Физическое и математическое моделирование. Математическое моделирование физических процессов

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.



Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Задача реализации заключается в переходе от внешнего описания системы к ее внутреннему описанию. Задача реализации представляет собой одну из важнейших задач в исследовании систем и, по существу, отражает абстрактную формулировку научного подхода к построению математической модели. В такой постановке задача моделирования заключается в построении множества состояний и вход-выходного отображения исследуемой системы на основе экспериментальных данных. В настоящее время задача реализации решена в общем виде для систем, у которых отображение вход-выход линейно. Для нелинейных систем общего решения задачи реализации пока не найдено.

Поэты знают – все похоже на все. На этом положении базируется творчество метафор:

В саду горит костер рябины красной,

Но никого не может он согреть.

На этом же положении базируется моделирование. Моделирование – это построение и исследование моделей. В свою очередь моделью называется некоторая система, исследуя которую получают информацию о другой системе.

С первого взгляда это кажется нонсенсом. Можно ли, разглядывая один предмет, получить представление о другом предмете. Где то море, а где та дача?

Между тем, чтобы посмотреть на себя со стороны, мы пользуемся зеркалом. При этом свое отражение в зеркальном стекле мы отождествляем с собой. Хотя наше отражение кое в чем и отличается от оригинала. Например, правое и левое в зеркале меняется местами. Но мы почти автоматически делаем поправку на это не существенное в данном случае различие, и пользуемся зеркалом к своей пользе и вящему удобству. Все мальчики отходят от зеркала чистыми и причесанными. А девочки вообще красавицы!

Модель, метафорически выражаясь, и есть такое зеркало, приставленное к изучаемому предмету.

Создавая модель, мы решаем, какие свойства изучаемой системы для нас важны, а какие – второстепенны. Например, при исследовании крыльев летательных аппаратов в аэродинамической трубе, нам важна их форма и материал, из которого они изготовлены. Цвет же крыльев в данном случае несущественен. Хотя при расчете видимости самолета цвет его плоскостей будет, пожалуй, самой важной информацией.

Определившись с главными и не главными свойствами моделируемой системы или объекта, мы устанавливаем определенные соотношения между свойствами системы и ее модели. Например, если размер модели дома вдвое меньше размера реального дома, объем, а следовательно, вес модели будет в восемь раз меньше реального.

Затем мы начинаем исследование модели и определяем различные интересующие нас соотношения между параметрами. Например, при какой скорости воздушного потока начнутся вибрации крыла. Это – формулировка проблемы флаттера, колебаний летательного аппарата, неожиданно возникающих при определенных значениях скорости воздушного потока, обтекающего крыло. Без решения этой проблемы самолеты не смогли бы летать с высокими скоростями. Чтобы решить ее пришлось наблюдать в аэродинамической трубе разрушение большого количества моделей крыльев. Здесь мы сразу видим в чем достоинства моделирования. Мы испытываем на прочность не дорогой самолет, а дешевую модель, пересчитывая свойства модели в свойства моделируемого реального самолета. Экономия средств, а главное, летчики-испытатели не должны рисковать жизнью.

Другая область применения моделей – сопротивление материалов и строительная механика. Насколько прочной должна быть сталь для моста? Какой толщины делать несущие колонны, чтобы здание не обрушилось? Можно ли построить небоскреб из кирпича? Здесь моделью реального материала является образец, подвергаемый испытаниям на специальных испытательных стендах. Прочностные характеристики, полученные по результатам испытаний, пересчитываются в прочностные характеристики реальных деталей машин или зданий.

А при «заселении» нового здания тоже не обойтись без моделирования. Для того, чтобы оптимально расставить мебель в комнатах, никто не таскает туда-сюда тяжелые столы и громоздкие холодильники. Все предметы моделируются небольшими бумажными прямоугольничками, которые перемещаются по поверхности бумажного листа с изображенным на нем планом помещения.

