Физические поля и их виды. Фундаментальные физические поля

параметров их движения (скорость, импульс, момент импульса), меняют их энергию, совершают работу и т.д. И это в общем-то было наглядно и понятно. Однако с изучением природы электричества и магнетизма возникло понимание, что взаимодействовать между собой электрические заряды могут без непосредственного контакта. В этом случае мы как бы переходим от концепции близкодействия к бесконтактному дальнодействию. Это и привело к понятию поля.

Формальное определение этого понятия звучит так: физическим полем называется особая форма материи, связывающая частицы (объекты) вещества в единые системы и передающая с конечной скоростью действие одних частиц на другие. Правда, как мы уже отмечали, такие определения слишком общие и не всегда определяют глубинную да и конкретно-практическую сущность понятия. Физики с трудом отказывались от идеи физического контактного взаимодействия тел и вводили для объяснения различных явлений такие модели как электрическую и магнитную «жидкость», для распространения колебаний использовали представление о механических колебаниях частичек среды - модели эфира, оптических флюидов, теплорода, флогистона в тепловых явлениях, описывая их тоже с механической точки зрения, и даже биологи вводили «жизненную силу» для объяснения процессов в живых организмах. Все это ни что иное, как попытки описать передачу действия через материальную («механическую») среду.

Однако работами Фарадея (экспериментально), Максвелла (теоретически) и многих других ученых было показано, что существуют электромагнитные поля (в том числе и в вакууме) и именно они передают электромагнитные колебания. Выяснилось, что и видимый свет есть эти же электромагнитные колебания в определенном диапазоне частот колебаний. Было установлено, что электромагнитные волны делятся на несколько видов в шкале колебаний: радиоволны (10 3 - 10 -4), световые волны (10 -4 - 10 -9 м), ИК (5 ×10 -4 - 8 ×10 -7 м), УФ (4 ×10 -7 - 10 -9 м), рентгеновское излучение (2 ×10 -9 - 6 ×10 -12 м), γ-излучение (< 6 ×10 -12 м).

Считается, что гравитационные и электрические поля действуют независимо и могут сосуществовать в любой точке пространства одновременно, не влияя друг на друга. Суммарная сила, действующая на пробную частицу с зарядом q и массой m, может быть выражена векторной суммой и . Суммировать векторы и не имеет смысла, поскольку они имеют разную размерность. Введение в классической электродинамике понятия электромагнитного поля с передачей взаимодействия и энергии путем распространения волн через пространство, позволило отойти от механического представления эфира. В старом представлении понятие эфира как некой среды, объясняющей передачу контактного действия сил, было опровергнуто как экспериментально опытами Майкельсона по измерению скорости света, так и, главным образом, теорией относительности Эйнштейна. Через поля оказалось возможным описывать физические взаимодействия, для чего собственно и были сформулированы общие для разных типов полей характеристики, о которых мы здесь говорили. Правда следует отметить, что сейчас идея эфира отчасти возрождается некоторыми учеными на базе понятия физического вакуума.

Так после механической картины сформировалась новая к тому времени электромагнитная картина мира. Ее можно рассматривать как промежуточную по отношению к современной естественнонаучной. Отметим некоторые общие характеристики этой парадигмы. Поскольку она включает не только представления о полях, но и появившиеся к тому времени новые данные об электронах, фотонах, ядерной модели атома, закономерностях химического строения веществ и расположения элементов в периодической системе Менделеева и ряд других результатов по пути познания природы, то, конечно, в эту концепцию вошли также идеи квантовой механики и теории относительности, о которых речь еще будет идти дальше.

Главным в таком представлении является возможность описать большое количество явлений на основе понятия поля. Было установлено, в отличие от механической картины, что материя существует не только в виде вещества, но и поля. Электромагнитное взаимодействие на основе волновых представлений достаточно уверенно описывает не только электрические и магнитные поля, но и оптические, химические, тепловые и механические явления. Методология полевого представления материи может быть использована и для понимания полей иной природы. Сделаны попытки увязать корпускулярную природу микрообъектов с волновой природой процессов. Было установлено, что «переносчиком» взаимодействия электромагнитного поля является фотон, который подчиняется уже законам квантовой механики. Делаются попытки найти гравитон, как носитель гравитационного поля.

