, кроме водорода. В результате облучения, вещества получают порцию радиоактивности. Имеется самый большой проникающий фактор. Все эти виды ионизирующих излучений очень опасны.

Главные источники излучения

Источники ионизирующего излучения бывают искусственными, естественными. В основном организм человека получает радиацию от естественных источников, к ним относятся:

  • земная радиация;
  • облучение внутреннее.

Что касается источников земной радиации, многие из них канцерогенные. К ним относят:

  • уран;
  • калий;
  • торий;
  • полоний;
  • свинец;
  • рубидий;
  • радон.

Опасность состоит в том, что они канцерогенные. Радон – газ, у которого отсутствует запах, цвет, вкус. Он тяжелее воздуха в семь с половиной раз. Продукты его распада намного опаснее, чем газ, поэтому воздействие на организм человека крайне трагично.

К искусственным источникам относятся:

  • энергетика ядерная;
  • фабрики обогатительные;
  • рудники урановые;
  • могильники с отходами радиоактивными;
  • рентгеновские аппараты;
  • взрыв ядерный;
  • научные лаборатории;
  • радионуклиды, которые активно используют в современной медицине;
  • осветительные устройства;
  • компьютеры и телефоны;
  • бытовая техника.

При наличии указанных источников поблизости, существует фактор поглощенной дозы ионизирующего излучения, единица которого зависит от продолжительности воздействия на организм человека.

Эксплуатация источников ионизирующего излучения происходит ежедневно, например: когда вы работаете за компьютером, смотрите телепередачу или говорите по мобильному телефону, смартфону. Все перечисленные источники в какой-то мере канцерогенные, они способны вызвать тяжелые и смертельные заболевания.

Размещение источников ионизирующего излучения включает в себя перечень важных, ответственных работ, связанных с разработкой проекта по расположению облучающих установок. Во всех источниках излучения содержится определенная единица радиации, каждая из которых оказывает определенное воздействие на организм человека. Сюда можно отнести манипуляции, проводимые для монтажа, введения данных установок в эксплуатацию.

Следует указать, что обязательно проводится утилизация источников ионизирующего излучения.

Это процесс, который помогает вывести из эксплуатации генерирующие источники. Данная процедура состоит из технических, административных мер, которые направлены на обеспечение безопасности персонала, населения, а также присутствует фактор защиты окружающей среды. Канцерогенные источники и оборудование являются огромной опасностью для организма человека, поэтому их нужно утилизировать.

Особенности регистрации излучений

Характеристика ионизирующих излучений показывает, что они невидимые, у них нет запаха и цвета, поэтому их сложно заметить.

Для этого существуют методы регистрации ионизирующих излучений. Что касается способов обнаружения, измерения, то все осуществляется косвенно, за основу берется какое-либо свойство.

Используют такие методы обнаружения ионизирующих излучений:

  • Физический: ионизационный, пропорциональный счетчик, газоразрядный счетчик Гейгера-Мюллера, камера ионизационная, счетчик полупроводниковый.
  • Калориметрический метод обнаружения: биологический, клинический, фотографический, гематологический, цитогенетический.
  • Люминесцентный: счетчики флуоресцентный и сцинтилляционный.
  • Биофизический способ: радиометрия, расчетный.

Дозиметрия ионизирующих излучений осуществляется с помощью приборов, они способны определить дозу излучения. Прибор включает в себя три основные части – счетчик импульса, датчик, источник питания. Дозиметрия излучений возможна благодаря дозиметру, радиометру.

Влияния на человека

Действие ионизирующего излучения на организм человека особенно опасно. Возможны такие последствия :

  • имеется фактор очень глубокого биологического изменения;
  • присутствует накопительный эффект единицы поглощенной радиации;
  • эффект проявляется через время, так как отмечается скрытый период;
  • у всех внутренних органов, систем разная чувствительность к единице поглощенной радиации;
  • радиация влияет на все потомство;
  • эффект зависит от единицы поглощенной радиации, дозы облучения, продолжительности.

Несмотря на использование радиационных приборов в медицине, их действие может быть пагубным. Биологическое действие ионизирующих излучений в процессе равномерного облучения тела, в расчете 100% дозы, происходит следующее:

  • костный мозг – единица поглощенной радиации 12%;
  • легкие – не менее 12%;
  • кости – 3%;
  • семенники, яичники – поглощенной дозы ионизирующего излучения около 25%;
  • железа щитовидная – единица поглощенной дозы около 3%;
  • молочные железы – приблизительно 15%;
  • остальные ткани – единица поглощенной дозы облучения составляет 30%.

В результате могут возникать различные заболевания вплоть до онкологии, паралича и лучевой болезни. Чрезвычайно опасно для детей и беременных, так как происходит аномальное развитие органов и тканей. Токсины, радиация – источники опасных заболеваний.

