Факты подтверждающие теорию биохимической эволюции. Современные теории

Теория биохимической эволюции
До середины XX в. многие ученые полагали, что органические соединения могут возникать только в живом организме. Именно поэтому их назвали органическими соединениями в противоположность веществам неживой природы - минералам, которые получили название неорганических соединений. Считалось, что органические вещества возникают только биогенно, а природа неорганических веществ совершенно иная, поэтому возникновение даже простейших организмов из неорганических веществ совершенно невозможно. Однако после того как из обычных химических элементов было синтезировано первое органическое соединение, представление о двух разных сущностях органических и неорганических веществ оказалось несостоятельным. В результате этого открытия возникли органическая химия и биохимия, изучающие химические процессы в живых организмах.

Однако в индивидуальных экспериментальных подходах из 20 протеиногенных аминокислот всегда составляло только максимум тринадцать, кроме того, существовал избыток веществ, которые не связаны в живой природе в связи с синтезом белка. Кроме того, анализ продуктов реакции выявил избыток моно - и полифункциональных молекул, которые являются значительным смешающим фактором для цепи отдельных аминокислот для белков.

Эксперименты Стэнли Миллера можно было рассматривать как первый шаг в формировании жизненно важных молекул. Однако этот шаг, очевидно, ведет к тупику. Поскольку во всех экспериментальных подходах возникает большое количество других веществ одновременно с желаемыми аминокислотами, которые серьезно затрудняют или даже делают невозможными следующие шаги.

Кроме того, данное научное открытие позволило создать концепцию биохимической эволюции, согласно которой жизнь на Земле возникла в результате физических и химических процессов. В основу этой гипотезы были положены данные о сходстве веществ, входящих в состав растений и животных, о возможности в лабораторных условиях синтезировать органические вещества, составляющие белок.

Некоторые из этих белков, ферментов, которые катализируют реакции, которые гарантируют выживание клетки и обеспечить, чтобы они удваиваются. Эксперименты Миллера не могли дать никаких правдоподобных доказательств для образования исходных материалов обеих макромолекул. Даже если бы упростительно предположить, что в качестве исходного материала для нуклеиновых кислот и нескольких аминокислот в качестве строительных блоков для белков потребуется только две основы, основная проблема останется: что было первым, белки или нуклеиновые кислоты.

Академик А.И. Опарин опубликовал в 1924 г. свой труд «Происхождение жизни», где была изложена принципиально новая гипотеза происхождения жизни. Суть гипотезы сводилась к следующему: зарождение жизни на Земле - длительный эволюционный процесс становления живой материи в недрах неживой. И произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических факторов, и тем самым химическая эволюция постепенно поднялась на качественно новый уровень и перешла в биохимическую эволюцию.

Доказательства того, что были примитивные предшественники репликативной и метаболически активной системы, пока нет. Однако есть свидетельства того, что одна молекула-предшественник может сочетать обе функции, а именно хранение генетической информации и катализ или авторепликацию.

Оказалось, что на более поздних стадиях развития эти задачи полностью переносятся белками. Эти соображения долгое время оставались в сфере спекуляций. Эксперименты Миллера Урсуппена были относительно неспецифичны в поисках органических макромолекул как возможных исходных материалов для белков и нуклеиновых кислот. Некоторые из них будут представлены ниже.

Рассматривая проблему возникновения жизни путем биохимической эволюции, Опарин выделяет три этапа перехода от неживой материи к живой:

Синтез исходных органических соединений из неорганических веществ в условиях первичной атмосферы первобытной Земли;

Формирование в первичных водоемах Земли из накопившихся органических соединений биополимеров, липидов, углеводородов;

В дальнейшем, этот синтетический путь был исследован, и было обнаружено, что это был автокаталитический реакционный цикл, который был вызван небольшими количествами примесей формальдегида и вывел в качестве первого гликолевого продукта реакции. Если бы можно было направить реакцию Бутлерова на синтез рибозы, это может быть идеальным путем к сахарному компоненту нуклеотидов. Однако на этом пути были подготовлены только сахарные смеси, и рибозы всегда обнаруживались только в исчезающе малых количествах.

Однако вскоре стало очевидно, что катионы свинца катализируют синтез альдоптентозов, что приводит к предположению, что рибозы могут образовываться в пребиотических условиях. Химический синтез аденина пуринового основания до сих пор остается загадкой. Основой возможного синтеза пребиотического аденина является цианид водорода или синильная кислота. Джон Оро и его коллеги смогли извлечь небольшое количество аденина из цианида аммония в начале шестидесятых годов. Это побудило ученых искать другие возможные пути аденина.

Самоорганизация сложных органических соединений, возникновение на их основе и эволюционное совершенствование процесса обмена веществ и воспроизводства органических структур, завершающееся образованием простейшей клетки.

Несмотря на всю экспериментальную обоснованность и теоретическую убедительность, концепция Опарина имеет как сильные, так и слабые стороны.

Миякава предположил, что пурины в ранней земной атмосфере были сформированы независимо от цианистого водорода. Кристофер Чиба и Карл Саган еще более смело рассуждают о том, что пурины были произведены в других местах нашей солнечной системы и снесены на землю метеоритами. Роберт Шапиро, один из ведущих исследователей происхождения, критично относится к этим соображениям. Именно потому, что аденин играет важную роль в репликации всех известных живых существ, очевидно, что аденин был компонентом системы репликации в начале жизни.

Но химические свойства аденина говорят против такой роли. Это три веские причины, из-за которых Шапиро отвергает привлекательную возможность того, что аденин мог быть компонентом первой репликативной системы. Он также скептически относится к возможному пребиотическому синтезу пиримидинов. Они не были обнаружены ни в метеоритах, ни в экспериментах с электрическими разрядами. Химический синтез представляет собой такую ​​сложность, что Шапиро также считает, что цитозин как возможный компонент ранней молекулы репликатора очень маловероятен.

Сильной стороной концепции является достаточно точное соответствие ее химической эволюции, согласно которой зарождение жизни есть закономерный результат добиологической эволюции материи. Убедительным аргументом в пользу этой концепции выступает также возможность экспериментальной проверки ее основных положений. Это касается лабораторного воспроизведения не только предполагаемых физико-химических условий первичной Земли, но и коацерватов, имитирующих доклеточного предка и его функциональное особенности.

Таким образом, следует отметить, что в настоящее время нет убедительных моделей для синтеза нуклеотидов при вероятных пребиотических условиях. Несколько реакционных ступеней, вероятно, можно имитировать, но всегда использовать чистые исходные материалы и нередко с очень низким выходом продукта. Обсуждаются мысли о внеземном происхождении основных строительных блоков нуклеиновых кислот, но они не могут способствовать решению актуальной проблемы. Сшивание активированных нуклеотидов до более длинных молекул обычно происходит не спонтанно, а только при добавлении внешних факторов активации к реакции.

Слабая сторона концепции - это невозможность объяснить сам момент скачка от сложных органических соединений к живым организмам - ведь ни в одном из поставленных экспериментов получить жизнь так и не удалось. Кроме того, Опарин допускает возможность самовоспроизведения коацерватов при отсутствии молекулярных систем с функциями генетического кода. Иными словами, без реконструкции эволюции механизма наследственности объяснить процесс скачка от неживого к живому невозможно. Поэтому сегодня считается, что решить эту сложнейшую проблему биологии без привлечения концепции открытых каталитических систем, молекулярной биологии, а также кибернетики не получится

Из-за очень низкой скорости реакции нуклеозидных фосфатов в водном растворе при умеренных температурах и значениях рН эту реакцию невозможно легко смоделировать в лаборатории. Таким образом можно синтезировать только полимеры нескольких нуклеотидов. Самой большой проблемой является источник свободной энергии, который может стимулировать полимеризацию нуклеотидов. Эту проблему можно решить с использованием глинистых минералов. Феррис еще не может объяснить, как глина может выполнить эту задачу, но интенсивно проводит исследования со своей командой, чтобы прояснить этот вопрос.