Однако несмотря на существенное продвижение вперед в познании окружающего нас мира, электромагнитная картина не свободна от недостатков. Так, в ней не рассматриваются вероятностные подходы, по существу вероятностные закономерности не признаются фундаментальными, сохранены детерминистический подход Ньютона к описанию отдельных частиц и жесткая однозначность причинно-следственных связей (что сейчас оспаривается синергетикой), ядерные взаимодействия и их поля объясняются не только электромагнитными взаимодействиями между заряженными частицами. В целом такое положение понятно и объяснимо, так как каждое проникновение в природу вещей углубляет наши представления и требует создания новых адекватных физических моделей.

Физическое поле – вид материи на макроскопическом уровне, посредник взаимодействия между частицами вещества или удаленными друг от друга макроскопическими телами. Примерами поля физического является электромагнитное поле, гравитационное поле, поле ядерных сил. Часто понятие «физическое поле» применяют к совокупности распределенных физических величин, как, например, векторное поле скоростей и скалярные поля давлений и температур в потоке жидкости или газа, тензорное поле механических напряжений в деформированном твердом теле.
Понятие силового поля возникло в классической механике, которая использует принцип дальнодействия, и было способом описания взаимодействия между частицами вещества.
Физическое поле приобрело характер физической реальности с установлением конечности скорости распространения взаимодействия (электромагнитное и гравитационное поля) и возникновением классической электродинамики и теории относительности. Противопоставление вещества и поля как дискретного и непрерывного был снят на уровне элементарных частиц.
Квантовая теория поля с помощью квантования ставит каждой частице в соответствие поле с определенными трансформационными свойствами относительно пространства-времени и групп симметрий частиц.
Идея силового поля в классической физике в том, чтобы выделить в силах, действующих на физическое тело, множители, характеризующие тело и множители, характеризующие другие тела. Например, сила гравитации, действующая на тело с массой m со стороны других тел с массами m j может быть записана по закону всемирного тяготения в виде

Где G – гравитационная постоянная, а – Расстояние между данным телом и телом с индексом j.
Выделяя в этом выражении массу выбранного тела, можно записать

Где величина

Не зависит от характеристики (массы) исследуемого тела.
Векторное поле ,

Где – Векторное поле, которое называется напряженностью электрического поля и равна

.

В этом случае сила взаимодействия тоже записывается, как произведение характеристики исследуемого тела (заряда), а вся информация о других заряды сводится к введению единой векторной величины – напряженности электрического поля.
Приведенные определения полей опираются на принцип дальнодействия и справедливы лишь для классической физики. Если частицы, которые определяют поле двигаться, то в рамках классической физики, изучаемая частица моментально чувствовать изменение их положения.
Однако, при применении принципа близкодействия, справедливого в рамках теории относительности, информация о перемещении тел передается не мгновенно и требует посредника, поэтому понятие поля набирает значение отдельной сущности, перемещение которой в пространстве требует для своего описания отдельных уравнений.
Так, с учетом близкодействия, сила, действующая на заряд, опять же записываться

Однако напряженность электрического поля находится из уравнений Максвелла. Она равна приведенном выше выражения лишь в случае неподвижных зарядов.
Подробные сведения по этой теме Вы можете найти в статье Запаздывание.

Как было указано, под физическим полем понимается особое состояние пространства вокруг вещества, проявляющееся в создании силового воздействия на качественно подобное вещество в любой точке этого пространства.

В соответствии с данным определением можно говорить о поле скоростей движущегося газа (например, ветра на разных высотах), поле температур (при передаче тепла от какого-либо объекта), поле электрических или магнитных сил, поле притяжения материальных тел независимо от их природы (поле тяготения).

Физические поля существуют в трехмерном пространстве и изменяются во времени. Следовательно, их описание должно даваться функцией (или функциями) трех координат (в декартовой системе) и времени. Анализ подобных выражений оказывается крайне сложным. Поэтому по возможности выражения упрощают, рассматривая различные частные случаи.