Все излучения, используемые в медицинской радиологии, разделяют на две большие группы: неионизирующие и ионизирующие, Как показывает само наименование, первые в отличие от вторых при взаимодействии со средой не вызывают ионизации атомов, т.е. распада на противоположно заряженные частицы — ионы.

К числу неионизирующих излучений принадлежит тепловое (инфракрасное) излучение и резонансное, возникающее в объекте (тело человека), помещенного в стабильное магнитное поле, под действием высокочастотных импульсов. Кроме того, к неионизирующим излучениям условно относят ультразвуковые волны, представляющие собой упругие колебания среды.

Ионизирующие излучение

характеризуются способностью к ионизации атомов окружающей среды, в том числе атомы, входящие в состав тканей человека. Все эти излучения делят на квантовые и корпускулярные.

Это деление в значительной мере условно, так как любое излучение имеет двойственную природу и в определенных условиях проявляет то свойство волны, то свойство частицы.

К квантовым ионизирующим излучениям относят тормозное (рентгеновское) и гамма-излучение.

К корпускулярным излучениям относят пучки электронов, протонов, нейтронов, мезонов.

Для медицинских целей наиболее активно используют вид искусственного наружного излучения – рентгеновское.

Рентгеновская трубка

представляет собой вакуумный стеклянный сосуд, в концы которого впаяны два электрода – катод и анод.

Катод выполнен в виде тонкой вольфрамовой спирали. При его нагревании вокруг спирали образуется облако свободных электронов (термоэлектронная эмиссия). Под действием высокого напряжения, приложенного к полюсам рентгеновской трубки, они разгоняются и фокусируются на аноде. Последний вращается с огромной скоростью (до 10 тыс. оборотов в мин.), для равномерного распределения частиц и предупреждения расплавления анода. В результате торможения электронов на аноде часть их кинетической энергии превращается в электромагнитное излучение.

Другим источником ионизирующих излучений для медицинских целей являются радиоактивные нуклиды. Их получают в атомных реакторах на ускорителях заряженных частиц, или при помощи генераторов радионуклидов.

Ускорители заряженных частиц

— это установки для получения заряженных частиц высоких энергий с помощью электрического поля. Частицы движутся в вакуумной камере. Управление их движением осуществляется магнитным полем или электрическим.

По характеру ускоряемых частиц в них различают ускорители электронов (бетатрон, микротрон, линейный ускоритель) и тяжелых частиц – протонов и т.д. (циклотрон, синхрофазотрон).

В диагностике ускорители используют для получения радионуклидов, преимущественно с коротким и ультракоротким периодом полураспада.

В состав лучевой диагностики

входят рентгенодиагностика (рентгенология), радионуклидная диагностика, ультразвуковая диагностика, рентгеновская компьютерная томография, магнитно-резонансная томография, медицинская термография (тепловидение). Кроме того, к ней относится так называемая интервенционная радиология, в задачи которой входит выполнение лечебных вмешательств на базе лучевых диагностических процедур.

Перечисленные методы лучевой диагностики основаны на исследовании органов путем получения их изображений с помощью различных полей и излучений (Medical Imaging). Визуализация может быть получена обработкой пропускаемого, испускаемого или отраженного электромагнитного излучения либо механической вибрации (ультразвук).

В основу современной медицинской визуализации положены следующие физические явления:

— поглощение в тканях рентгеновского излучения (рентгенодиагностика);

— возникновение радиочастотного излучения при возбуждении непарных ядер атомов в магнитном поле (МРТ);

— испускание гамма-квантов радионуклидами, сконцентрированными в определенных органах (радионуклидная диагностика);

— отражение в сторону датчика высокочастотных лучей направленных ультразвуковых волн (УЗИ);

— самопроизвольное испускание тканями инфракрасных волн (инфракрасная визуализация, термография).

Все эти методы, за исключением ультразвукового, основаны на электромагнитном излучении в различных областях энергетического спектра. Ультразвуковая визуализация основана на улавливании колебаний, генерируемых пьезоэлектрическим кристаллом.

Методы визуализации

можно сгруппировать и по следующему признаку: получают изображение всего объема ткани или ее тонкого слоя. При обычном рентгеновском исследовании трехмерный объем отображается как двухмерное изображение. На пленке получают суммационное изображение различных органов. При аксиальной визуализации, например, КТ, излучение направляется только на тонкий слой тканей. Главным преимуществом данного метода является хорошее контрастное разрешение.

Взаимодействие ионизирующих излучений с веществом.

Проходя через любую среду, в том числе ткани человека, все ионизирующие излучения действуют практически одинаково: все они передают свою энергию атомам этих тканей, вызывая их возбуждение и ионизацию.

