Функция принадлежности может принимать значения больше 1. Методы определения значений функций принадлежности нечеткого множества

Определение

Под нечётким множеством понимается совокупность , где X - универсальное множество, а - функция принадлежности (характеристическая функция), характеризующая степень принадлежности элемента X нечёткому множеству A.

Функция принимает значения в некотором линейно упорядоченном множестве М. Множество М называют множеством принадлежностей, часто в качестве выбирается отрезок {0,1}. Если, то нечёткое множество может рассматриваться как обычное, чёткое множество. M={0,1}.

Примеры записи нечеткого множества

Пусть E = {x1, x2, x3, x4, x5 }, M = ; A - нечеткое множество, для которого

Тогда A можно представить в виде:

A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или

A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, или

А= x1x2x3x4x5
0,3 0 1 0,5 0,9

Замечание . Здесь знак "+" не является обозначением операции

сложения, а имеет смысл объединения.

Характеристическая функция обычного множества - это функция, устанавливающая принадлежность элемента к множеству. Особенность: носит бинарный характер.

f(x)={1, x принадлежит М; 0, x не принадлежит М.

Функция принадлежности - функция, которая позволяет вычислить степень принадлежности производного элемента универсального множества к нечеткому множеству.

Степень принадлежности - это любое число из диапазона Z (например, Z=).

Чем выше степень принадлежности, тем в большей мере элемент универсального множества соответствует свойствам нечеткого множества.

Множество Z называют множеством принадлежностей. Если Z={0,1}, то нечеткое множество F может рассматриваться как обычное (четкое) множество.

2. Какие нечеткие числа называют нормальными, унимодальными и выпуклыми?

Носителем (суппортом) нечёткого множества называется множество

Supp(F)={x|f(x)>0}, для любого x принадлежащего Е.

Нечеткое множество называется пустым, если его носитель тоже пустое множество.

F=пустое множество <=> supp (F)=пустое множество, то есть f(x)=0 для любого x от Е.

Нечеткое множество является унимодальным , если mA(x)=1 лишь для одного x из E.

Элементы x из Е для которых f(x)=0,5 называются точками перехода множества F.

Высотой нечеткого множества F называется верхняя граница его функции принадлежности hgt (F) = sup x из E f(x).

Нечеткое множество F называется нормальным , если его высота равна единицы. В противном случае оно называется субнормальным.

Нормализация - это преображение субнормального нечеткого множества F в нормальное F определяется так:


F=norm (F) <=> f(x)=f(x)/hgt(F), для любого x из Е.

3. Дайте определение Нечеткие числа (L-R)-типа.

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Нечеткие числа и интервалы, которые наиболее часто используются для представления нечетких множеств в нечетком моделировании, являются нормальными. Однако данные выше определения нечеткого числа и нечеткого интервала слишком общие, что затрудняет их практическое использование. С вычислительной точки зрения удобно использовать более конкретные определения нечетких чисел и интервалов в форме аналитической аппроксима-ции с помощью так называемых (L-R )-функций. Получаемые в результате нечеткие числа и интервалы в форме (L-R) -функций позволяют охватить достаточно широкий класс конкрет-ных функций принадлежности. Определение 6.14. Функция L-muna (а также и R-muna), в общем случае определяется как произвольная функция L: R → и R: /R →, заданная на множестве действительных чисел, невозрастающая на подмножестве неотрицательных чисел R+ и удовлетворяющая следующим дополнительным условиям: L(-x)= L(x), R(-x)=R(x) - условие четности; (6.7) L (0)=R (0) = 1 -условие нормирования. (6.8) Примечание: Иногда в литературе можно встретить еще одно условие, которому долж-ны, по мнению некоторых авторов, удовлетворять функции (L-R )-типа: L (1) = R (1) = 0. По-скольку с одной стороны это условие существенно ограничивает класс функций (L-R )-типа, а с другой стороны, рассматриваемые ниже треугольные нечеткие числа и трапециевидные не-четкие интервалы согласуются с выполнением этого свойства, мы не будем его включать в определение функций (L-R )-типа.

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью


Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:


Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.


Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Определение

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует принадлежность элементов фундаментального множества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.


Нечёткое множество и классическое, четкое (crisp ) множество

Классификация функций принадлежности нормальных нечетких множеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливо утверждение, что существует такой , при котором .

s

Функция принадлежности класса s определяется как:

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s :

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

См. также

  • Грубое множество
  • Эвентология

Внешние ссылки

Литература


Wikimedia Foundation . 2010 .