С точки зрения зависимости от времени поля разделяют на статические, не зависящие от времени, стационарные, параметры которых изменяются во времени периодически по известным зависимостям, и нестационарные, изменяющиеся во времени без периодического повторения значений поля в отдельных точках пространства. Проще всего рассматривать статические и стационарные поля.

С точки зрения пространственного воздействия на физические объекты поля делятся на скалярные и векторные.

Скалярное поле - это поле, параметр которого в каждой точке пространства задается одним числом. Например, распределение (поле) температуры металлического бруска, нагреваемого с одного конца. В каждой точке бруска температура своя, но ее значение зависит только от координаты рассматриваемой точки и времени нагрева t и не зависит от какого-то выделенного направления. Поэтому, выбрав некоторую систему координат, температуру Т в любой точке бруска можно представить как функцию координат (х, у, z ) и времени V.

Предположим, скалярное поле статично, т.е. значения температур в каждой точке бруска остаются неизменными во времени. Тогда можно соединить мысленно все точки равной температуры, они образуют поверхность равных температур. В каждой точке указанной


поверхности можно указать направление, по которому температура нарастает быстрее всего. Еще раз подчеркнем, что речь идет не о повышении температуры во времени, а о росте (или спаде) ее в пространстве при переходе от точки к точке. Указанное направление быстрейшего роста или спада скалярного поля называется градиентом (в уравнениях или пишут grad Т, или используют специальный знак Д Т).

Градиент как характеристика скорости пространственного нарастания поля включает в себя производные по координатам, а как характеристика направления является вектором. Окончательно - градиент функции Т(х, у, z) есть вектор, проекциями которого на координатные оси служат значения частных производных этой функции.

В литературе принято обозначать направления координатных осей х, у, z единичными векторами, т.е. стрелками, направленными по соответствующим координатным осям и длиной в одну единицу; эти единичные векторы обозначаются соответственно буквами *,у, к (векторы будут обозначаться жирным шрифтом). В указанных стандартных обозначениях градиент температурного поля запишется так:

Предполагается, что читатель знаком с элементарными операциями над векторами, в частности знает, что сумма векторов есть вектор, полученный по правилу параллелограмма, а разность двух векторов есть вектор, направленный от конца одного к концу другого.

Векторное поле - это поле, параметр воздействия на физические объекты которого в каждой точке пространства задается величиной и направлением действия. Для описания векторного поля используют два метода:

  • графический, когда значение поля в каждой точке пространства изображают в виде стрелки (вектора), направление которой показывает направление действия поля в данной точке, а длина в условных единицах равна величине (модулю) поля в этой точке;
  • аналитический, в котором вектор обозначается либо в виде выделенной жирным шрифтом буквы (например, сила /), либо в виде буквы, умноженной на вектор единичной длины. Например, выражение для импульса частицы: р = m v п, где р - вектор импульса; m - масса частицы (скаляр); v - модуль скорости частицы (скаляр); п - единичный вектор скорости, т.е. вектор, модуль которого равен единице, а направление совпадает с направлением скорости частицы.

Для полного уяснения правил изображения векторных полей и выполнения некоторых математических операций с векторами рас-



Рис. 4.1.

смотрим точки на поверхности диска, вращающегося с постоянной угловой скоростью (рис. 4.1).

Выделим на поверхности диска некую точку А и проведем к ней из центра круга О радиус-вектор г, который не только определяет минимальное расстояние от центра О до точки А, но и указывает в системе координат, связанной с диском, направление на точку А. Ясно, что г - вектор (имеет длину и определенное направление).

Относительно системы координат, не связанной с диском, видно, что радиус-вектор г вращается с постоянной периодичностью вокруг точки О, образуя стационарное векторное поле. Другими словами, все точки на радиусе-векторе г, описав угол 2я за время At, возвращаются в исходное состояние; интервал времени At называется периодом вращения.

Угол, на который поворачивается за единицу времени вектор г, называется угловой скоростью вращения со. Отношение угла к интервалу времени со = 2n/At является, конечно, скаляром, но необходимо каким-то образом указать, что вращение происходит не хаотично в трехмерном пространстве, а в определенной плоскости (в нашем случае - это плоская поверхность диска).