Протоны и особенно альфа-частицы имеют большую массу, заряд и энергию. Поэтому они движутся в тканях прямолинейно, образуя густые скопления ионов. Иначе говоря, у них большая линейная потеря энергии в тканях. Длинна же их пробега зависит от исходной энергии частицы и характера вещества, в котором она перемещается.

Электрон в тканях имеет извилистый пробег. Это связано с его малой массой и изменчивостью своего направления под действием электрических полей атомов. Но электрон способен вырывать орбитальный электрон из системы встречного атома – производить ионизацию вещества. Образующиеся пары ионов распределены по пути следования электрона менее густо, чем в случае протонного пучка или альфа-частиц.

Быстрые нейтроны теряют свою энергию главным образом в результате столкновений с ядрами водорода. Эти ядра вырываются из атомов и сами создают в тканях короткие густые скопления ионов. После замедления нейтроны захватываются атомными ядрами, что может сопровождаться выделением гамма-квантов высокой энергии или протонов высокой энергии, которые в свою очередь дают плотные скопления ионов. Часть ядер, в частности ядра атомов натрия, фосфора, хлора, вследствие взаимодействия с нейтронами становятся радиоактивными. Поэтому после облучения человека потоком нейтронов в его теле остаются радионуклиды, являющиеся источником излучения (это явление наведенной радиоактивности).

Ионизирующие излучения - потоки фотонов, а также заряженных или нейтральных частиц, взаимодействие которых с веществом среды приводит к его ионизации. Ионизация играет важную роль в развитии радиационно-индуцированных эффектов, особенно в живой ткани. Средний расход энергии на образование одной пары ионов сравнительно мало зависит от вида И. и., что позволяет судить по степени ионизации вещества о переданной ему энергии И. и. Для регистрации и анализа И. и. инструментальными методами также используют ионизацию.

Источники И. и. делят на естественные (природные) и искусственные. Естественными источниками И. и. являются космос и распространенные в природе радиоактивные вещества (радионуклиды). В космосе формируется и достигает Земли космическое излучение - корпускулярные потоки ионизирующего излучения. Первичное космическое излучение состоит из заряженных частиц и фотонов, отличающихся высокой энергией. В атмосфере Земли первичное космическое излучение частично поглощается и инициирует ядерные реакции, в результате которых образуются радиоактивные атомы, сами испускающие И. и., поэтому космическое излучение у поверхности Земли отличается от первичного космического излучения. Различают три основных вида космического излучения: галактическое космическое излучение, солнечное космическое излучение и радиационные пояса Земли. Галактическое космическое излучение является наиболее высокоэнергетической составляющей корпускулярного потока в межпланетном пространстве и представляет собой ядра химических элементов (преимущественно водорода и гелия), ускоренных до высоких энергий; по своей проникающей способности этот вид космического излучения превосходит все виды И. и., кроме нейтрино. Для полного поглощения галактического космического излучения потребовался бы свинцовый экран толщиной около 15 м . Солнечное космическое излучение представляет собой высокоэнергетическую часть корпускулярного излучения Солнца и возникает при хромосферных вспышках днем. В период интенсивных солнечных вспышек плотность потока солнечного космического излучения может в тысячи раз превысить обычный уровень плотности потока галактического космического излучения. Солнечное космическое излучение состоит из протонов, ядер гелия и более тяжелых ядер. Солнечные протоны высоких энергий представляют наибольшую опасность для человека в условиях космического полета (см. Космическая биология и медицина ). Радиационные пояса Земли сформировались в околоземном пространстве за счет первичного космического излучения и частичного захвата его заряженной компоненты магнитным полем Земли. Радиационные пояса Земли состоят из заряженных частиц: электронов - в электронном поясе и протонов - в протонном. В радиационных поясах устанавливается поле И. и. повышенной интенсивности, что учитывают при запуске пилотируемых космических кораблей.

Природные, или естественные, радионуклиды имеют различное происхождение; часть из них принадлежит к радиоактивным семействам, родоначальники которых (уран, торий) входят в состав пород, слагающих нашу планету, с периода ее образования; некоторая часть естественных радионуклидов является продуктом активации стабильных изотопов космическим излучением. Отличительным свойством радионуклидов является радиоактивность, т.е. самопроизвольное превращение (распад) атомных ядер, приводящее к изменению их атомного номера и (или) массового числа. Скорость радиоактивного распада, характеризующая активность радионуклида, равна числу радиоактивных превращений в единицу времени.

В качестве единицы радиоактивности Международной системой единиц (СИ) определен беккерель (Бк ); 1 Бк равен одному распаду в секунду. На практике применяется также внесистемная единица активности кюри (Ки ); 1 Ки равен 3,7× 10 10 распадов в секунду, т.е. 3,7× 10 10 Бк . В результате радиоактивных превращений возникают заряженные и нейтральные частицы, формирующие поле И. и.