  • Теория нечёткой меры
  • Капель

Смотреть что такое "Функция принадлежности" в других словарях:

    функция принадлежности - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN membership function … Справочник технического переводчика

    Функция и поле речи и языка в психоанализе - «ФУНКЦИЯ И ПОЛЕ РЕЧИ И ЯЗЫКА В ПСИХОАНАЛИЗЕ» («Fonction et champ de la parole et du langage en psychanalyse») программа переосмысления психоанализа, выдвинутая в 1953 франц. психиатром и психоаналитиком Жаком Лаканом. Этот текст был… … Энциклопедия эпистемологии и философии науки

    Характеристическая функция (нечёткая логика) - Функция принадлежности нечёткого множества это обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому… … Википедия

    Индикаторная функция

    Характеристическая функция множества - Индикатор, или характеристическая функция, или индикаторная функция подмножества это функция, определенная на множестве X, которая указывает на принадлежность элемента подмножеству A. Термин характеристическая функция уже занят в теории… … Википедия

    ВЫПУКЛАЯ ФУНКЦИЯ - комплексного переменногог регулярная однолистная функция в единичном круге, отображающая единичный круг на нек рую выпуклую область. Регулярная однолистная функция является В. ф. тогда и только тогда, когда при обходе любой окружности… … Математическая энциклопедия

    Нечёткое множество - Эту страницу предлагается объединить с Теория нечётких множеств … Википедия

    Нечеткие множества

    Нечеткое множество - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия

    Нечёткие множества - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия


Пусть Х = { x 1 , x 2 , x 3 , x 4 , x 5 } , M = ; A - нечеткое множество, для которого

A (x 1 )=0,3; A (x 2 )=0; A (x 3 )=1; A (x 4 )=0,5; A (x 5 )=0,9 .

Тогда A можно представить в виде: A = {0,3/ x 1 ; 0/ x 2 ; 1/ x 3 ; 0,5/ x 4 ; 0,9/ x 5 }, или A = 0,3/ x 1 + 0/ x 2 + 1/ x 3 + 0,5/ x 4 + 0,9/ x 5 , или таблицей (табл.1)

Таблица 1

Представление нечеткого множества А

Замечание. Здесь знак "+ " не является обозначением операции сложения, а имеет смысл объединения.

Методы построения функций принадлежности нечетких множеств

При построении функций принадлежности используются прямые и косвенные методы. При использовании прямых методов эксперт либо просто задает для каждого x Х значение  A (x ) , либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выделить набор признаков и для каждого из них определить полярные значе-ния, соответствующие значениям функции принадлежности 0 или 1.

Например в задаче распознавания лиц можно выделить следующие шкалы (табл. 2)

Таблица 2

Шкалы в задаче распознавания образов

x 1

высота лба

x 2

профиль носа

курносый

горбатый

x 3

длина носа

короткий

x 4

разрез глаз

x 5

цвет глаз

x 6

форма подбородка

остроконечный

квадратный

x 7

толщина губ

x 8

цвет лица

x 9

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шкалы, задает  A (x ) на , формируя векторную функцию принадлеж-ности { A (x 1 ) ,  A (x 2 ) ,..., A (x 9 )}.

При построении функций принадлежности используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкретное лицо, и каждый должен дать один из двух ответов: «этот человек лысый » или «этот человек не лысый », тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение  « лысый» (данного лица).

Введем следующие обозначения: K - количество экспертов; - мнениеk -го эксперта о наличии у элемента u j свойств нечеткого множества suppI j , k =1,…,K , i =1,…,n , j =1,…,m ,. Будем считать, что экспертные оценки бинарные, т.е. { 0,1} , где 1 (0 ) указывает на наличие (отсутствие) у элемента u j свойств нечеткого множества suppI j . По результатам опроса экспертов, степени принадлежности нечеткому множеству suppI j , j =1,…,m рассчитываются следующим образом:

, i= 1,…,n. (1)

Пример. Построить функции принадлежности значений «низкий», «средний», «высокий», используемых для лингвистической оценки переменной «рост мужчины». Результаты опроса пяти экспертов приведены в табл. 3.