Плоскость, согласно аналитической геометрии, задается перпендикуляром единичной длины к ней, который обозначен на рис. 4.1 буквой п. Окончательно имеем: все точки диска, вращающегося с постоянным периодом At, образуют поле постоянной угловой скорости со = со п, причем по договоренности вектор со направлен так, чтобы, глядя с его конца на диск, видно было перемещение радиуса-вектора г против движения часовой стрелки.

Каждая точка диска, кроме угловой скорости со, имеет и линейную скорость v, которую легко вычислить: за время одного периода At точка на диске проходит путь 2пг, следовательно, v = 2-кг/At. По


скольку со = 2nr/At, линейную скорость можно записать через угловую:

Но диск вращается, точка А на нем непрерывно меняет свое положение, поэтому возникает вопрос: а куда же направлен вектор скорости? Он направлен, как легко доказать, по касательной к окружности. Сама касательная перпендикулярна радиусу г в точке касания и лежит в плоскости диска, т.е. перпендикулярна вектору угловой скорости со.

Если вектор (в частности, скорости v) перпендикулярен плоскости, в которой лежат два других вектора (со и г), то знаком х (векторное умножение) обозначают операцию получения вектора, перпендикулярного плоскости, в которой лежат перемножаемые векторы, а модуль нового вектора равен произведению модулей исходных векторов, умноженному на синус угла между ними. В рассматриваемом случае можно, следовательно, записать вектор линейной скорости с учетом выражения (4.9) в виде

Если вспомнить, что точки на радиусе-векторе имеют различные модули (т.е. расстояния от оси вращения), то можно заключить: на вращающемся диске точки образуют поле линейных скоростей, направленных по касательной к окружности вращения в каждой точке и величиной (модулем), пропорциональной расстоянию от центра вращения до соответствующей точки.

Непрерывное изменение направления линейной скорости v вращающейся точки А приводит к появлению центростремительного ускорения а , равного по модулю а = v 2 /r и направленного по радиусу-вектору г. По второму закону Ньютона произведение массы материальной точки т на ускорение (вектор) создает силу, направленную по направлению ускорения. На рис. 4.1 в формуле силы задание направления достигается умножением произведения массы т и модуля ускорения v 2 /r на вектор г. Но вектор г может быть любой длины, поэтому умножение на него не только указывает направление действия силы, но изменяет и ее модуль. Чтобы указать направление силы F и исключить влияние длины вектора г, одновременно с умножением на него выражение делится на длину (модуль) вектора г, что дает в итоге

Мы рассмотрели поле скоростей и сил неподвижных материальных точек на вращающемся диске. А что будет, если по поверхности


вращающегося диска материальная точка массой т движется с постоянной линейной скоростью v p вдоль радиуса-вектора #*? Как показано в курсах теоретической механики, в этом случае на точку действует сила, лежащая в плоскости вращения (т.е. перпендикулярная вектору угловой скорости со) и перпендикулярная вектору v . Сила эта по имени описавшего ее ученого называется кориолисовой силой ^ив векторной форме равна

Векторные поля можно, конечно, описать с помощью введения трехмерной системы координат, как это сделано для скалярного поля. Однако подобное представление не слишком удобно: во-первых, результаты вычислений оказываются зависимыми от выбранных направлений осей координат; во-вторых, одному векторному уравнению соответствует три уравнения разложения вектора по координатным осям, что усложняет решение задач.

Поэтому обычно задача формулируется в векторной форме, далее переходят к разложению векторов по координатным осям, но при этом направления осей подбирают так, чтобы задача имела простое решение (например, одну из осей направляют по неизменному направлению поля), а окончательный результат решения вновь обобщают в векторной форме.

Поле физическое

Область пространства , где проявляют себя физические, достоверно зарегистрированные и точно измеренные силы, называется физическим полем. В рамках современной физики рассматриваются четыре их вида: гравитационное (см. здесь); сильных взаимодействий (см. здесь) - ядерное; слабых взаимодействий (см. здесь) и электромагнитное (см. здесь) - магнитное и электрическое. С точки зрения квантовой теории взаимодействие материальных объектов на расстоянии обеспечивается их взаимным обменом квантами полей, характерными для каждого из перечисленных взаимодействий. Свойства любого из физических полей описываются строгими математическими выражениями.