Основные Гипотезы происхождения жизни на земле.

Биохимическая эволюция

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5 – 5 млрд. лет.

По мнению многих биологов, в прошлом состояние нашей планеты было мало похоже на нынешнее: вероятно температура на поверхности была очень высокой (4000 - 8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, подвижек и сжатий коры, вызванных охлаждением, происходило образование складок и разрывов.

Эта трудность часто наблюдалась и упоминалась как энантиомерное кросс-ингибирование. Это может поставить под сомнение все наиболее правдоподобные объяснения происхождения механизмов пребиотической репликации. Он фокусируется на следующих предположениях.

Пребиотические основания, сахара, фосфаты присутствовали в достаточном количестве и чистоте. Это образовавшиеся нуклеотиды, основные строительные блоки нуклеиновых кислот и накопленные в небольшом озере. На дне озера были глинистые минералы, которые катализировали образование длинноцепочечных одноцепочечных полинуклеотидов. Некоторые из них были преобразованы в двойные пряди с помощью шаблонного синтеза.

Полагают, что гравитационное поле еще недостаточно плотной планеты не могло удерживать легкие газы: водород, кислород, азот, гелий и аргон, и они уходили из атмосферы. Но простые соединения, содержащие среди прочих эти элементы (вода, аммиак, CO2 и метан). До тех пор, пока температура Земли не упала ниже 100°C, вся вода находилась в парообразном состоянии. Отсутствие кислорода, вероятно, было необходимым условием для возникновения жизни; как показывают лабораторные опыты, органические вещества (основа жизни) гораздо легче образуются в атмосфере бедной кислородом.

Копия рибозима приводит к дальнейшим рибозиму и так далее. Это привело к экспоненциально растущему населению. На этом этапе сценария естественный отбор продолжил бы этот процесс. По словам Дарвина, жизнь началась из первоначального организма. Согласно еще более радикальным идеям созерцания молекулярных биологов, вся биосфера будет происходить из нескольких самовоспроизводящихся полинуклеотидов, образовавшихся на примитивной почве.

Авторы этого утопического молекулярного зрелища вполне могут отметить, что еще предстоит решить многие нерешенные проблемы, прежде чем эта мечта может превратиться в серьезную и убедительную теорию. Кроме того, еще предстоит показать, как рибозимы удерживают продукты вместе в терминах их собственной активности, например, путем включения в мембранную систему, которая будет кратко рассмотрена.

В 1923 г. А.И. Опарин, исходя из теоретических соображений, высказал мнение, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений. Энергию для этих процессов поставляла интенсивная солнечная радиация, главным образом ультрафиолетовое излучение, падавшее на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался «первичный бульон», в котором могла возникнуть жизнь.

С помощью компьютерного моделирования они пытаются имитировать происхождение жизни, а также представлять молекулярную эволюцию в цифровом виде во времени. Все вышеупомянутые трудности и препятствия для саморазвития исходных материалов нуклеиновых кислот в этом случае не должны рассматриваться в этих экспериментальных подходах.

Шустер выбрал способ компьютерного моделирования, потому что он обеспокоен большими препятствиями обычного, г. час белый на основе экспериментальных исследований, основанных на лабораторных экспериментах. Явления, подобные адаптации, составляют от 10 3 до 10 6 поколений. Такие периоды времени слишком велики для экспериментов в обычном смысле. Кроме того, комбинация возможных генотипов становится неуправляемой. Наконец, сложная связь между генотипом и фенотипом затрудняет реалистичное моделирование.

Понять происхождение человека нельзя, не поняв происхождение жизни. А понять происхождение жизни можно, лишь поняв происхождение Вселенной.

Сначала был большой взрыв. Этот взрыв энергии произошел пятнадцать миллиардов лет назад.

Эволюцию можно представить себе в виде Эйфелевой башни. В основании - энергия, выше - материя, планеты, затем жизнь. И наконец на самой верхушке - человек, самое сложное и позже всех появившееся животное.

Единственной необходимой предпосылкой для молекулярной эволюции, контролируемой компьютером, являются молекулы, способные к размножению. Это может затем атаковать отбор и адаптацию при изменении условий окружающей среды. Времена генерации самореплицирующихся молекул чрезвычайно короткие. Явления, такие как адаптация, становятся наблюдаемыми. Оба свойства, последовательность и пространственная структура неразрывно связаны. Таким образом, этот подход предлагает простую модельную систему для изучения процессов адаптации в лаборатории.

Ход эволюции:

15 млрд лет назад: рождение Вселенной;

5 млрд лет назад: рождение Солнечной системы;

4 млрд лет назад: рождение Земли;

3 млрд лет назад: первые следы жизни на Земле;

500 млн лет назад: первые позвоночные;

200 млн лет назад: первые млекопитающие;

70 млн лет назад: первые приматы.

Согласно этой гипотезе, предложенной в 1865г. немецким ученым Г. Рихтером и окончательно сформулированной шведским ученым Аррёниусом в 1895 г., жизнь могла быть занесена на Землю из космоса. Наиболее вероятно попадание живых организмов внеземного происхождения с мётеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям.

Таким образом, исследователи Шустера могут создавать молекулы с оптимальными свойствами, которые впоследствии могут быть синтетически синтезированы. Этот «игрушечный мир», как называет сам Шустер, представляет собой простую, но эффективную модельную модель для моделирования событий молекулярной адаптации. Эта модель, безусловно, подходит для понимания микроэволюционных процессов.

На молекулярном уровне он думает о происхождении репликации в целом, о переводе или происхождении генетического кода, о сложном взаимодействии регуляции генов. На макроскопическом уровне это будет переход от прокариотов к эукариотам, от одноклеточных организмов до многоклеточных организмов или даже к развитию организмов, вплоть до людей.

В 1969 году в Австралии был найден метеорит "Мэрчисон". Он содержал 70 неповрежденных аминокислот, восемь из которых входят в состав человеческого белка!

Многие ученые могли возразить, что белки, окаменевшие при вхождении в атмосферу, были мертвы. Однако недавно был открыт прион, белок, который выдерживает очень высокие температуры. Прион сильнее вируса и способен гораздо быстрее передавать болезнь. Согласно теории Панспермии человек каким то образом берет начало от вируса внеземного происхождения, поразившего обезьян, которые в результате мутировали.

Вопрос о происхождении первых клеток еще предстоит решить с помощью необходимых шагов, упомянутых выше, для выяснения происхождения жизни. Многие ученые считают, что предки всех живых существ были своего рода одноклеточным существом, контейнером, в котором белки и нуклеиновые кислоты, кофакторы и другие были упакованы и окружены относительно непроницаемой оболочкой. Даже на этом следующем необходимом этапе пребиотической эволюции в настоящее время существуют только предположения о возможных механизмах формирования первых клеток.

Центральными компонентами клеточных мембран являются фосфолипиды, которые могут спонтанно собираться в бислоях для образования круговых структур. Хотя нет доказательств наличия синтетических возможностей в пребиотических условиях, существуют модельные системы относительно того, как липидные бислои могут впервые появиться в супе изначального сустава и как можно визуализировать примитивное деление клеток.

Теория самопроизвольного зарождения жизни

Эта теория была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала.

Аристотель (384 – 322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. На основе собственных наблюдений он развивал эту теорию дальше, связываю все организмы в непрерывный ряд – «лестницу природы». «Ибо природа совершает переход от безжизненных объектов к животным с такой плавной последовательностью, поместив между ними существа, которые живут, не будучи при этом животными, что между соседними группами, благодаря их тесной близости, едва можно заметить различия» (Аристотель).

Открытие архебактерий возлагало надежды на то, что эти микроорганизмы могут быть хорошими модельными системами, поскольку первыми предшественниками клеток могли быть. Однако вскоре стало очевидно, что архебактерии, в частности, содержат очень сложные метаболические системы, которые не являются «примитивными» и поэтому вряд ли могут быть использованы в качестве возможного архетипа примитивного одноклеточного живого организма.