Таблица 3

Результаты опроса экспертов

Значения

Эксперт 1

Эксперт 2

Эксперт 3

Эксперт 4

Эксперт 5

Результаты обработки экспертных мнений представлены в табл. 4. Числа курсивом – это количество голосов, отданных экспертами за принадлежность нечеткому множеству соответствующего элемента универсального множества. Числа обычным шрифтом – степени принадлежности, рассчитанные по формуле (1). Графики функций принадлежности показаны на рис. 6.

Таблица 4

Результаты обработки мнений экспертов

Значения

Рис. 6. Функции принадлежности нечетких множеств из примера

Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств, через которые определяется нечеткое множество. Как правило, это методы попарных сравнений. Если бы значения функций принадлежности были нам известны, например, A (x i ) =w i , i =1,2,...,n , то попарные сравнения можно представить матрицей отношений A ={a ij }, где a ij =w i /w j (операция деления).

На практике эксперт сам формирует матрицу A , при этом предполагается, что диагональные элементы равны 1, а для элементов, симметричных относительно диагонали, a ij =1/a ij , т.е. если один элемент оценивается в  раз сильнее чем другой, то этот последний должен быть в 1/ раз сильнее, чем первый. В общем случае задача сводится к поиску вектора w , удовлетворяющего уравнению вида А w = max w , где  max - наибольшее собственное значение матрицы A . Поскольку матрица А положительна по построению, решение данной задачи существует и является положительным.

Функция принадлежности μ A (x) ∈ ставит в соответствие каждому числу

x ∈ X число из интервала , характеризующее степень принадлежности решения к подмножеству А.

Т.е. это некоторая не вероятностная субъективная мера нечеткости, определяемая в результате опроса экспертов о степени соответствия элемента x понятию, формализуемому нечетким множеством A. В отличие от вероятностной меры, которая является оценкой стохастической неопределенности, имеющей дело с неоднозначностью наступления некоторого события в различные моменты времени, нечеткая мера является численной оценкой лингвистической неопределенности, связанной с неоднозначностью и расплывчатостью категорий человеческого мышления. При построении функции принадлежности μ A (x) с каждым нечетким множеством A ассоциируется некоторое свойство, признак или атрибут, который характеризует некоторую совокупность объектов X. Чем в большей степени конкретный объект x ∈ X обладает этим свойством, тем более близко к 1 соответствующее значение μ A (x). Если элемент x ∈ X определенно обладает этим свойством, то μ A (x)=1, если же x ∈ X определенно не обладает этим свойством, то μ A (x)=0.

Основные виды функций принадлежности

На практике удобно использовать те функции принадлежности, которые допускают аналитическое представление в виде некоторой простой математической функции.

1. Кусочно-линейные,

использующиеся для задания неопределенностей типа: «приблизительно равно», «среднее значение», «расположен в интервале», «подобен объекту», «похож на предмет» и т.п.

Треугольная trimf

Трапецеидальная trapmf

2. S-образные,

использующиеся для задания неопределенностей типа: «большое количество», «большое значение», «значительная величина», «высокий уровень» и т.п.

Квадратичный S-сплайн smf

3. Z -образные,

использующиеся для задания неопределенностей типа «малое количество», «небольшое значении е», «незначительная величина», «низкий уровень» и т.п.

Квадратичный Z -сплайн z mf

4. П-образные,

использующиеся для задания неопределенностей типа: «приблизительно в пределах от и до», «примерно равно», «около» и т.п.

К данному типу функций принадлежности можно отнести целый класс кривых, которые по своей форме напоминают колокол, сглаженную трапецию или букву "П".

Колоколообразная gbellmf

a - коэффициент концентрации функции принадлежности; b – коэффициент крутизны функции принадлежности; c – координата максимума функции принадлежности.

Гауссовская gaussmf

a – координата максимума функции принадлежности; b – коэффициент концентрации функции принадлежности.

Методы построения функций принадлежности

Прямые и косвенные

В зависимости от числа привлеченных к опросу экспертов как прямые, так и косвенные методы делятся на одиночные и групповые .

Прямые

В прямых методах эксперт либо группа экспертов просто задают для каждого

x ∈ X значение функции принадлежности μ A (x).

Как правило, прямые методы построения функций принадлежности используются для таких свойств, которые могут быть измерены в некоторой количественной шкале. Например, такие физические величины, как скорость, время, расстояние, давление, температура и другие имеют соответствующие единицы и эталоны для своего измерения.

При прямом построении функций принадлежности следует учитывать, что теория нечетких множеств не требует абсолютно точного задания функций принадлежности. Зачастую бывает достаточно зафиксировать лишь наиболее характерные значения и вид функции принадлежности.