Да и в медицине мы не обходимся без моделирования. Ни один человек в точности на другого не похож. Вместе с тем, у всех человеческих организмов есть достаточно сходства, как в «деталях», так и в «функциях». Медик изучает анатомию по одному скелету, а иногда даже по модели скелета, и понимает, как устроены все люди. Психолог изучает, как конкретный человек реагирует на определенные раздражители, а потом делает общие выводы касательно поведения всех людей.

Моделирование бывает двух видов – математическое и физическое. При математическом моделировании исследуются системы соотношений, описывающих процессы, протекающие в моделируемом объекте. Соотношения могут описываться уравнениями, зачастую достаточно сложными, которые выводятся на основе теоретической модели исследуемого процесса или исследуемой системы. Но математические модели могут быть также и вероятностными. В таких моделях изменения входных параметров определяют поведение выходных параметров не жестко, а с некоторой долей вероятности.

Математическая модель – это всегда компромисс между реальной сложностью исследуемой системы и простотой, требуемой для его описания. Не всегда имеются «качественные» теории, позволяющие точно рассчитать, что происходит, например, при падении напряжения в больших электросетях. Да даже поведение потока воды, спускаемой в унитазе в зависимоти от его формы – серьезная теоретическая проблема.

При физическом моделировании изучаются свойства моделей, которые по физическим свойствам сходны с оригиналами. Например, при краш-тестах автомобилей множество разбиваемых автомобилей моделирует поведение любого автомобиля, который, в конце концов, будет выпущен на дорогу.

Исследования физических моделей производится на реальных установках или испытательных стендах. Результаты испытаний переводятся в реальные результаты с помощью расчетов, основанных на специальном математическом аппарате, который называется теорией подобия. Примером испытания физических моделей являются уже описанные испытания авиационных моделей в аэродинамической трубе. Или расчет плотины гидроэлектростанции. Недостатком физического моделирования является относительная трудоемкость создания и испытания моделей и меньшая универсальность метода физического моделирования.

Но в любом случае, физическое и математическое моделирование, дополняя друг друга, позволяют изменять наш мир в желаемом направлении.

В области естественных наук наиболее распространенными являются два вида моделирования - физическое и математическое .

Процесс физического моделирования состоит в изучении системы посредством анализа некоторого макета, сохраняющего физическую природу системы или внешне напоминающего изучаемый объект.

Физические модели (их еще называют натурными) могут иметь вид полномасштабных макетов (например, тренажеры летательных аппаратов), могут выполняться в уменьшенном масштабе (глобус) или в увеличенном масштабе (планетарная модель атома). В инженерной практике широко используются как макеты в натуральную величину, так и уменьшенные модели объектов. В последнем случае параметры экспериментов с физической моделью выбираются из подобия.

Примерами физических моделей являются: модели летательного аппарата или автомобиля, исследуемые в аэродинамической трубе; построенный на базе военного истребителя миниатюрный аналог сверхзвукового пассажирского лайнера, используемый во время летных испытаний.

Статические физические модели, такие как макеты архитектурных объектов или заводских корпусов, позволяют наглядно представить пространственные соотношения.

Однако модели физического типа имеют ограниченную сферу применения. Не для всяких явлений и объектов могут быть построены дающие значимые результаты физические аналоги.

Математическая (или символическая) модель концентрирует в себе записанную в форме математических соотношений совокупность наших знаний, представлений и гипотез о соответствующем объекте или явлении.

Математическая модель - абстрактный образ системы, отражающий ее важнейшие свойства. Поскольку математические модели являются абстрактными и, следовательно, наиболее общими, то именно они находят самое широкое применение в исследовании систем.

Натурные эксперименты представляют собой источник информации ограниченного объема. Математическая модель допускает более широкие исследования и обобщения, результаты которых дают информацию для прогнозирования поведения системы в будущем. Правда, чтобы обеспечить эти возможности, приходится решать проблему соответствия (адекватности ) модели и системы, т.е. проводить дополнительное исследование согласованности результатов моделирования с реальной ситуацией.

Математические модели строят на основе законов и закономерностей, выявленных фундаментальными науками: физикой, химией, экономикой, биологией и т.д. После того как модель сформулирована, необходимо исследовать ее поведение. С усложнением анализируемых объектов использование для этих целей аналитических методов возможно лишь в ограниченном количестве случаев. Выход состоит в переходе к машинным реализациям математических моделей.