Мечта о «стандартной модели» для создания жизни, сформулированной Джойсом и Оргелем, остается в сфере спекуляций. Ни для пребиотического происхождения строительных блоков нуклеиновых кислот и белков нет безопасных экспериментальных данных, ни для прототипа самовоспроизводящейся генетической системы, кроме того, вопрос об организации генетического материала на клеточном уровне невозможен. Также вопрос: курица или яйцо, д. час были ли белки или нуклеиновые кислоты в качестве первых предшественников жизни до сих пор неясно.

Согласно гипотезе Аристотеля о спонтанном зарождении, определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.

«Таковы факты – живое может возникать не только путем спаривания животных, но и разложением почвы. Так же обстоит дело и у растений: некоторые развиваются из семян, а другие как бы самозарождаются под действием всей природы, возникая из разлагающейся земли или определенных частей растений» (Аристотель).

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: ее признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение еще многих веков.

Теория стационарного состояния

Согласно этой теории, Земля никогда не возникала, а существовала вечно, она всегда способна поддерживать жизнь, а если и изменялась, то очень мало. Виды также существовали всегда.

Оценки возраста земли сильно варьировали – от примерно 6000 лет по расчетам архиепископа Ашера до 5000 10 в 6 степени лет по современным оценкам, основанным на учете скоростей радиоактивного распада. Более совершенные методы датирования дают все более высокие оценки возраста Земли, что позволяет сторонникам теории стационарного состояния считать, что Земля существовала вечно. Согласно этой теории, виды также никогда не возникали, они существовали всегда и у каждого вида есть лишь две альтернативы – либо изменение численности, либо вымирание.

Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводят в качестве примера представителя кистеперых рыб – латимерию. Сторонники теории стационарного состояния утверждают, что только изучая ныне живущие виды и сравнивая их с ископаемыми остатками, можно делать вывод о вымирании, да и в этом случае весьма вероятно, что он окажется неверным. Используя палеонтологические данные для подтверждения теории стационарного состояния, ее немногочисленные сторонники интерпретируют появление ископаемых остатков в экологическом аспекте (увеличение численности, миграции в места благоприятные для сохранения остатков и т. п.). Большая часть доводов в пользу этой теории связана с такими неясными аспектами эволюции, как значение разрывов в палеонтологической летописи, и она наиболее подробно разработана именно в этом направлении.

Креационизм

Креационизм (лат. сгеа - создание). Согласно этой концепции, жизнь и все населяющие Землю виды живых существ являются результатом творческого акта высшего существа в какое-то определенное время. Основные положения креационизма изложены в Библии, в Книге Бытия. Процесс божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения. Этого достаточно, чтобы вынести всю концепцию божественного сотворения за рамки научного исследования. Наука занимается только теми явлениями, которые поддаются наблюдению, а поэтому она никогда не будет в состоянии ни доказать, ни отвергнуть эту концепцию.

Теория водного происхождения человека


Она гласит: человек произошел прямо из воды. Т.е. мы когда то были чем-то вроде морских приматов, или гуманоидными рыбами.

«Водную теорию» происхождения человека выдвинул Алистер Харди (1960), а развивала Элейн Морган. После чего идею транслировали многие популяризаторы, например, Ян Линдблад и легендарный подводник Жак Майоль. По мнению Харди и Морган, одним из наших предков была большая обезьяна миоцена из семейства проконсулов, которая, прежде чем стать земной, много миллионов лет обитала в воде.

В пользу происхождения «водной обезьяны» приводятся такие особенности человека:

1. Способность задерживать дыхание, апноэ (в том числе во время вокализации) делает человека ныряльщиком.

2. Работа ловкими кистями и использование орудий сходно с поведением енота-полоскуна и калана.

3. Переходя вброд водоемы, приматы встают на задние конечности. Полуводный образ жизни способствовал развитию прямохождения.

4. Утрата волосяного покрова и развитие подкожного жира (у человека в норме он толще, чем у других приматов) - характерны для водных млекопитающих.

5. Большая грудь помогала удерживать в воде корпус и согревать сердце.

6. Волосы на голове помогали удерживаться младенцу.

7. Удлиненная стопа помогала плавать.

8. Между пальцами рук есть кожная складка.

9. Сморщив нос, человек может закрыть ноздри (обезьяны – нет)

10. Ухо человека меньше набирает воду

И еще например если новорожденного поместить в воду сразу после того как он покинет материнское лоно, он будет себя отлично чувствовать. Он уже умеет плавать. Ведь чтобы новорожденный перешел от стадии рыбы к стадии млекопитающего дышащего воздухом его нужно похлопать по спине.

50 млн лет назад дельфины вышли из воды и стали сухопутными животными. А потом по неизвестным причинам решили вернуться в воду. Нам остается лишь последовать их примеру.

Трансформизм

Выдвинута в 1815 году Жаном Батистом Ламарком

Изменения внешней среды влекут за собой изменение клеток.

Разлом вынудил(!!) первых доисторических людей жить в безлесной саванне. Они не могли более взбираться на деревья, спасаясь от хищников. Люди вынуждены были встать на задние лапы, чтобы издалека видеть врага в высокой траве. Постоянно опасаясь нападения, люди выпрямились и превратились из "животных, в основном живущих на деревьях и иногда принимающихвертикальное положение" в "прямоходящих животных иногда взирающихся на деревья".

Использование нижних конечностей освободило верхние лапы, теперь в руках можно было держать палку и использовать ее как оружие.

Прямохождение открыло эру и других изменений, в частности в костяке.Таз сделался корзиной для внутренностей. Раньше соединение позвоночного столба и черепа было горизонтальным. Теперь оно стало вертикальным, и объем черепа увеличился, так как спинной мозг больше не мешал ему.

За 2 млн лет объем мозга вырастает с 450 до 1000 кубических сантиметров, затем от 1000 до современных 1450.

У нас почти не осталось шерсти. Шерсть была нужна чтобы младенцы могли вцепиться в живот матери. Это стало ненужным, когда матери смогли взять детей на руки. И шерсть осталась на макушке черепа для защиты от солнца. Над глазами (брови) защита от дождя.

Отличие от дарвинизма в том что, дарвинисты считают, что люди - это животные, у которых случайно оказался ген, позволивший им встать на задние лапы. А ламаркисты считают, что любое животное если это необходимо, может трансформировать свои гены.

Идеи Ламарка дают каждому надежду на лучшее. А Дарвин, если ты представитель не самого удачного вида, не оставляет тебе шанса.

Развиваясь в течение 9 мес, зародыш человека проживают всю историю своего вида.

12-тидневный эмбрион напоминал крошечного удлиненного червяка с большими глазами. Похож на зародыш рыбы.

Когда человеческому эмбриону тридцать один день, он похож на ящерицу, в 9 недель - на детеныша землеройки, в 18 недель ничем не отличается от зародыша обезьяны.

Дарвинизм

Материалистическая теория эволюции (исторического развития) органического мира Земли, основанная на воззрениях Ч. Дарвина.

Два основных двигателя эволюции. Первое- случай, второе - отбор видов. Природа ставила одновременно тысячи эксперементов. А естественный отбор затем устраняет наименее приспособленных.

Картина истории предков человека.

70 млн лет назад: появление первых приматов. Они были насекомоядными и очень походили на землероек.

40 млн лет назад; появление первых лемуров.У этих животных уже были характерные для человека черты: отстоящий большой палец, поские ногти, плоское лицо. Расположенный под углом к ладони большой палец позволяет хватать предметы и пользоваться ими как инструментами. Плоские ногти вместо когтей дают возможность сжимать кулак. У лемуров у первых появилась кисть руки.Благодаря плоским лицам лемуры начали видеть объемно. Животные, у которых глаза расположены по бокам морды, не могут определять расстояние и различать рельеф. Улемуров морда перестала быть вытянутой, и глаза окаались на одной плоскости. Лемуры обрели возможность видеть мир в трех измерениях.