Так, например, если необходимо построить нечеткое множество, которое представляет свойство "скорость движения автомобиля примерно 50 км/ч", на начальном этапе может оказаться достаточным представить соответствующее нечеткое множество треугольной функцией принадлежности с параметрами а = 40 км/ч, b = 60 км/ч и с = 50 км/ч. В последующем функция принадлежности может быть уточнена опытным путем на основе анализа результатов решения конкретных задач.

Процесс построения или задания нечеткого множества на основе некоторого известного заранее количественного значения измеримого признака получил даже специальное название - фаззификация или приведение к нечеткости. Речь идет о том, что хотя иногда нам бывает известно некоторое значение измеримой величины, мы признаем тот факт, что это значение известно неточно, возможно с погрешностью или случайной ошибкой. При этом, чем меньше мы уверены в точности измерения признака, тем большим будет интервал носителя соответствующего нечеткого множества. Следует помнить, что в большинстве практических случаев абсолютная точность измерения является лишь удобной абстракцией для построения математических моделей. Именно по этой причине фаззификация позволяет более адекватно представить объективно присутствующую неточность результатов физических измерений.

Метод относительных частот (прямой групповой)

Пусть имеется m экспертов, n 1 из которых на вопрос о принадлежности элемента x ∈ X нечеткому множеству A отвечают положительно. Другая часть экспертов n 2 = m n 1 отвечает на этот вопрос отрицательно. Тогда принимается μ A (x) = n 1 / (n 1 + n 2) = n 1 / m.

Пример. Рассмотрим нечеткое множество A, соответствующее понятию «скорость изменения температуры положительная средняя». Объект x – скорость изменения температуры. Экспертам предъявляются различные значения скорости изменения температуры x, и каждому из них задается вопрос: считает ли эксперт, что данная скорость изменения температуры x положительная средняя. Результаты опроса сведены в табл.

В качестве непрерывного представления данной нечеткой переменной можно использовать гауссовскую ФП gaussmf с максимумом функции принадлежности а=5 и коэффициентом концентрации функции принадлежности b=1.7:

μ(x) = exp [ – (x–5) 2 / 2*1.7 2 ]

Косвенные

Используются при решении задач, для которых свойства физических величин не могут быть измерены. Наибольшее распространение среди косвенных методов получил метод парных сравнений.

Метод парных сравнений

Интенсивность принадлежности определяют, исходя из попарных сравнений рассматриваемых элементов.

Для каждой пары элементов универсального множества эксперт оценивает преимущество одного элемента над другим по отношению к свойству нечеткого множества. Парные сравнения удобно представлять следующей матрицей:

,

где - уровень преимущество элементанад(), определяемый по девятибальной шкале Саати:

1 - если отсутствует преимущество элемента над элементом;

3 - если имеется слабое преимущество над;

5 - если имеется существенное преимущество над;

7 - если имеется явное преимущество над;

9 - если имеется абсолютное преимущество над;

2, 4, 6, 8 - промежуточные сравнительные оценки.

Пример. Построить функцию принадлежности нечеткого множества "высокий мужчина" на универсальном множестве {170, 175, 180, 185, 190, 195}, если известны такие экспертные парные сравнения:

    абсолютное преимущество 195 над 170;

    явное преимущество 195 над 175;

    существенное преимущество 195 над 180;

    слабое преимущество 195 над 185;

    отсутствует преимущество 195 над 190.

Приведенным экспертным высказываниям соответствует такая матрица парных сравнений:

При согласованных мнениях эксперта матрица парных сравнений обладает следующими свойствами:

    она диагональная‚ т. е. a ii =1 ‚ i=1..n ;

    она обратно симметрична‚ т. е. элементы‚ симметричные относительно главной диагонали‚ связаны зависимостью a ij =1/a ji , i,j=1..n ;

    она транзитивна‚ т. е. a ik a kj =a ij , i,j,k=1..n .

Наличие этих свойств позволяет определить все элементы матрицы парных сравнений:

После определения всех элементов матрицы парных сравнений, степени принадлежности нечеткого множества вычисляются по формуле:

Для нормализации нечеткого множества разделим все степени принадлежности на максимальное значение, т.е. на 0.3588.

μ высокий мужчина (u i) (субнормальное нечеткое множество)

μ высокий мужчина (u i) ((нормальное нечеткое множество)