Математические машинные модели делят на аналоговые и цифровые в соответствии с типами вычислительных машин, на которых они реализованы.

Аналоговое моделирование основано на том факте, что различные по природе явления и процессы могут иметь одинаковое математическое описание. Хорошо известным примером служит описание одними и теми же уравнениями электрического колебательного контура и пружинного маятника. На аналоговых вычислительных машинах эти уравнения воспроизводятся обычно с помощью электрических схем, построенных на электронных операционных усилителях и функциональных блоках, моделирующих предопределенный набор математических действий и функций, например арифметические действия, интегрирование, нелинейные функции. Искомые характеристики исследуемой системы регистрируются путем измерения на модели соответствующих электрических величин. Переработка информации в такой модели носит параллельный характер и реализуется в форме электрического процесса, происходящего в собранной схеме.

Цифровые модели, реализуемые на цифровых электронных вычислительных машинах, представляют собой алгоритмы переработки входной информации в выходную. Входной информацией могут быть параметры модели, ее начальные состояния и т.п., а выходной - траектории этой модели.

Моделирующий алгоритм строится на основе математической модели системы. Последняя может быть как алгоритмической , так и аналитической .

Примером алгоритмической модели является конечный автомат, заданный с помощью одношаговой функции перехода, которая собственно и определяет алгоритм пересчета состояний автомата, т.е. воспроизведения ее траектории.

Примером аналитической модели является система обыкновенных дифференциальных уравнений, в которой для получения решения необходимо использовать какой-либо метод интегрирования. Данная модель преобразуется в алгоритмическую при использовании метода численного интегрирования. Такое преобразование приводит, вообще говоря, к изменению свойств модели, что в принципе должно учитываться при исследовании.

  • E) поощрять научные исследования, относящиеся к обеспечению сохранности фольклора.
  • SWOT - анализ и его применение в маркетинговых исследованиях.
  • Активное и реактивное сопротивление элементов сети (физический смысл, математическое определение), полное сопротивление сети.
  • Анализ возможных экологических и связанных с ними социальных, экономических и других последствий реализации альтернатив решений по объекту
  • Под объектом моделирования понимают любой предмет, процесс или явление, которые изучают методом моделирования. При изучении объекта учитываются только те свойства, которые необходимы для достижения цели. Выбор свойств объекта при построении модели является важной задачей на первых этапах моделирования.

    Модель объекта – это:
    1) такая мысленно представимая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна заменить его так, что её изучение даёт новую информацию об объекте.
    2) объект - заместитель, который учитывает реальные свойства объекта, необходимые для достижения цели.

    Основная функция модели – не только описание объекта, но и получение информации о нём.

    Различают физическое и математическое моделирование.

    Физи́ческое модели́рование - метод экспериментального изучения различных физических явлений, основанный на их физическом подобии . Метод применяется при следующих условиях:

    • Исчерпывающе точного математического описания явления на данном уровне развития науки не существует, или такое описание слишком громоздко и требует для расчётов большого объёма исходных данных, получение которых затруднительно.
    • Воспроизведение исследуемого физического явления в целях эксперимента в реальных масштабах невозможно, нежелательно или слишком дорогостояще (например, цунами).

    В широком смысле, любой лабораторный физический эксперимент является моделированием, поскольку в эксперименте наблюдается конкретный случай явления в частных условиях, а требуется получить общие закономерности для всего класса подобных явлений в широком диапазоне условий. Искусство экспериментатора заключается в достижении физического подобия между явлением, наблюдаемым в лабораторных условиях и всем классом изучаемых явлений.