20 млн лет назад лемуров обогнали обезьяны, их гораздо более ловкие мутировавшие кузены.

Примерно между 4,4 и 2,8 млн лет тому назад, появляется ветвь обезьян-австралопитеков, из которых позднее вышли люди. Человек стал отличаться от гориллы или шимпанзе благодаря изменениям климата. Обезьяны населяли Восточную Африку, где произошло землятресение, спровоцировавшее разлом почвы, так называемый рифт. Разлом вызвал образование трех особых климатических зон: зону густых лесов, гористую зону, зону саванн с редкой растительностью. В густых лесах выжили только предки шимпанзе, в горах предки горилл, а в зоне саванн с редкой растительностью - австралопитеки, то есть наши предки.

Основным различием между австралопитеком и доисторической гориллой или шимпанзе было исчезновение хвоста, необходимого для того, чтобы удерживать равновесие при прыжках с ветки на ветку. Дотронетесь до вашего копчика. Этот бесполезный маленький обрубок хвоста внизу спины - последний признак древесной обезьяны, которой человек был до появления разлома.

Отсутствие хвоста - не единственное различие между человеком и обезьяной. Постепенно распрямился торс, увеличился объем черепа, лицо сделалось плоским, и у человека повилось стереоскопическое зрение. Не забудем и опущение гортани. Раньше приматы издавали лишь орчание, опущение же гортани значительно расширело диапазон звуков.Исчезла шерсть, период детства удлиннился, то есть удлинилось время для обучения детей.Возникли более сложные социальные отношения.

И вот он, ХОМО САПИЕНС, то есть мы. Одна из совершенных форм творения природы.

Биохимическая эволюция

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5 – 5 млрд. лет.

По мнению многих биологов, в прошлом состояние нашей планеты было мало похоже на нынешнее: вероятно температура на поверхности была очень высокой (4000 - 8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровнои̌, так как на ней в результате вулканической активности, подвижек и сжатий коры, вызванных охлаждением, происходило образование складок и разрывов.

Полагают, что гравитационное поле ещё недостаточно плотнои̌ планеты не могло удерживать легкие газы: водород, кислород, азот, гелий и аргон, и они уходили из атмосферы. Но простые соединения, содержащие среди прочих эти элементы (вода, аммиак, CO2 и метан). До тех пор, пока температура Земли не упала ниже 100°C, вся вода находилась в парообразном состоянии. Атмосфера была, по видимому, ʼʼвосстановительнои̌ʼʼ, о чем свидетельствует наличие в самых древних горнах породах металлов в восстановленнои̌ форме (например, двухвалентное железо). Более молодые породы содержат металлы в окисленнои̌ форме (Fe3+). Отсутствие кислорода, вероятно, было необходимым условием для возникновения жизни; как показывают лабораторные опыты, органические вещества (основа жизни) гораздо легче образуются в атмосфере беднои̌ кислородом.
Понятие и виды, 2018.

В 1923 г. А.И. Опарин, исходя из теоретических соображений, высказал мнение, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений. Энергию для этих процессов поставляла интенсивная солнечная радиация, главным образом ультрафиолетовое излучение, падавшее на Землю до того, как образовался слой озона, который стал задерживать большую её часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался ʼʼпервичный бульонʼʼ, в котором могла возникнуть жизнь.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытнои̌ Земле.
В созданнои̌ им установке ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в т.ч. ряд аминокислот, аденин и простые сахара, такие как рибоза. После ϶того Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длинои̌ в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичнои̌ атмосфере в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, проведенные с использованием установки Миллера, в которую поместили смесь CO2 и H2O, и только следовые количества других газов, дали такие же результаты, какие получил Миллер.
Размещено на реф.рф
Теория Опарина завоевала широкое признание, но она не решает проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в данном аспекте теория биохимической эволюции представляет общую схему, приемлемую для большинства биологов.
Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белков они способны к образованию коллоидных гидрофильных комплексов – притягивают к себе молекулы воды, создающие вокруг них оболочку. Данные комплексы могут обособляться от воднои̌ фазы, в которой они суспендированы, и образовывать своᴇᴦο рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от среды – процесс, называемый коацервацией. Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, особенно кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава ʼʼбульонаʼʼ в разных местах вело к различиям в составе коацерватов и поставляло таким образом сырье для ʼʼбиохимического естественного отбораʼʼ.

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при ϶том происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и средой выстраивались молекулы липидов, что приводило к образованию примитивнои̌ клеточнои̌ мембраны, обеспечивавшей коацерватам стабильность. В результате включения в коацерват предсуществующей молекулы, способнои̌ к самовоспроизведению и внутренней перестройки покрытого липиднои̌ оболочкой коацервата, могла возникнуть первичная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так, что ϶тот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к появлению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.

Хоть и эту гипотезу происхождения жизни признают очень многие ученые, у некоторых она вызывает сомнения из-за большого количества допущений и предположений. Астроном Фред Хойл недавно высказал мнение, что мысль о возникновении жизни в результате описанных выше случайных взаимодействий молекул ʼʼстоль же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорнои̌ свалкой, может привести к сборке Боинга-747ʼʼ.

Самое трудное для ϶той теории – объяснить появление способности живых систем к самовоспроизведению. Гипотезы по ϶тому вопросу пока малоубедительны.

Теория самопроизвольного зарождения жизни

Эта теория была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала.

Аристотель (384 – 322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. На базе собственных наблюдений он развивал эту теорию дальше, связываю все организмы в непрерывный ряд – ʼʼлестницу природыʼʼ. ʼʼИбо природа совершает переход от безжизненных объектов к животным с такой плавнои̌ последовательностью, поместив между ними существа, которые живут, не будучи при ϶том животными, что между соседними группами, благодаря их теснои̌ близости, едва можно заметить различияʼʼ (Аристотель).
Этим утверждением Аристотель укрепил более ранние высказывания Эмпедокла об органической эволюции. Согласно гипотезе Аристотеля о спонтанном зарождении, определенные ʼʼчастицыʼʼ вещества содержат некое ʼʼактивное началоʼʼ, которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что ϶то активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует аналогичным образом в солнечном свете, тине и гниющем мясе.

ʼʼТаковы факты – живое может возникать не только путем спаривания животных, но и разложением почвы. Следует отметить, что так же обстоит дело и у растений: некоторые развиваются из семян, а другие как бы самозарождаются под действием всей природы, возникая из разлагающейся земли или определенных частей растенийʼʼ (Аристотель).

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: её признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение ещё многих веков.

Ван Гельмот (1577 – 1644 гг), весьма знаменитый и удачливый ученый, описал эксперимент, в котором он за три недели якобы создал мышей. Для ϶того нужны были грязная рубашка, темный шкаф и горсть пшеницы. Активным началом в процессе зарождения мыши Ван Гельмот считал человеческий пот. В 1688 году итальянский биолог и врач Франческо Реди, живший во Флоренции, подошел к проблеме возникновения жизни более строго и подверг сомнению теорию спонтанного зарождения. Реди установил, что маленькие белые червячки, появляющиеся на гниющем мясе, - ϶то личинки мух. Проведя ряд экспериментов, он получил данные, подтверждающие мысль о том, что жизнь может возникнуть только из предшествующей жизни (концепция биогенеза).