Последние несколько десятков лет физики не прекращают попыток создать общую, единую теорию поля. Ожидается, что она опишет все названные поля как различные проявления одного – «единого физического поля».

Предполагать существование каких-либо других, кроме перечисленных выше, силовых полей нет никаких теоретических или экспериментальных оснований.

гравитационное

Гравитационное поле проявляет себя силовым влиянием друг на друга любых физических объектов. Сила гравитационного взаимодействия прямо пропорциональна их массам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Ньютона . Гравитационные силы проявляются при любых расстояниях между объектами.

Квантами поля гравитационного взаимодействия являются гравитоны. Их массы покоя равны нулю. Несмотря на то, что в свободном состоянии они пока не обнаружены, необходимость существования гравитонов вытекает из самых общих теоретических предпосылок и не вызывает сомнений.

Гравитационное поле играет огромную роль в большинстве процессов во Вселенной .

О природе гравитационного поля см. также Относительности теория, общая .

сильных взаимодействий (ядерное )

Поле сильных взаимодействий проявляет себя силовым влиянием на нуклоны - элементарные частицы, составляющие атомные ядра. Оно способно объединить имеющие одноименные электрические заряды протоны, т.е. преодолеть электрические силы их отталкивания.

Связанная с этим полем сила притяжения обратно пропорциональна возведенной в четвертую степень величине расстояния между нуклонами, т.е. она эффективна только на малых дистанциях. На расстояниях менее 10 -15 метра между частицами поле сильных взаимодействий уже в десятки раз мощнее, чем электрическое поле.

Квантами поля сильного взаимодействия являются элементарные частицы - глюоны. Типичное время жизни глюона порядка 10 -23 секунды.

Действие поля сильных взаимодействий немаловажно и для макропроцессов во Вселенной, хотя бы потому, что без этого поля ядра атомов, а значит и сами атомы, просто не могли бы существовать.

слабых взаимодействий

Поле слабых взаимодействий - взаимодействие слабых токов - проявляет себя при взаимодействиях элементарных частиц на расстояниях 10 -18 метра между ними.

Квантами поля слабого взаимодействия являются элементарные частицы - промежуточные бозоны. Типичное время жизни промежуточного бозона порядка 10 -25 секунды.

В рамках попыток построения единой теории поля в настоящее время доказано, что поле слабых взаимодействий и электромагнитное (см. здесь) поле могут быть описаны совместно, а значит имеют родственную природу.

Влияние поля слабых взаимодействий играет свою роль на уровне процессов распадов и рождений элементарных частиц, без которых Вселенная не могла бы существовать в своем нынешнем виде. Особую роль это физическое поле играло в начальный период Большого взрыва .

электромагнитное

Электромагнитное поле проявляет себя во взаимодействии электрических зарядов, покоящихся - электрическое поле - или движущихся - магнитное поле. Оно обнаруживается при любых расстояниях между заряженными телами. Квантами поля электромагнитного взаимодействия являются фотоны. Их массы покоя равны нулю.

Электрическое поле проявляет себя силовым влиянием друг на друга объектов, обладающих некоторым свойством, называемым электрическим зарядом. Природа электрических зарядов неизвестна, однако их величины являются параметрами меры взаимодействия обладающих указанным свойством, т.е. заряженных образований.

Носителями минимальных величин зарядов являются электроны - имеют отрицательный заряд, протоны - имеют положительный заряд - и некоторые другие, очень короткоживущие, элементарные частицы. Физические объекты приобретают положительный электрический заряд при превышении количества содержащихся в них протонов над электронами или - в противоположном случае - отрицательный заряд.

Сила взаимодействия заряженных физических объектов, в том числе элементарных частиц, прямо пропорциональна их электрическим зарядам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Кулона. Одноименно заряженные объекты отталкиваются, разноименно заряженные - притягиваются.