По виду частиц, входящих в состав И. и., различают альфа-излучение, бета-излучение, гамма-излучение, рентгеновское излучение, нейтронное излучение, протонное излучение и др. Рентгеновское и гамма-излучение относят к фотонным, или электромагнитным, И. и., а все остальные виды И. и. - к корпускулярным. Фотоны - это «порции» (кванты) электромагнитных излучений. Их энергия выражается в электрон-вольтах. Она в десятки тысяч раз превосходит энергию кванта видимого света.

Альфа-излучение представляет собой поток альфа-частиц, или ядер атомов гелия, несущих положительный заряд, равный двум элементарным единицам заряда. Альфа-частицы относятся к сильно ионизирующим частицам, быстро теряющим свою энергию при взаимодействии с веществом. По этой причине альфа-излучение является слабопроникающим и в медицинской практике используется либо для облучения поверхности тела, либо альфа-излучающий радионуклид вводится непосредственно в патологический очаг при внутритканевой лучевой терапии.

Бета-излучение - поток отрицательно заряженных электронов или положительно заряженных позитронов, испускаемых при бета-распаде. Бета-частицы относятся к слабоионизирующим частицам; однако по сравнению с альфа-частицами при одинаковой энергии они имеют большую проникающую способность.

Нейтронное излучение - поток электрически нейтральных частиц (нейтронов), которые возникают в некоторых ядерных реакциях при взаимодействии высокоэнергетических элементарных частиц с веществом, а также при делении тяжелых ядер. Нейтроны передают часть своей энергии ядрам атомов вещества среды и инициируют ядерные реакции. В результате в облученном нейтронным потоком веществе возникают заряженные частицы различного вида, ионизирующие вещество среды, могут также образовываться радионуклиды. Свойства нейтронного излучения и характер его взаимодействия с живой тканью определяются энергией нейтронов.

Некоторые виды И. и. возникают в ядерно-энергетических и ядерно-физических установках; ядерных реакторах, ускорителях заряженных частиц, рентгеновских аппаратах, в также созданных с помощью этих средств искусственных радионуклидов.

протонное излучение генерируется в специальных ускорителях. Око представляет собой поток протонов - частиц, несущих единичный положительный заряд и обладающих массой, близкой к массе нейтронов. Протоны относятся к сильно ионизирующим частицам; будучи ускоренными до высоких энергий, они способны сравнительно глубоко проникать в вещество среды. Это позволяет эффективно использовать протонное излучение в дистанционной лучевой терапии .

Электронное излучение генерируется специальными ускорителями электронов (например, бетатронами, линейными ускорителями), если пучок ускоренных электронов выводится наружу. Эти же ускорители могут быть источником тормозного излучения - разновидности фотонного излучения, возникающего при торможении ускоренных электронов в веществе специальной мишени ускорителя. Рентгеновское излучение, используемое в медицинской радиологии, представляет собой также тормозное излучение электронов, ускоренных в рентгеновской трубке.

Гамма-излучение - поток фотонов высоких энергий, испускаемых при распаде радионуклидов; широко применяется при лучевой терапии злокачественных новообразований. Различают направленное и ненаправленное И. и. Если все направления распространения И. и. равноценны, то говорят о изотропном И. и. По характеру распространения во времени И. и. может быть непрерывным и импульсным.

Для описания поля И.

и. используют физические величины, определяющие пространственно-временное распределение излучения в веществе среды. Важнейшими характеристиками поля И. и. являются плотность потока частиц и плотность потока энергии. В общем случае плотность потока частиц - это число частиц, проникающих в единицу времени в элементарную сферу, отнесенное к площади поперечного сечения этой сферы. Плотность потока энергии И. и. является синонимом распространенного на практике термина «интенсивность излучения». Она равна плотности потока частиц, умноженной на среднюю энергию одной частицы, и характеризует скорость переноса энергии И. и. Единицей измерений интенсивности И. и. в системе СИ является Дж/м 2 × с .

Биологическое действие ионизирующих излучении . Под биологическим действием И. и. понимают многообразные реакции, возникающие в облучаемом биологическом объекте, начиная от первичных процессов размена энергии излучения до эффектов, проявляющихся спустя длительное время после радиационного воздействия. Знание механизмов биологического действия И. и. необходимо для экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности. Для ионизации большинства элементов, входящих в состав биологического субстрата, необходимо достаточно большое количество энергии - 10-15 эВ , называемое потенциалом ионизации. Поскольку частицы и фотоны И. и. обладают энергией от десятков до миллионов эВ , что намного превышает энергию внутри- и межмолекулярных связей молекул и веществ, составляющих любой биологический субстрат, то поражающему радиационному воздействию подвержено все живое.