ʼʼУбежденность была бы тщетой, в случае если бы её нельзя было подтвердить экспериментом.
Понятие и виды, 2018.
По϶тому в середине июля я взял четыре больших сосуда с широким горлом, поместил в один из них землю, в другой – немного рыбы, в третий – угрей из Арно, в четвертый – кусок молочнои̌ телятины, плотно закрыл их и запечатал. Далее я поместил то же самое в четыре других сосуда, оставив их открытыми… Вскоре мясо и рыбы в незапечатанных сосудах зачервили; можно было видеть, как мухи свободно залетают в сосуды и вылетают из них. Но в запечатанных сосудах я не видел ни одного червяка, хотя прошло много дней, после того как в них была положена дохлая рыбаʼʼ (Реди). Данные эксперименты, однако, не привели к отказу от идеи самозарождения, и хотя эта идея несколько отошла на задний план, она продолжала оставаться главнои̌ теорией в неклерикальнои̌ среде. В то время как эксперименты Реди, казалось бы, опровергли спонтанное зарождение мух, первые микроскопические исследования Антона ван Левенгука усилили эту теорию применительно к микроорганизмам. Сам Левенгук не вступал в споры между сторонниками биогенеза и спонтанного зарождения, однако ᴇᴦο наблюдения под микроскопом давали пищу обеим теориям и в конце концов побудили других ученых поставить эксперименты для решения вопроса о возникновении жизни путем спонтанного зарождения.

В 1765 году Ладзаро Спалланцани провел следующий опыт: подвергнув мясные и овощные отвары кипячению в течение нескольких часов, он сразу же их запечатал, после чᴇᴦο снял с огня. Исследовав жидкости через несколько дней, Спалланцани не обнаружил в них никаких признаков жизни. Из ϶того он сделал вывод, что высокая температура уничтожила все формы живых существ и что без них ничто живое уже не могло возникнуть. В 1860 году проблемой происхождения жизни занялся Луи Пастер.
Размещено на реф.рф
К ϶тому времени он уже многое сделал в сфере микробиологии и сумел разрешить проблемы, угрожавшие шелководству и виноделию. Он показал аналогичным образом, что бактерии вездесущи и что неживые материалы легко могут быть заражены живыми существами, в случае если их не стерилизовать должным образом.
Понятие и виды, 2018.

В результате ряда экспериментов, в базе которых лежали методы Спалланцани, Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.

Однако подтверждение теории биогенеза породило другую проблему. Коль скоро для возникновения живого организма необходим другой живой организм, то откуда же взялся самый первый живой организм? Только теория стационарного состояния не требует ответа на ϶тот вопрос, а во всех других теориях подразумевается, что на какой-то стадии истории жизни произошел переход от неживого к живому. Было ли ϶то первичным самозарождением?

Биохимическая эволюция - понятие и виды. Классификация и особенности категории "Биохимическая эволюция"2017-2018.

Вопрос происхождения жизни на Земле интересует учёных в области биологии и геологии уже много столетий, по их мнению, возраст планеты составляет более 5 млрд. лет. В 1923 году советским биохимиком Алексеем Опариным была разработана теория биохимической эволюции.

Основу этой теории составляла идея о том, что миллиарды лет назад при формировании планеты первыми органическими веществами были углеводороды, которые образовались в океане из более простых соединений.

Соединения углеводорода с азотом и простейших молекул аммиака, воды, метана и водорода с рядом других химических элементов образовывали сложные органические вещества. Энергию для осуществления этих процессов создавали частые грозовые электрические разряды и интенсивная солнечная радиация, выделявшая значительное количество ультрафиолетового излучения, падавшего на Землю до того, как образовался озоновый слой.

Органические вещества, постепенно накапливаясь в океане, создавали прочные молекулярные связи, которые были устойчивы к разрушающему действию ультрафиолетового излучения.

Позднее теория биохимической эволюции получила развитие в трудах английского учёного Джона Холдейна, который сформулировал гипотезу о том, что жизнь явилась результатом длительных эволюционных углеродных соединений. Вещества, близкие по своему химическому составу к белкам и другим органическим соединениям, составляющие основу живых организмов, возникли на основе углеводородов.

Белковые соединения в «первичном бульоне» притягивали и связывали молекулы жиров и воды, что позволяло жирам обволакивать поверхность белковых тел, структура которых напоминала мембрану клеток. Полученные в результате такого взаимодействия тела Опарин назвал коацерватами (коацерватными каплями), а сам процесс - коацервацией.

В дальнейшем поглощая из окружавшей среды белковые вещества, структура коацерватов усложнялась, и они стали похожи на примитивные, но уже живые клетки, а химические соединения внутреннего состава позволяли им расти, видоизменяться, осуществлять обмен веществ и размножаться.

Теория биохимической эволюции, важным этапом которой явилось формирование мембранной структуры, предполагала, что с появлением мембраны ускорился процесс упорядочения и усовершенствования метаболизма, а дальнейшее усложнение обмена веществ происходило с помощью катализаторов.

В 1953 году американский исследователь Стэнли Миллер провёл ряд экспериментов, в которых смоделировал возможные условия жизни на Земле, существовавшие в тот временной период, ему удалось получить соединения альдегидов, аминокислот, уксусную, молочную и ряд других органических кислот.

Теория биохимической эволюции представила зарождение жизни на Земле как процесс последовательного усложнения химических веществ: от неорганических соединений ‒ к органическим, от органических ‒ к биологическим. Ее автором явился советский ученый академик Александр Иванович Опарин (1894 – 1980). В 1924 году он опубликовал книгу «Происхождение жизни», в которой изложил новую гипотезу происхождения жизни на Земле. Книга, выпущенная в стране, где господствовали материализм и атеизм, могла описывать происхождение жизни только как процесс, происходивший под влиянием исключительно естественных причин, т.е. без участия Божественных Сил. Хотя и не следует сомневаться в искренности замечательного ученого. По мнению Опарина, происходило постепенное усложнение химических веществ – химическая эволюция. Она привела к появлению таких сложных веществ, которые явились носителями жизни. Иными словами, химическая эволюция постепенно перешла в биологическую. Такой процесс называется в науке абиогенным, т.е. происходящим без участия живых организмов. Опарин предположил, что принцип Реди справедлив лишь для современной эпохи существования Земли. Таким образом, согласно его гипотезе, зарождение жизни на Земле ‒ процесс эволюции живой материи из неживой.

Биогенез ‒ процесс возникновения и эволюции живых систем.

Опарин считал, что в древние времена природные условия Земли существенно отличались от современных. Первичная атмосфера не содержала свободного кислорода. В современной атмосфере он содержится в количестве 21% по объему. В такой атмосфере могли содержаться аммиак (NH 3), двуокись углерода (CO 2), метан (CH 4) и водяной пар. Этой первичной атмосферы уже нет. На ее месте образовалась вторичная атмосфера ‒ продукт развития жизни на Земле.

Отсутствие кислорода в первичной атмосфере привело к важнейшему следствию. Она не содержала озонового слоя. В современной атмосфере он находится на высоте около 20 км над поверхностью Земли и поглощает 99% ультрафиолетового излучения Солнца, которое губительно действует на живые ткани. Поэтому первые организмы должны были защищаться от него под слоем воды.

Первый этап возникновения жизни ‒ образование органических веществ из неорганических.

Разделение мира на живой и неживой принадлежит Аристотелю. На раннем этапе развития химии, храня верность аристотелевской традиции, химики разделили все вещества на неорганические и органические ‒ принадлежащие царству минералов и царству растений и животных. С точки зрения химического состава, к органическим веществам относятся, за редчайшим исключением, соединения углерода.

Второй этап возникновения жизни – появление из отдельных органических молекул белков и нуклеиновых кислот.

Соединения углерода образовали «первичный бульон», из которого формировались биополимеры ‒ аминокислоты и нуклеотиды, составляющие основу белков и нуклеиновых кислот. Но в ходе реакций, которые вели к образованию биополимеров, должны были соединяться вещества сравнительно высокой концентрации. Органические вещества могли образовывать на поверхности океана тонкую пленку, и под действием волн и ветра она толстыми слоями собиралась у берега. Причем, этим процессам способствовали высокая температура атмосферы, грозовые разряды, мощное ультрафиолетовое излучение. Важно и то, что сложные органические соединения являются более устойчивыми к разрушающему действию ультрафиолетового излучения, чем простые соединения.