Магнитное поле проявляет себя силовым влиянием друг на друга тел или образований, например, плазменных, обладающих магнитными свойствами. Эти свойства порождаются текущими в них электрическими токами - упорядоченным движением носителей электрических зарядов. Параметрами меры взаимодействия являются интенсивности текущих электрических токов, которые определяются количеством электрических зарядов, перемещенных за единицу времени через поперечные сечения проводников. Постоянные магниты тоже обязаны своим эффектом возникающим в них внутренним кольцевым молекулярным токам. Таким образом, магнитные силы имеют электрическую природу. Интенсивность магнитного взаимодействия объектов - магнитная индукция - прямо пропорциональна интенсивностям текущих в них электрических токов и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она описывается законом Био - Савара - Лапласа.

Электромагнитное поле играет важнейшую роль в любых процессах, протекающих во Вселенной с участием плазмы .

Материализация духов и раздача слонов.
Входные билеты от 50 к. до 2 р.
И. Ильф, Е Петров

Что такое фундаментальные взаимодействия и фундаментальные поля? Почему фундаментальные поля можно считать одной из составляющих материи?

Урок-лекция

О том, что поле - это особый вид материи, можно прочитать во многих учебниках физики и даже в энциклопедическом словаре. А вот пояснения к этому утверждению встречаются далеко не всегда. Поэтому часто смысл сказанного остается непонятым. Попробуем разобраться в этом и «материализовать поле». Заметим, что приведенное выше утверждение относится не к любым полям, а только к фундаментальным. Что же такое фундаментальные поля?

Фундаментальные взаимодействия и фундаментальные поля . Изучая физику, вы знакомились с различными силами - силой упругости, силой трения, силой тяжести. Каждая из этих сил характеризует некоторое взаимодействие между телами. Как вы знаете, развитие науки показало, что все макроскопические тела состоят из атомов и молекул (точнее, из ядер и электронов). Из атомно-молекулярной модели следует, что некоторые из взаимодействий между макроскопическими телами можно представить как результат взаимодействия между атомами и молекулами или, при еще большем углублении в структуру вещества, как результат взаимодействия между ядрами и электронами, входящими в состав макроскопических тел.

В частности, такие силы, как сила упругости и сила трения, есть результат сил, действующих между электронами и ядрами. А вот гравитационные взаимодействия и электромагнитные взаимодействия свести к каким-то другим взаимодействиям не удалось, хотя такие попытки и предпринимались.

Для характеристики взаимодействий, которые не сводятся к другим взаимодействиям, стали использовать понятие фундаментальные , что означает «основные».

Как говорилось в предыдущем параграфе, фундаментальные гравитационное и электромагнитное взаимодействия можно рассматривать _ на основе взаимодействия с полем. Поля, соответствующие фундаментальным взаимодействиям, стали называть фундаментальными полями .

Фундаментальными взаимодействиями являются гравитационное и электромагнитное взаимодействия.

Развитие науки показало, что гравитационное и электромагнитное взаимодействия не единственные фундаментальные взаимодействия. В настоящее время обнаружено четыре фундаментальных взаимодействия. О двух других фундаментальных взаимодействиях мы узнаем при изучении микромира.

Электромагнитное и гравитационное поля - это фундаментальные поля, которые не могут быть сведены к движению каких-либо частиц.

Дальнодействие и близкодействие . Мы уже знаем, что взаимодействие между частицами (заряженными и незаряженными) можно описывать при помощи полей, но можно и не вводить понятие поля. Концепцию, в соответствии с которой взаимодействие между частицами описывают напрямую, без введения понятия поля, называют концепцией дальнодействия. Название это означает, что частицы взаимодействуют на далеком расстоянии. Наоборот, вторую концепцию, в соответствии с которой взаимодействие осуществляется через посредство поля (гравитационного и электромагнитного), называют концепцией близко-действия. Смысл понятия близкодействия заключается в том, что частица взаимодействует с полем, которое имеется вблизи нее, хотя само это поле может создаваться частицами, находящимися очень далеко (рис. 13).