    Математическое моделирование , в широком смысле, включает ис­следования не только с помощью чисто математических моделей. Здесь используются также информационные, логические, имитационные и дру­гие модели и их комбинации. В этом случае математическая модель пред­ставляет собой алгоритм, включающий определение зависимости между характеристиками, параметрами и критериями расчета, условия протека­ния процесса функционирования системы и т.д. Данная структура может стать моделью явления, если она с достаточной степенью отражает его фи­зическую сущность, правильно описывает соотношение свойств и под­тверждается результатами проверки. Применением математических моде­лей и вычислительной техники реализуется один из наиболее эффективных методов научных исследований - вычислительный эксперимент, позво­ляющий изучать поведение сложных систем, которые трудно физически смоделировать. Часто это связано с большой сложностью и стоимостью объектов, а в некоторых случаях невозможностью воспроизвести экспери­мент в реальных условиях.



    Эффективность применения информационных систем в сфере образования. Задачи, решаемые ИС в сфере образования. Специфика информационных потребностей преподавательского и управленческого персонала сферы образования. Основные показатели качества информационного обеспечения сферы образования и обоснование требований к их количественным значениям

    В современном обществе применение информационных технологий во всех сферах жизнедеятельности стало обязательным сопровождающим компонентом. Особенно важная роль её применению отводится в области познания, изучения, т.е. в сфере образования. ИТ-технологии занимают одно из ведущих мест в интеллектуализации человека и общества в целом, повышении культурного и образовательного уровня каждого гражданина.



    В последнее время в сфере образования информационные технологии, основанные на новейших компьютерных и аудиовизуальных достижениях науки и техники, находят все большее применение. Одним из эффективных направлений реализации образовательных услуг является использование различных форм обучения на основе информационных и обучающих технологий.

    Помимо этого, стремление активно применять современные информационные технологии в сфере образования необходимо ориентировать на повышение уровня и качества подготовки специалистов. С каждым годом растет количество организаций и предприятий обращающихся на рынок образовательных услуг. В связи с этим в самых благоприятных условиях оказываются те учебные заведения, которые включают в себя довузовское, вузовское и послевузовское образование с использованием новых образовательных технологий.

    В настоящее время все более возрастает роль информационно-социальных технологий в образовании, которые обеспечивают всеобщую компьютеризацию учащихся и преподавателей на уровне, позволяющем решать, как минимум, три основные задачи:

    – обеспечение выхода в сеть Интернет каждого участника учебного процесса, причем, желательно, в любое время и из различных мест пребывания;

    – развитие единого информационного пространства образовательных индустрий и присутствие в нем в различное время и независимо друг от друга всех участников образовательного и творческого процесса;

    – создание, развитие и эффективное использование управляемых информационных образовательных ресурсов, в том числе личных пользовательских баз и банков данных и знаний учащихся и педагогов с возможностью повсеместного доступа для работы с ними.

    Основными преимуществами современных информационных технологий являются: наглядность, возможность использования комбинированных форм представления информации - данные, стереозвучание, графическое изображение, анимация, обработка и хранение больших объемов информации, доступ к мировым информационным ресурсам, которые должны стать основой поддержки процесса образования.

    Необходимость усиления роли самостоятельной работы обучаемого требует внесения существенные изменений в структуру и организацию учебного процесса, повышению эффективности и качества обучения, активизации мотивации познавательной деятельности в ходе изучения теоретического и практического учебного материала по той или иной дисциплине.

    В процессе информатизации образования необходимо иметь в виду, что главный принцип использования компьютера - это ориентация на те случаи, когда человек не может выполнить поставленную педагогическую задачу. Например, преподаватель не может наглядно продемонстрировать большинство физических процессов без компьютерного моделирования.

    С другой стороны, компьютер должен помогать развитию творческих способностей учащихся, способствовать обучению новым профессиональным навыкам и умениям, развитию логического мышления. Процесс обучения должен быть направлен не на умение работать с определенными программными средствами, а на совершенствование технологии работы с различной информацией: аудио- и видео-, графической, текстовой, табличной.

    Современные мультимедиа технологии и инструментальные средства позволяют реализовать всю гамму компьютерных обучающих программ. Однако их использование требует от преподавателей достаточно высокой квалификации пользователя.

    Моделирование

    Моделирование и его виды

    Моделирование является одним из основных методов современных научных исследований.