Согласно гипотезе Опарина, предками современных клеток были органические образования, способные на обмен веществ с окружающей средой. Процесс накопления в среде органических молекул в небольшие комплексы называется коацервацией, а сами такие комплексы ‒ коацерватами. Они состояли из сотен тысяч и миллионов мономеров. Такие комплексы легко получить искусственно, смешивая растворы разных белков. Они способны погло­щать из окружающей среды разные вещества и увеличиваться в раз­мере. В коацерватах могут происходить процессы распада и выделения продуктов распада. Однако они еще не являлись живыми системами, поскольку не были способны к самовоспроизведению и саморегуляции синтеза ор­ганических веществ. Но предпосылки возникновения живого в них уже были.

Живые существа в виде клеток не могли возникнуть до того, как появились клеточные мембраны и катализаторы ‒ вещества, ускоряющие биохимические реакции. Вокруг коацерватов, богатых органическими соединениями, стали возникать слои липидов – жироподобных веществ, которые отделяли коацерваты от окружающей водной среды. В процессе биохимической эволюции эти слои липидов трансформировались в наружную клеточную мембрану. В «первичном бульоне» накапливались также различные катализаторы.

Согласно теории биохимической эволюции, коацерваты представляли собой предбиологические системы.

Третий этап возникновения жизни – начало действия естественного отбора.

Коацерваты могли поглощать из окружающей среды другие вещества. Если вещество было вредным, коацерват распадался. Если вещество усваивалось, коацерват увеличивался в размерах, изменял структуру. Иными словами, происходил отбор наиболее устойчивых коацерватов. Он шел многие миллионы лет. Сохранилась лишь малая часть коацерватов. Однако сохранившиеся обладали способностью к первичному обмену веществ. Достигнув определенных размеров, материнская капля могла распадаться на дочерние, которые сохраняли материнскую структуру. Поэтому можно говорить, что коацерваты постепенно приобретали свойство самовоспроизведения. В сущности, коацерваты, в конце концов, превратились в простейшие живые организмы.



Внутри коацерватов свойства молекул разделялись. Белки регулировали ход химических реакций, которые приводили к появлению новых органических веществ. Нуклеотидные цепи стали удваиваться. Эволюция этих свойств привела к появлению наследственного генетического кода, несущего информацию о строении белковых молекул. Так появились примитивные прокариотические клетки, не имеющие клеточного ядра.

Прокариотические клетки – клетки, не имеющие клеточного ядра, генетический материал которых находится в цитоплазме.

Таким образом, эволюция коацерватов привела к появлению первичных клеток. Это произошло более 4 млрд. лет назад.

Прокариоты ‒ организмы, состоящие из прокариотических клеток, ‒ живут и сегодня. Это бактерии и сине-зеленые водоросли.

Прокариоты существовали в атмосфере, не имеющей кислорода. Поэтому их метаболизм ‒ обмен веществ ‒ был анаэробным.

Анаэробный метаболизм – обмен веществ и энергии, протекающий в отсутствие атмосферного кислорода.

Продолжительность существования первичной бескислородной атмосферы в геологических масштабах была невелика. Первичные клетки быстро размножались и довольно скоро исчерпали запасы питательных органических веществ. Поэтому им оставалось либо погибнуть от голода, либо перейти к иному способу питания. И они нашли его. У некоторых клеток появилась способность к фотосинтезу. Иными словами, для синтеза органических веществ из неорганических они научились использовать солнечную энергию.

Фотосинтез – процесс преобразования солнечной энергии в энергию химических связей органических веществ.

Первоначально фотосинтез происходил без образования молекулярного кислорода. Около 4 млрд. лет назад организмы стали выделять кислород, иными словами, появился аэробный метаболизм.

Аэробный метаболизм – дыхание, при котором расщепление органических веществ происходит при участии кислорода.

В подобных процессах выделяется приблизительно в десять раз больше энергии, чем в реакциях без участия кислорода. Атмосфера стала обогащаться свободным кислородом. Около 400 млн. лет назад, когда количество свободного кислорода в атмосфере достигло 10% по объему, появился озоновый слой. Он обладает свойством поглощать ультрафиолетовое излучение Солнца, губительное для живых организмов. В настоящее время озоновый слой пропускает лишь ничтожную его часть и, тем самым, оберегает все живое на Земле.

Можно предположить, что в раннюю эпоху существования жизни происходила борьба между первичными и вторичными организмами. Первичные организмы – анаэробы, вторичные – аэробы. Видимо, главным оружием аэробов был свободный кислород, который выделялся как продукт их жизнедеятельности и был смертелен для анаэробов. Он и решил исход этой борьбы. Ныне повсеместно господствуют формы жизни, которые при обмене веществ используют кислород. Однако некоторые виды анаэробных организмов живут и поныне. Это, прежде всего, сине-зеленые водоросли.

Благодаря кислородному способу питания организмы нового типа быстро расселялись по нашей планете. Жизнь стала осваивать глубины океана. С появлением озонового слоя она вышла из моря и стала завоевывать сушу.

С распространением аэробов возросла интенсивность реакций фотосинтеза и, следовательно, накопление кислорода в атмосфере. Понадобилось около 100 млн. лет, чтобы количество кислорода в атмосфере достигло современного значения ‒ 21% по объему. С тех пор состав атмосферы практически не изменился до настоящего времени.

Постепенно клетки усложнялись. Около 2 млрд. лет назад появились эукариотические клетки.

Эукариотические клетки – клетки, имеющие ядро и многие внутриклеточные структуры.

Эукариоты ‒ организмы, состоящие из эукариотических клеток, ‒ появились около 2,6 млрд. лет назад.

Наши знания о первых организмах невелики, поскольку они исчезли и не оставили после себя никаких следов.

Приблизительно 1,3 млрд. лет назад стали появляться колонии одноклеточных организмов. В некоторых из них разные клетки выполняли различные функции. Одни клетки поглощали добычу, другие обеспечивали размножение. При этом каждая клетка была отдельным живым организмом. Постепенно некоторые колонии одноклеточных стали превращаться в целостные многоклеточные организмы.

У гипотезы Опарина есть немало сторонников, которые успешно ее развивают. Важнейшей является проблема, каковы источники органических соединений на Земле. Одним из них являются метеориты и космическая пыль. В 1969 году вблизи деревни Мëрчисон в Австралии упал метеорит весом 108 кг. Он относится к углистым хондритам. Как следует из названия, такие метеориты содержат много сложных органических соединений. В нем были найдены следы более 50 аминокислот, причем, восемь из них входят в состав современных белков. Также были обнаружены аденин, урацил и гуанин ‒ азотистые основания нуклеиновых кислот. Из 50 аминокислот значительное большинство не входит в состав живых организмов, а некоторые соединения встречаются в виде двух оптических изомеров – левого и правого. Вспомним, что важнейшим свойством живых организмов является асимметрия сложных молекул, иными словами, существование лишь одного из двух изомеров. Таким образом, обнаружение в Мëрчисонском метеорите симметричных изомеров, а также аминокислот, не входящих в состав живых организмов, доказывает, что все обнаруженные соединения не являются загрязнениями, попавшими на метеорит в земных условиях.

Другим источником органических соединений на Земле являются вулканы и гидротермальные жерла срединно-океанических хребтов. При извержении вулканов вместе с магмой выбрасывается огромное количество газов: сероводород, метан, аммиак, окислы азота и углерода.

Третий источник органических соединений на Земле ‒ атмосфера.

В настоящее время специалисты считают, что в процессе возникновения жизни на Земле все эти источники могли совместно поставлять органические вещества.

Под действием солнечных и космических лучей, которые проникали сквозь разреженную атмосферу, происходила ее ионизация – нейтральные атомы превращались в заряженные, и атмосфера становилась холодной плазмой. Таким образом, древняя атмосфера Земли была богата электричеством, в ней вспыхивали частые разряды.

У теории биохимической эволюции имеются некоторые эмпирические подтверждения. Одно из них – останки организмов, найденные в древнейших горных породах. Из них самые древние ‒ известняки, обнаруженные в Западной Австралии. Это останки нитчатых и округлых микроорганизмов, их насчитывается около десятка различных видов. Их образовали сине-зеленые водоросли и бактерии. Их возраст специалисты оценили в 3,2 ‒ 3,5 млрд. лет. В Северной Америке были обнаружены останки водорослей, возраст которых составляет около 1,1 млрд. лет.