Максимально упрощенная схема начальных этапов лучевого поражения состоит в следующем. Вслед и по сути одновременно с передачей энергии И. и. атомам и молекулам облученной среды (физический этап биологического действия И. и.) в ней развиваются первичные радиационно-химические процессы, в основе которых лежат два механизма: прямой, когда молекулы вещества испытывают изменения при непосредственном взаимодействии с И. и., и косвенный, при котором изменяемые молекулы непосредственно не поглощают энергию И. и., а получают ее путем передачи от других молекул. В результате этих процессов образуются свободные радикалы и другие высокореакционные продукты, приводящие к изменению жизненно важных макромолекул, а в финале - к конечному биологическому эффекту. В присутствии кислорода радиационно-химические процессы интенсифицируются (кислородный эффект), что при прочих равных обстоятельствах способствует усилению биологического действия И. и. (см. Радиомодификация , Радиомодифицирующие агенты ). Следует иметь в виду, что изменения облучаемого субстрата не являются обязательно окончательными и необратимыми. Как правило, конечный результат в каждом конкретном случае не может быть предсказан, т. к наряду с лучевым повреждением может произойти и восстановление исходного состояния.

Воздействие И. и. на живой организм принято называть облучением, хотя это не совсем точно, ибо облучение организма может осуществляться и любым другим видом неионизирующего излучения (видимым светом, инфракрасным, ультрафиолетовым, высокочастотным излучением и др.). Эффективность облучения зависит от фактора времени, под которым понимают распределение дозы ионизирующего излучения во времени. Наиболее эффективно однократное острое облучение при высокой мощности дозы И. и. Пролонгированное хроническое или прерывистое (фракционированное) облучение в заданной дозе оказывает меньшее биологическое действие,

благодаря процессам пострадиационного восстановления .

Различают внешнее и внутреннее облучение. При внешнем облучении источник И. и. располагается вне организма, а при внутреннем (инкорпорированном) оно осуществляется радионуклидами, попавшими в организм через дыхательную систему, желудочно-кишечный тракт или через поврежденную кожу.

Биологическое действие И. и. в значительной степени зависит от его качества, в основном определяемого линейной передачей энергии (ЛПЭ) - энергией, теряемой частицей на единице длины ее пробега в веществе среды. В зависимости от значения ЛПЭ все И. и. делят на редкоионизирующие (ЛПЭ менее 10 кэВ/мкм ) и плотноионизирующие (ЛПЭ более 10 кэВ/мкм ). Воздействие разными видами И. и. в равных поглощенных дозах приводит к разным по величине эффектам. Для количественной оценки качества излучения введено понятие относительной биологической эффективности (ОБЭ), которую обычно оценивают сравнением дозы изучаемого И. и., вызывающей определенный биологический эффект, с дозой стандартного И. и., обусловливающей такой же эффект. Условно можно считать, что ОБЭ зависит только от ЛПЭ и возрастает с увеличением последней.

На каком бы уровне - тканевом, органном, системном или организменном не рассматривалось биологическое действие И. и., его эффект всегда определяется действием И. и. на уровне клетки. Детальное изучение реакций, инициируемых в клетке И. и., составляет предмет фундаментальных исследований радиобиологии . Следует заметить, что большинство реакций, возбуждаемых И. и., в том числе и такая универсальная реакция, как задержка клеточного деления, является временной, преходящей и не сказывается на жизнеспособности облученной клетки. К реакциям такого типа - обратимым реакциям - относятся также различные нарушения метаболизма, в т.ч. угнетение обмена нуклеиновых кислот и окислительного фосфорилирования, слипание хромосом и др. Обратимость этого типа лучевых реакций объясняется тем, что они являются следствием повреждения части множественных структур, утрата которой очень быстро восполняется или просто остается незамеченной. Отсюда и характерная особенность этих реакций: с увеличением дозы И. и. возрастает не доля реагирующих особей (клеток), а величина, степень реакции (например, продолжительность задержки деления) каждой облученной клетки.

Существенно иную природу имеют эффекты, приводящие облученную клетку к гибели, - летальные лучевые реакции. Под клеточной гибелью в радиобиологии понимают утрату клеткой способности к делению. Напротив, «выжившими» считаются те клетки, которые сохранили способность к размножению (клонированию).

Существуют две формы летальных реакций, которые гибельны для делящихся и малодифференцированных клеток: интерфазная, при ней клетка погибает вскоре после облучения, во всяком случае до наступления первого митоза, и репродуктивная, когда пораженная клетка гибнет не сразу после воздействия И. и., а в процессе деления. Наиболее распространена репродуктивная форма летальных реакций. Основной причиной гибели клеток при ней являются возникающие под влиянием облучения структурные повреждения хромосом.