    Моделирование – это исследование объектов познания на их моделях, построение и изучение моделей реально существующих предметов, явлений и конструируемых объектов. Это воспроизведение изучаемых свойств объекта или явления с помощью модели при ее функционировании в определенных условиях. Модель – это образ, структура или материальное тело, которые воспроизводят с той или иной мерой сходства явление или объект. Модель изоморфна (сходственна, аналогична) с натурой (оригиналом), обобщением которой она является. Она воспроизводит наиболее характерные признаки изучаемого объекта, выбор которых определяется целью исследования. Модель всегда приближенно отображает объект или явление. В противном случае модель превращается в объект и теряет свое самостоятельное значение.

    Для получения решения модель должна быть достаточно простой и в то же время она должна отражать существо задачи, чтобы найденные с ее помощью результаты имели смысл.

    В процессе познания человек всегда, более или менее явно и сознательно, строит модели ситуаций окружающего мира и управляет своим поведением в соответствии с выводами, полученными им при изучении модели. Модель всегда отвечает конкретной цели и ограничена рамками поставленной задачи. Модель системы управления для специалиста по автоматике коренным образом отличается от модели этой же системы для специалиста по надежности. Моделирование в конкретных науках связывают с выяснением (или воспроизведением) свойств какого-либо объекта, процесса или явления с помощью другого объекта, процесса или явления, причем обычно предполагается соблюдение определенных количественных соотношений между моделью и оригиналом. Различают три вида моделирования.

    1. Математическое (абстрактное) моделирование основывается на возможности описания изучаемого процесса или явления на языке некоторой научной теории (чаще всего на математическом).

    2. Аналоговое моделирование основывается на изоморфизме (сходственности) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими уравнениями. Примером может служить изучение гидродинамического процесса с помощью исследования электрического поля. Оба эти явления описываются дифференциальным уравнением Лапласа в частных производных, решение которого обычными методами возможно только для частных случаев. В то же время экспериментальные исследования электрического поля намного проще соответствующих исследований в гидродинамике.

    3. Физическое моделирование состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу. В науке любой эксперимент, проводимый в целях выявления тех или иных закономерностей изучаемого явления или для проверки правильности и границ применимости теоретических результатов, фактически представляет собой моделирование, так как объект исследования – конкретная модель (образец), обладающая определенными физическими свойствами. В технике физическое моделирование используют тогда, когда трудно провести натурный эксперимент. В основу физического моделирования положены теории подобия и анализ размерностей. Необходимым условием реализации этого вида моделирования является геометрическое подобие (подобие формы) и физическое подобие модели и оригинала: в сходственные моменты времени и в сходственных точках пространства значения переменных величин, характеризующих явления, для оригинала должны быть пропорциональны тем же значениям для модели. Это позволяет производить соответствующий пересчет полученных данных.

    Математическое моделирование и вычислительный эксперимент.

    В настоящее время наибольшее распространение получили математические модели, реализуемые на ЭВМ. При построении данных моделей можно выделить следующие этапы:

    1. Создание или выбор модели, соответствующей поставленной задаче.

    2. Создание условий функционирования модели.

    3. Эксперимент на модели.

    4. Обработка результатов.

    Рассмотрим более подробно перечисленные выше этапы.

    На математическое описание исследуемого объекта (процесса) на первом этапе накладывается ряд требований: разрешимость используемых уравнений, соответствие математического описания изучаемому процессу с допустимой точностью, адекватность принятых допущений, практическая целесообразность использования модели. Степень удовлетворения этих требований определяет характер математического описания и является наиболее сложной и трудоемкой частью при создании модели.

    Рис. 2.1. Схема процесса построения математической модели

    Реальные физические явления, как правило, очень сложны, и их никогда нельзя проанализировать точно и в полном объеме. Построение модели всегда связано с компромиссом, т.е. с принятием допущений при которых справедливы уравнения модели (рис. 2.1). Таким образом, чтобы с помощью модели можно было получить имеющие смысл результаты, она должна быть достаточно детальной. В то же время она должна быть достаточно простой, чтобы можно было получить решение при ограничениях налагаемых на результат такими факторами как сроки, быстродействие ЭВМ, квалификация исполнителей и т. д.