Другим обоснованием теории биохимической эволюции явились эксперименты, которые поставили в 50 – 60-е годы XX века химики из США, СССР и Германии.

В 1953 году американский ученый Стэнли Миллер (1930 – 2007) провел эксперимент, который был призван моделировать процессы, происходящие в первичной атмосфере Земли. Главную часть установки составляла колба с электродами. В ней находились вода и газы, которые, предположительно, входили в состав древней земной атмосферы ‒ водород, метан, аммиак и др. Существенно, что не было свободного кислорода. Колба нагревалась, а между электродами протекали электрические разряды. Через несколько дней в ней образовались аминокислоты, азотистые основания и другие сложные биологические вещества.

Жизнь могла появиться только тогда, когда начал действовать механизм наследственности. Поэтому в настоящее время центральная проблема в теории биохимической эволюции – как появился этот механизм. Началом жизни на Земле нельзя считать даже появление древней ДНК вместо коацерватной капли, поскольку ДНК способна действовать только в присутствии белков-ферментов.

Проблему можно пояснить следующим рассуждением: для работы молекул ДНК и РНК необходимы ферменты, т.е. белки, а для синтеза белков ‒ нуклеиновые кислоты. Известная ситуация: змея кусает себя за хвост. Были предположения, что нуклеиновые кислоты и белки-ферменты появились одновременно, объединились в единую систему, и после этого началась их коэволюция ‒ одновременная и взаимосвязанная эволюция. Но это предположение не получило признания ученых. Объясняется это тем, что белковые и нуклеиновые молекулы по структуре и функциям глубоко различны. Поэтому они не могли появиться одновременно, в результате одного скачка в процессе химической эволюции.

В XX веке ученые спорили о том, что было первичным ‒ белки-ферменты или нуклеиновые кислоты, а также о том, как и когда произошло их объединение в единую систему, которую и можно считать живым организмом. В зависимости от решения вопроса, белки или нуклеиновые кислоты являлись первичными образованиями, методологические подходы к биохимической эволюции можно разделить на две группы ‒ голобиоза и генобиоза.

Теория Опарина относится к этой группе. Появление нуклеиновых кислот она считает итогом эволюции.

Он проявился, в частности, в теории американского генетика Джона Холдейна (1892 ‒ 1964), предложенной в 1929 году. Согласно Холдейну, первичным явился макромолекулярный комплекс, подобный гену и способный к самовоспроизведению. Он был назван «голым геном».

Вплоть до 80-х годов XX века гипотезы голобиоза и генобиоза резко противостояли друг другу. В конце концов, ученые предпочли концепцию генобиоза. Но оставались нерешенными принципиальной важности проблемы. Какая из молекул появилась первой ‒ ДНК или РНК? Если белки-ферменты появились позже молекулы нуклеиновой кислоты, то как без них эта молекула могла действовать?

В 80-х годах XX века у молекулы РНК были обнаружены уникальные свойства. Оказалось, что она способна передавать генетическую информацию так же, как и молекула ДНК. Было открыто, что не существует организмов, не обладающих РНК, однако есть множество вирусов, не содержащих ДНК. Выяснилось, что возможен перенос информации от РНК к ДНК. И, самое главное, была обнаружена способность молекулы РНК к саморепродукции без участия белков-ферментов. Это открытие позволило решить проблему первичности. Первичными являлись нуклеиновые кислоты, а именно ‒ РНК. Замкнутый круг был разорван.

Однако концепции, которые описывают происхождение жизни на Земле как результат случайных процессов, подвергают критике многие выдающиеся ученые. Английскому астрофизику Фреду Хойлу принадлежит известная шутка о том, что любая подобная концепция «столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747».

Важнейшие положения темы № 9 «Проблема происхождения жизни

в научной картине мира»

Современная биология, определяя жизнь, перечисляет важнейшие свойства живых организмов, признавая, что только совокупность этих свойств и может отличить живое от неживого. Между живой и неживой природой нет резкой грани. Существуют переходные формы, которые, в зависимости от конкретных условий, считаются или живыми, или неживыми объектами. Например, вирусы.

К основным теориям происхождения жизни относятся: креационизм, теория самопроизвольного зарождения жизни, теория панспермии, теория биохимической эволюции.

Согласно теории самопроизвольного зарождения жизни, в некоторых телах могут находиться «активные зерна», которые дают начало живым существам, если оказываются в благоприятной среде.

Франческо Реди поставил опыт с кусками мяса, который поколебал, но еще не мог опровергнуть теорию самопроизвольного зарождения жизни. Реди доказал, что самозарождение червей из гниющего мяса без мух невозможно. Благодаря этому опыту Франческо Реди сумел сформулировать вывод, который стал основополагающим принципом современной биологии.

Принцип Реди. Живые организмы происходят только от других живых организмов и не способны самозарождаться.

Луи Пастер в решающем опыте опроверг теорию самопроизвольного жизни.

Согласно теории панспермии, жизнь занесена на Землю из Космоса. Однако все варианты концепции панспермии, в конечном счете, не решают проблемы происхождения жизни. Они оставляют открытым вопрос: где и как жизнь возникла в Космосе?

Теория биохимической эволюции, разработанная Александром Ивановичем Опариным, представила зарождение жизни на Земле как процесс последовательного усложнения химических веществ: от неорганических соединений ‒ к органическим, от органических ‒ к биологическим. Стэнли Миллер провел опыт, который призван был экспериментально обосновать теорию биохимической эволюции. Он поставил цель смоделировать в колбе первичную атмосферу Земли. Через несколько дней в колбе образовались аминокислоты, азотистые основания и другие сложные биологические вещества.

В XX веке ученые спорили о том, что было первичным ‒ белки-ферменты или нуклеиновые кислоты. В зависимости от решения вопроса о первичности, методологические подходы к биохимической эволюции разделились на две группы ‒ голобиоза и генобиоза.

Голобиоз ‒ методологический подход, который утверждает первичность структур, способных к обмену веществ при участии белков-ферментов.

Теория Опарина относится к этой группе.

Генобиоз ‒ методологический подход, который утверждает первичность структур со свойствами первичного генетического кода.

У молекулы РНК были обнаружены уникальные свойства. Оказалось, что она способна передавать генетическую информацию. Была обнаружена способность молекулы РНК к саморепродукции без участия белков-ферментов. Это открытие позволило решить проблему первичности. Первичными являлись нуклеиновые кислоты, а именно ‒ РНК.

Вопросы для самоконтроля

1. Как меняются свойства вирусов, когда они попадают в клетку?

2. Сформулируйте суть теории самопроизвольного зарождения жизни.

3. Опишите опыт Франческо Реди.

4. Сформулируйте принцип Реди.

5. Какое великое биологическое открытие сделал Антони ван Левенгук?

6. Опишите опыт Луи Пастера.

7. Опишите один из вариантов гипотезы панспермии.

8. Сформулируйте одно из возражений против теории панспермии.

9. Какое открытие сделал Йёнс Якоб Берцелиус, исследуя метеорит Алаис?

10. Что такое изомерия?

11. Что такое хиральность?

12. В чем заключается суть теории биохимической эволюции?

13. Что такое биогенез?

14. Какие клетки называются прокариотическими?

15. Какие клетки называются эукариотическими?

16. Перечислите источники органических соединений на Земле.

17. Опишите опыт Стэнли Миллера.

18. Что такое голобиоз?

19. Что такое генобиоз?

20. Какие вещества признаны первичными – белки или нуклеиновые кислоты?