Эти повреждения легко обнаруживаются при цитологическом исследовании клеток на разных стадиях митоза и имеют вид хромосомных перестроек, или хромосомных аберраций. Из-за неправильного соединения хромосом и просто утраты их концевых фрагментов при делении потомки такой поврежденной клетки несомненно погибнут сразу же после данного деления или в результате двух-трех последующих митозов (в зависимости от значимости утраченного генетического материала для жизнеспособности клетки). Возникновение структурных повреждений хромосом - процесс вероятности, в основном связанный с образованием двойных разрывов в молекуле ДНК, т.е. с нерепарируемыми повреждениями жизненно важных клеточных макромолекул. В связи с этим, в отличие от рассмотренных выше обратимых клеточных реакций, с увеличением дозы И. и. возрастает число (доля) клеток с летальным повреждением генома, строго описываемая для каждого вида клеток в координатах «доза - эффект». В настоящее время разработаны специальные методы выделения клоногенных клеток из различных тканей in vivo и их выращивания in vitro, с помощью чего после построения соответствующих дозовых кривых выживания количественно оценивают радиочувствительность изучаемых органов и возможности ее изменения в нужном направлении. Кроме того, подсчет числа клеток с хромосомными аберрациями на специальных препаратах используют в целях биологической дозиметрии для оценки радиационной обстановки, например на борту космического корабля, а также для определения степени тяжести и прогноза острой лучевой болезни.

Описанные лучевые реакции клеток лежат в основе непосредственных эффектов, проявляющихся в первые часы, дни, недели и месяцы после общего облучения организма или локального облучения отдельных сегментов тела. К ним относятся, например, лучевые ы, различные проявления острой лучевой болезни (лейкопения, аплазия костного мозга, геморрагический синдром, поражения кишечника), стерильность (временная или постоянная, в зависимости от дозы И. и.).

Спустя длительное время (месяцы и годы) после облучения развиваются отдаленные последствия местного и общего радиационного воздействия. К ним относятся сокращение продолжительности жизни, возникновение злокачественных новообразований и радиационная . Патогенез отдаленных последствий облучения в большей степени связывают с повреждением тканей, характеризующихся низким уровнем пролиферативной активности, из которых состоит большинство органов животных и человека. Глубокое знание механизмов биологического действия И. и. необходимо, с одной стороны, для разработки способов противолучевой защиты и патогенетического лечения радиационных поражений, а с другой - для изыскания путей направленного усиления лучевого воздействия при радиационно-генетических работах и других аспектах радиационной биотехнологии или при лучевой терапии злокачественных новообразований с помощью радиомодифицирующих агентов. Кроме того, понимание механизмов биологического действия И. и. необходимо врачу на случай экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности.

Библиогр.: Гозенбук В.Л. и др. Дозовая нагрузка на человека в полях гамма-нейтронного излучения, М., 1978; Иванов В.И. Курс дозиметрии, М., 1988; Кеирим-Маркус И.Б. Эквидозиметрия, М., 1980; Комар В.Е. и Хансон К.П. Информационные макромолекулы при лучевом повреждении клеток, М., 1980; Моисеев А.А. и Иванов В.И. Справочник по дозиметрии и радиационной гигиене, М., 1984; Ярмоненко С.П. Радиобиология человека и животных, М., 1988.

Основным свойством ионизирующего излучения, обусловливающим его биологическое (в том числе и поражающее) действие, является способность проникать в различные ткани, клетки, субклеточные структуры и вызывать ионизацию атомов и молекул в облучаемом веществе. При этом под влиянием поглощенной энергии ионизирующего излучения атомы или молекулы переходят в возбужденное состояние вплоть до высвобождения электрона (ионизации). Оставшаяся часть атома или молекулы приобретает положительный заряд и становится положительным ионом.

Ионизация большинства элементов, входящих в состав биосубстрата, происходит лишь в том случае, если поглощенная энергия составляет не менее 10-12 эВ (так называемый потенциал ионизации). Если же передаваемая атому или молекуле энергия кванта излучения меньше потенциала ионизации облучаемого вещества, происходит лишь их возбуждение. Таким образом, основными процессами, в которых расходуется энергия излучений, поглощенная в облучаемом биообъекте, являются ионизация (потеря атомом или молекулой электронов) или возбуждение (переход электронов на более высокий энергетический уровень). Одной из важнейших характеристик ионизирующего излучения, определяющих особенности его поражающего действия, является проникающая способность, т. е. глубина проникновения в биологический материал.

Проникающая способность ионизирующего излучения зависит от его природы, заряда составляющих его частиц и энергии, а также от состава и плотности облучаемого вещества. Различают электромагнитные и корпускулярные излучения. К электромагнитным относят рентгеновское и гамма-излучение, к корпускулярным - а-частицы (ядра атомов гелия), ß-частицы (электроны), нейтроны и протоны. Электромагнитные излучения характеризуются большой проникающей способностью, при этом чем больше энергия излучения, тем слабее ее поглощение и выше его проникающая способность; аи ß-излучения отличаются низкой проникающей способностью.