    Математическая модель, отвечающая требованиям первого этапа моделирования, обязательно содержит в себе систему уравнений основного определяющего процесса или процессов. Только такая модель пригодна для моделирования. Это свойство лежит в основе отличия моделирования от расчета и определяет возможность использования модели для моделирования. Расчет, как правило, базируется на основе зависимостей, полученных ранее, при исследованиях процесса, и поэтому отображает определенные свойства объекта (процесса). Следовательно, методику расчета можно назвать моделью. Но функционирование такой модели воспроизводит не изучаемый процесс, а изученный. Очевидно, понятия моделирования и расчета четко не разграничиваются, потому что и при математическом моделировании на ЭВМ алгоритм модели сводится к расчету. Но в этом случае расчет носит вспомогательный характер, так как результаты расчета позволяют получить изменение количественных характеристик модели. Самостоятельного значения, какое имеет моделирование, в данном случае расчет иметь не может.

    Рассмотрим второй этап моделирования. Модель в ходе эксперимента так же как и объект, функционирует в определенных условиях, которые задаются программой эксперимента. Условия моделирования не входят в понятие модели, поэтому с одной и той же моделью можно проводить различные эксперименты при задании различных условий моделирования. Математическому описанию условий функционирования модели, несмотря на кажущуюся однозначность толкования, необходимо уделять серьезное внимание. При описании математической модели некоторые несущественные процессы следует заменять экспериментальными данными и зависимостями или трактовать их упрощенно. Если эти данные не будут полностью соответствовать предполагаемым условиям функционирования модели, то результаты моделирования могут быть неверными.

    После получения математического описания модели и условий функционирования составляют алгоритмы расчетов, блок-схемы программ для ЭВМ, а затем и программы.

    В процессе отладки программ их составные части и отдельные программы в целом подвергаются всесторонней проверке для выявления ошибки или недостаточности математического описания. Проверку производят путем сопоставления полученных данных с известными фактическими данными. Окончательной проверкой является контрольный эксперимент, который осуществляют при одинаковых условиях с проведенным ранее экспериментом непосредственно на объекте. Совпадение с достаточной точностью результатов эксперимента на модели и эксперимента на объекте служит подтверждением соответствия модели и объекта (адекватности модели реальному объекту) и достоверности результатов последующих исследований.

    Отлаженная и отвечающая принятым положениям программа моделирования на ЭВМ имеет все необходимые элементы для проведения самостоятельного эксперимента на модели (третий этап), который называют также вычислительным экспериментом .

    Четвертый этап математического моделирования – обработка результатов принципиально не отличается от обработки результатов обычного эксперимента.

    Более подробно рассмотрим широко распространенное в настоящее время понятие вычислительного эксперимента. Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и ЭВМ как технической базы при использовании математических моделей. В таблице приведена сравнительная характеристика натурного и вычислительного экспериментов. (Натурный эксперимент поводится в естественных условиях и на реальных объектах).

    Сравнительная характеристика натурного и вычислительного экспериментов

    Таблица 2.1

    Натурный эксперимент Вычислительный эксперимент
    Основные этапы 1. Анализ и выбор схемы эксперимента, уточнение элементов установки, ее конструкции. 1. На основе анализа объекта (процесса) выбирается или создается математическая модель.
    2. Разработка конструкторской документации, изготовление экспериментальной установки и ее отладка. 2. Для выбранной математической модели составляется алгоритм расчета, создается программа для машинного счета.
    3. Пробный замер параметров на установке в соответствии с программой эксперимента. 3. Пробный машинный счет в соответствии с программой вычислительного эксперимента.
    4. Детальный анализ результатов эксперимента, уточнение конструкции установки, ее доводка, оценка степени достоверности и точности проведенных измерений. 4. Детальный анализ результатов расчетов для уточнения и корректировки алгоритма и программ счета, доводка программы.
    5. Проведение чистовых экспериментов в соответствии с программой. 5. Окончательный машинный счет в соответствии с программой.
    6. Обработка и анализ экспериментальных данных. 6. Анализ результатов машинного счета.
    Преимущества Как правило, более достоверные данные об изучаемом объекте (процессе) Широкие возможности, большая информативность и доступность. Позволяет получить значения всех интересующих параметров. Возможность качественно и количественно проследить функционирование объекта (эволюцию процессов). Сравнительная простота уточнения и расширения математической модели.