Проблема возникновения жизни на Земле и возможность существования ее внеземных форм является фундаментальной не только для биологии, но и для естествознания в целом. Среди основных гипотез, пытающихся объяснить возникновение жизни, наиболее известны следующие:

    креационизм - жизнь была создана сверхъестественным существом в определенное время;

    происхождение жизни из неживой природы - жизнь возникала самопроизвольно из неживого вещества;

    панспермия - жизнь занесена на нашу планету извне;

    биохимическая эволюция - жизнь возникла в ходе закономерного, самоусложняющегося развития природы в результате процессов, подчиняющихся химическим и физическим законам.

Креационизм. Согласно креационизму жизнь возникла в результате какого-то сверхъестественного события в прошлом. Эта концепция признает неизменность видов живых существ, е е придерживаются последователи почти всех наиболее распространенных религиозных учений.

Происхождение жизни из неживой природы. Эта гипотеза была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму. Согласно гипотезе жизнь возникла спонтанно из неживого вещества под воздействием некоего «активного начала». Приверженцами гипотезы о самопроизвольном зарождении живых организмов из неживой природы были Аристотель, Галилей, Декарт, Гегель, Ламарк.

Панспермия (от греч. pan - все и sperma - семя). В XIX веке была выдвинута гипотеза вечного, повсеместного существования жизни в Космосе в виде «зародышей жизни», и ее космического происхождения на Земле. Эта гипотеза, как и гипотеза о самозарождении жизни, не предлагает никакого механизма для объяснения первичного возникновения жизни, поэтому ее нельзя считать теорией возникновения жизни как таковой. Гипотеза панспермии утверждает, что жизнь могла возникнуть один или несколько раз в разное время и в разных частях Вселенной. Для обоснования этой гипотезы используется информация о многократных появлениях НЛО, наскальные изображения объектов, похожих на ракеты и «космонавтов», а также сообщения о встречах с инопланетянами. В начале XX века идею панспермии развивал русский ученый В.И.Вернадский.

Биохимическая эволюция. В современной науке принята гипотеза абиогенного (небиологического) происхождения жизни в результате процессов абиогенеза. Абиогенез - длительный процесс космической, геологической и химической эволюции. Основоположниками этой гипотезы являются русский ученый А. И. Опарин и английский естествоиспытатель Дж. Холдейн.

Согласно абиогенезу нужны четыре основных условия для появления живого из неживого:

Наличие определенных химических веществ,

Наличие источника энергии,

Отсутствие газообразного кислорода,

Длительное время.

Выделяют три основных этапа абиогенеза.

Первый этап связан с химической эволюцией . После возникновения (5 млрд. лет назад) Земля представляла собой раскаленный шар. Температура поверхности в начальный период была 4000-8000°С, и по мере остывания тяжелые химические элементы перемещались к центру Земли, а легкие скапливались на поверхности. Углерод и более тугоплавкие металлы конденсировались и впоследствии стали основой земной коры. Химические элементы взаимодействовали друг с другом и образовали молекулы неорганических веществ (воды, азота, углекислого газа, аммиака, метана, сероводорода). По мере остывания происходила конденсация водяных паров, что привело к формированию водоемов, в которых растворялись различные неорганические соединения.

Второй этап возникновения жизни связан с появлением белковых веществ (биополимеров) . Земная жизнь имеет углеродную основу (см. химию). А. И. Опарин в своей работе «Происхождение жизни» (1924 г) высказал мнение, что органические вещества - основа жизни - могли возникнуть из более простых углеродных соединений при их концентрации в первичном океане. Подобную идею в 1927 году предложил английский естествоиспытатель Дж. Холдейн. Источником энергии для реакции синтеза органических веществ были солнечная радиация и тепло Земли. Излучение беспрепятственно проникало на Землю, поскольку озонового слоя в первичной атмосфере еще не было. В первичной атмосфере не было и кислорода. Кислород, будучи сильным окислителем, моментально разрушил бы органические соединения, поэтому его отсутствие облегчало синтез биополимеров.

В 1953 г. Стэнли Миллер (США) предпринял попытку экспериментальной проверки гипотезы Опарина–Холдейна. В установке он смоделировал условия, предположительно существовавшие на ранней Земле. Смесь газов (водяные пары, метан, аммиак и водород) в течение недели подвергали воздействию электрических разрядов высокого напряжения, после чего в «ловушке» было обнаружено 15 аминокислот. Позднее в подобных экспериментах были синтезированы простые нуклеиновые кислоты.

Органические вещества, накапливаясь в океане, образовали «первичный бульон», затем они стали объединяться в студнеобразные сгустки - коацерваты (от лат. coacervus - сгусток). За счет физико-химических процессов, происходивших в «первичном бульоне», коацерватные капли увеличивались в размерах, получили способность делиться на части, поглощать вещества из окружающей среды, т.е. приобрели признаки роста, размножения и обмена веществ. Однако коацерваты не были способны к самовоспроизводству и саморегуляции.

Третий этап возникновения жизни связан с формированием у органических соединений способности к самовоспроизводству . Началом жизни следует считать возникновение стабильной самовоспроизводящейся органической системы с постоянной последовательностью нуклеотидов. Поглощение коацерватами металлов привело к образованию ферментов, ускоряющих биохимические процессы, а появление границ между коацерватами и окружающей средой (полупроницаемых мембран) обеспечило стабильность коацерватов.

Возникновение жизни объясняется взаимодействием нуклеиновых кислот (ДНК) и белков. В результате включения их в коацерват могла возникнуть примитивная клетка, способная к росту и размножению. Нуклеиновые кислоты являются носителями генетической информации, а белки служат катализаторами химических реакций, протекающих внутри коацервата. Таким образом, сложная открытая органическая система приобрела основные признаки живого – способность к самоорганизации, саморегуляции и самовоспроизводству, и стала прообразом единицы живого - клетки.

Биологическая эволюция . Биологическая эволюция начинается с возникновения клеточной организации и идет по пути совершенствования строения и функций клетки, образования многоклеточных организмов, разделения живого на царства растений, животных, грибов с последующей их дифференциацией на виды.

Жизнь на Земле возникла 3,5 млрд. лет назад. В это время появились первые живые клетки – прокариоты. Прокариоты – это безъядерные клетки. Они представлены бактериями и сине-зелеными водорослями. Прокариоты могли жить без кислорода и в качестве питательных веществ использовали вещества «первичного бульона». «Первичный бульон» истощался, и в процессе эволюции преимущества получали те клетки, которые могли использовать солнечный свет для самостоятельного синтеза необходимых веществ (фотосинтез). Так появились автотрофы, а в первичную атмосферу стал поступать кислород.

1,5 - 2 млрд. лет назад появляются эукариоты – организмы, клетки которых содержат ядро. Примерно 1 млрд. лет назад произошло разделение эукариотов на растительные и животные клетки.

Следующим существенным шагом в биологической эволюции стало появление 900 млн. лет назад полового размножения . Половое размножение значительно повышает видовое разнообразие, приспособляемость и способствует ускорению эволюции.

Появление первых многоклеточных организмов произошло примерно 800 млн. лет назад. У них развиваются органы и ткани, происходит дифференциация их функций.

500 – 440 млн. лет назад появляются первые плотоядные и позвоночные, а примерно 410 млн. лет назад живые организмы выходят на сушу.

Важным моментом биологической эволюции является появление и развитие нервной системы и мозга, что позволило организмам увеличить разнообразие реакций на воздействие окружающей среды.

В условиях похолодания в начале кайнозоя значительное эволюционное преимущество получили теплокровные животные.

Примерно 8 млн. лет назад начали формироваться современные семейства млекопитающих. В этот период появились разнообразные виды приматов и тем самым сложились предпосылки для начала антропогенеза. Антропогенез - часть биологической эволюции, которая привела к появлению вида Homo sapiens.

2 – 3 млн. лет назад началось очередное вымирание лесов. Одна из групп антропоидных обезьян постепенно стала осваивать открытые пространства. Предположительно от этих обезьян произошли люди.

Сейчас жизнь на земле представлена клеточными и доклеточными формами. Доклеточные организмы - это вирусы и фаги, клеточные разделяют на четыре царства: микроорганизмы, грибы, растения и животные.