Например, проникающая способность в биологическом материале а-излучения составляет около 40 мкм, ß-излучения с энергией 2-5 МэВ - 1-2,5 см. Высокой проникающей способностью характеризуются нейтроны, особенно быстрые (с энергией более 0,1 МэВ), имеющие наибольшее практическое значение в радиобиологии. Проникающая способность ионизирующего излучения в значительной мере определяет характер лучевого поражения. Так, острая лучевая болезнь с характерными для нее синдромами возникает обычно под влиянием внешнего гамма и гамма-нейтронного излучения, тогда как воздействие на организм а-и ß-излучения приводит, как правило, к местным лучевым поражениям.

Биологический эффект ионизирующего излучения зависит не только от его проникающей способности, но и количества поглощенной энергии, а также от характера ее пространственного микрораспределения. Количество (доза) поглощенной энергии ионизирующего излучения в единицах СИ выражается в джоулях на килограмм и имеет специальное название - «грей» (Гр). В качестве внесистемной единицы дозы поглощенной энергии используется рад (1 Гр равен 100 рад). Энергию, переданную заряженной частицей на единицу длины ее пробега в веществе, называют линейной передачей энергии (ЛПЭ). Ее величина обратно пропорциональна кинетической энергии частицы и определяется плотностью распределения событий ионизации вдоль трека частицы.

При равной скорости движения частицы ЛПЭ пропорциональна квадрату заряда частицы, а при равной энергии плотность ионизации увеличивается по мере увеличения массы частицы. 30 В зависимости от значения ЛПЭ все ионизирующие излучения делятся на редкои плотноионизирующие, при этом к редкоионизирующим принято относить все виды излучений, имеющие ЛПЭ менее 10 кэВ/мкм, а к плотноионизирующим - те, для которых ЛПЭ превышает указанную величину.

Плотноионизирующие излучения при равной поглощенной дозе обладают большей биологической эффективностью вследствие усиления лучевого поражения клеток и тканей организма и снижения их способности к пострадиационному восстановлению. При одинаковых значениях поглощенной дозы различные виды ионизирующих излучений неодинаково действуют на один и тот же биообъект. Для сравнения биологического действия видов ионизирующего излучения с различной величиной ЛПЭ их принято различать по «относительной биологической эффективности» (ОБЭ).

Количественной оценкой ОБЭ служит ее коэффициент, представляющий собой отношение дозы данного и «стандартного» (рентгеновского) излучения, обладающих равным биологическим эффектом при одинаковой поглощенной дозе. Таким образом, принципиальным свойством ионизирующих излучений, определяющим их биологическое действие, является способность вызывать ионизацию атомов и молекул в облучаемом веществе, а к основным характеристикам, от которых зависит величина биологического эффекта ионизирующих излучений, относятся их проникающая способность, величина поглощенной энергии и особенности ее пространственного распределения в тканях организма (плотность ионизации).

Радиация - излучение (от radiare - испускать лучи) - распространение энергии в форме волн или частиц. Свет, ультрафиолетовые лучи, инфракрасное тепловое излучение, микроволны, радиоволны представляют собой разновидность радиации. Часть излучений получили название ионизирующих, благодаря своей способности вызывать ионизацию атомов и молекул в облучаемом веществе.


Ионизирующее излучение - излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Это поток частиц или квантов, способных прямо или косвенно вызывать ионизацию окружающей среды. Ионизирующее излучение объединяет разные по своей физической природе виды излучений. Среди них выделяются элементарные частицы (электроны, позитроны, протоны, нейтроны, мезоны и др.), более тяжелые многозарядные ионы (a-частицы, ядра бериллия, лития и других более тяжелых элементов); излучения, имеющие электромагнитную природу (g-лучи, рентгеновские лучи).


Различают два типа ионизирующих излучений: корпускулярное и электромагнитное.


Корпускулярное излучение - представляет собой поток частиц (корпускул), которые характеризуются определенной массой, зарядом и скоростью. Это электроны, позитроны, протоны, нейтроны, ядра атомов гелия, дейтерия и др.


Электромагнитное излучение - поток квантов или фотонов (g-лучи, рентгеновские лучи). Оно не имеет ни массы, ни заряда.


Различают также непосредственно и косвенно ионизирующие излучения.


Непосредственно ионизирующее излучение - ионизирующее излучение, состоящее из заряженных частиц, имеющих кинетическую энергию, достаточную для ионизации при столкновении ( , частица и др.).


Косвенно ионизирующее излучение - ионизирующее излучение, состоящее из незаряженных частиц, и фотонов которые могут создавать непосредственно ионизирующее излучение и (или) вызвать ядерные превращения (нейтроны, рентгеновские и g-излучения).