    На основе математического моделирования и методов вычислительной математики создались теория и практика вычислительного эксперимента. Рассмотрим подробнее этапы технологического цикла вычислительного эксперимента.

    1. Для исследуемого объекта строится модель, формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты; модель записывается в математических терминах, как правило, в виде дифференциальных или интегродифференциальных уравнений; создание математической модели проводится специалистами, хорошо знающими данную область естествознания или техники, а также математиками, представляющими себе возможности решения математической задачи.

    2. Разрабатывается метод расчета сформулированной математической задачи. Эта задача представляется в виде совокупности алгебраических формул, по которым должны вестись вычисления и условия, показывающие
    последовательность применения этих формул; набор этих формул н условий носит название вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач часто зависят от многочисленных входных параметров. Тем не менее каждый конкретный расчет в вычислительном эксперименте проводится при фиксированных значениях всех параметров. Между тем в результате такого эксперимента часто ставится задача определения оптимального набора параметров. Поэтому при создании оптимальной установки приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значением некоторых параметров. При организации вычислительного эксперимента обычно используются эффективные численные методы.

    3. Разрабатываются алгоритм и программа решения задачи на ЭВМ. Программирование решений определяется теперь не только искусством и опытом исполнителя, а перерастает в самостоятельную науку со своими принципиальными подходами.

    4. Проведение расчетов на ЭВМ. Результат получается в виде некоторой цифровой информации, которую далее необходимо будет расшифровать. Точность информации определяется при вычислительном эксперименте достоверностью модели, положенной в основу эксперимента, правильностью алгоритмов и программ (проводятся предварительные «тестовые» испытания).

    5. Обработка результатов расчетов, их анализ и выводы. На этом этапе могут возникнуть необходимость уточнения математической модели (усложнения или, наоборот, упрощения), предложения по созданию упрощенных инженерных способов решения и формул, дающих возможности получить необходимую информацию более простым способом.

    Возможности вычислительного эксперимента шире, чем эксперимента с физической моделью, так как получаемая информация более подробная. Математическая модель может быть сравнительно просто уточнена или расширена. Для этого достаточно изменить описание некоторых ее элементов. Кроме того, несложно выполнить математическое моделирование при различных условиях моделирования, что позволяет получить оптимальное сочетание конструкционных параметров, показателей работы объекта (характеристик процесса). Для оптимизации указанных параметров целесообразно использовать методику планирования эксперимента, подразумевая под последним вычислительный эксперимент.

    Вычислительный эксперимент приобретает исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. Особенно ярко можно проиллюстрировать значение вычислительного эксперимента при исследовании масштабов современного воздействия человека на природу. То, что принято называть климатом – устойчивое среднее распределение температуры, осадков, облачности и т. д., – представляет собой результат сложного взаимодействия грандиозных физических процессов, протекающих в атмосфере, на поверхности земли и в океане. Характер и интенсивность этих процессов в настоящее время изменяются значительно быстрее, чем в сравнительно, близком геологическом прошлом в связи с воздействием загрязнения воздуха индустриальными выбросами углекислого газа, пыли н т. д. Климатическую систему можно исследовать, строя соответствующую математическую модель, которая должна описывать эволюцию климатической системы, учитывающей взаимодействующие между собой атмосферы океана и суши. Масштабы климатической системы настолько грандиозны, что эксперимент даже в одном каком-то регионе чрезвычайно дорог, не говоря уже о том, что вывести такую систему из равновесия было бы опасно. Таким образом, глобальный климатический эксперимент возможен, но не натурный, а вычислительный, проводящий исследования не реальной климатической системы, а ее математической модели.

    В науке и технике известно немало областей, в которых вычислительный эксперимент оказывается единственно возможным при исследовании сложных систем.


    Похожая информация.