Рис. 13. Иллюстрация взаимодействия на основе концепции дальнодействия (а) и концепции близкодействия (б. в)

В первом случае (см. рис. 13, а) на заряд q действует сила F со стороны заряда Q, находящегося на расстоянии r. Во втором случае заряд Q создает в пространстве вокруг себя поле Е(х, у, z). В частности, в точке с координатами х 0 , у 0 , z 0 , где находится заряд q, создается поле Е(х 0 , у 0 , z 0) (см. рис. 13, б). Это поле, а не непосредственно заряд Q взаимодействует с зарядом q (см. рис. 13, в).

Исторически знания о природе развивались таким образом, что концепция близкодействия, предложенная в 30-е гг. XIX в, английским физиком М. Фарадеем, воспринималась лишь как удобное описание.

Положение принципиально изменилось после открытия электромагнитных волн, распространяющихся с конечной скоростью - скоростью света. Из теории электромагнитных волн следовало, что любое изменение электромагнитного поля распространяется через пространство также со скоростью света. Обращаясь к примеру, приведенному на рисунке 13, можно сказать, что если заряд Q в какой-то момент времени начнет движение, то заряд q «ощутит» изменение действующей на него силы не в тот же момент времени, а спустя время r/с (с - скорость света), т. е. время, необходимое для того, чтобы электромагнитная волна дошла от заряда Q до заряда q.

Конечность распространения электромагнитных волн приводит к тому, что описание электромагнитного взаимодействия на основе концепции дальнодействия становится неудобным.

Чтобы понять это, рассмотрим следующий пример. В 1054 г. на небосводе появилась яркая звезда, свет которой наблюдался даже днем в течение нескольких недель. Затем звезда угасла, и в настоящее время в районе небесной сферы, где находилась звезда, отмечается слабо светящееся образование, которое получило название Крабовидной туманности. В соответствии с современными представлениями об эволюции звезд произошла вспышка звезды, во время которой ее мощность излучения увеличилась в миллиарды раз, после чего звезда распалась. На месте ярко светящейся звезды образовались практически не излучающая нейтронная звезда и расширяющееся облако слабо светящегося газа.

С точки зрения концепции близкодействия наблюдение света звезды сводится к следующему. Заряды, находящиеся на звезде, создали поле, которое в виде волны дошло до Земли и оказало воздействие на электроны в сетчатке глаза наблюдателя. При этом волна достигла Земли за сотни лет. Люди наблюдали вспышку звезды, когда самой звезды уже не было. Если попробовать описать это наблюдение на основе концепции дальнодействия, то приходится считать, что заряды в сетчатке глаза взаимодействуют не с зарядами звезды, а с теми, которые когда-то были на звезде, которой уже нет. Заметим, что в процессе образования нейтронной звезды многие заряды исчезают, поскольку из электронов и протонов образуются нейтроны - нейтральные частицы, практически не участвующие в электромагнитном взаимодействии. Согласитесь, что описание на основе взаимодействия с тем, что когда-то было, но не существует в настоящий момент времени, «не очень удобное».

Другая причина признать поле материальным связана с тем, что электромагнитная волна переносит через пространство энергию и импульс (подробнее см. § 57). Если поле не считать материальным, то следует признать, что энергия и импульс не связаны с чем-то материальным и сами по себе переносятся через пространство.

Сформулированная в 1905 г. Альбертом Эйнштейном теория относительности базируется на постулате, в соответствии с которым не существует взаимодействий (в том числе и фундаментальных), распространяющихся быстрее света.

Мы начали этот параграф с «материализации духов». Физики - народ остроумный, и понятие «духи» уже используется в современной теории поля. Можно сказать, что пока еще эти духи не материализованы, т. е. не наблюдаются на опыте. Но и наука о фундаментальных полях пока еще не завершена.

Конечность распространения фундаментальных полей и их связь с энергией и импульсом (перенос энергии и импульса этими полями) приводят к признанию этих полей в качестве одной из составляющих материи. Материя, таким образом, представлена частицами (веществом) и фундаментальными полями.

  • Какой смысл заложен в понятия «фундаментальные поля» и «фундаментальные взаимодействия»?
  • Приведите примеры полей, не являющихся фундаментальными.
  • Подумайте и приведите примеры нефундаментальных взаимодействий.