Основными свойствами ионизирующих излучений является способность при прохождении через любое вещество вызывать образования большого количества свободных электронов и положительно заряженных ионов (т.е. ионизирующая способность).


Частицы или квант высокой энергии выбивают обычно один из электронов атома, который уносит с собой единичный отрицательный заряд. При этом оставшаяся часть атома или молекулы, приобретя положительный заряд (из-за дефицита отрицательно заряженной частицы), становится положительно заряженным ионом. Это так называемая первичная ионизация.


Выбитые при первичном взаимодействии электроны, обладая определенной энергией, сами взаимодействуют со встречными атомами, превращают их в отрицательно заряженный ион (происходит вторичная ионизация ). Электроны, которые потеряли в результате столкновений свою энергию, остаются свободными. Первый вариант (образование положительных ионов) происходит лучше всего с атомами, у которых на внешней оболочке имеется 1-3 электрона, а второй (образование отрицательных ионов) - с атомами, у которых на внешней оболочке имеется 5-7 электронов.


Таким образом, ионизирующий эффект - главное проявление действия радиации высоких энергий на вещество. Именно поэтому радиация и называется ионизирующей (ионизирующими излучениями).


Ионизация возникает как в молекулах неорганического вещества, так и в биологических системах. Для ионизации большинства элементов, которые входят в состав биосубстратов (это значит для образования одной пары ионов) необходимо поглощение энергии в 10-12 эВ (электрон-вольт). Это так называемый потенциал ионизации . Потенциал ионизации воздуха равен в среднем 34 эВ.


Таким образом, ионизирующие излучения характеризуются определенной энергией излучения, измеряемой в эВ. Электрон-вольт (эВ) - это внесистемная единица энергии, которую приобретает частица с элементарным электрическим зарядом при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 вольт.


1эВ=1,6 х 10-19 Дж = 1,6 х 10-12 эрг.


1кэВ (килоэлектрон-вольт) = 103 эВ.


1МэВ (мегаэлектрон-вольт) = 106 эВ.


Зная энергию частиц, можно подсчитать, сколько пар ионов они способны образовать на пути пробега. Длина пути - полная длина траектории частицы (какой бы сложной она не была бы). Так, если частица обладает энергией в 600 кэВ, то она может образовать в воздухе около 20000 пар ионов.


В тех случаях, когда энергии частицы (фотона) недостаточно для того, чтобы преодолел притяжение атомного ядра и вылетел за пределы атома, (энергия излучений меньше потенциала ионизации) ионизация не происходит. , приобретя излишек энергии (так называемый возбужденный ), на доли секунды переходит на более высокий энергетический уровень, а затем скачком возвращается на прежнее место и отдает излишнюю энергию в виде кванта свечения (ультрафиолетового или видимого). Переход электронов с внешних орбит на внутренние сопровождается рентгеновским излучением.


Однако, роль возбуждения в воздействии радиации второстепенная в сравнении с ионизацией атомов, поэтому общепринято название радиации высоких энергий: «ионизирующая », что подчеркивает ее главное свойство.


Второе название радиации - «проникающая » - характеризует способность излучений высокой энергии, прежде всего, рентгеновских и
g-лучей, проникать в глубину вещества, в частности, в тело человека. Глубина проникновения ионизирующего излучения зависит, с одной стороны, от природы излучения, заряда составляющих его частиц и энергии, а с другой - состава и плотности облучаемого вещества.


Ионизирующие излучения обладают определенной скоростью и энергией. Так, b-излучение и g-излучение распространяются со скоростью, близкой к скорости света. Энергия, например, a-частиц колеблется в пределах 4-9 МэВ.


Одной из важных особенностей биологического воздействия ионизирующей радиации является невидимость, неощутимость. В этом и заключается их опасность, человек ни визуально, ни органолептически не может обнаружить воздействие излучений. В отличие от лучей оптического диапазона и даже радиоволн, которые вызывают в определенных дозах нагревание тканей и ощущение тепла, ионизирующие излучения даже в смертельных дозах нашими органами чувств не фиксируется. Правда, у космонавтов наблюдались косвенные проявления действия ионизирующей радиации - ощущение вспышек при закрытых глазах - за счет массивной ионизации в сетчатке глаза. Таким образом, ионизация и возбуждение - основные процессы, в которых тратится энергия излучений, поглощаемая в облучаемом объекте.


Возникшие ионы исчезают в процессе рекомбинации, это значит воссоединения положительных и отрицательных ионов, в котором образуются нейтральные атомы. Как правило, процесс сопровождается образованием возбуждаемых атомов.


Реакции с участием ионов и возбужденных атомов имеют чрезвычайно важное значение. Они лежат в основе многих химических процессов, в том числе и биологически важных. С ходом этих реакций связываются отрицательные результаты воздействия радиации на организм человека.