Функция распределения равномерного распределения. Равномерный и показательный законы распределения непрерывной случайной величины

Функция распределения в этом случае согласно (5.7), примет вид:

где: m – математическое ожидание, s– среднеквадратическое отклонение.

Нормальное распределение называют еще гауссовским по имени немецкого математика Гаусса . Тот факт, что случайная величина имеет нормальное распределение с параметрами: m,, обозначают так: N (m,s), где: m =a =M ;

Достаточно часто в формулах математическое ожидание обозначают через а . Если случайная величина распределена по закону N(0,1), то она называется нормированной или стандартизированной нормальной величиной. Функция распределения для нее имеет вид:

.

График плотности нормального распределения, который называют нормальной кривой или кривой Гаусса, изображен на рис.5.4.

Рис. 5.4. Плотность нормального распределения

Определение числовых характеристик случайной величины по её плотности рассматривается на примере.

Пример 6 .

Непрерывная случайная величина задана плотностью распределения:.

Определить вид распределения, найти математическое ожидание M(X) и дисперсию D(X).

Сравнивая заданную плотность распределения с (5.16) можно сделать вывод, что задан нормальный закон распределения с m =4. Следовательно, математическое ожидание M(X)=4, дисперсия D(X)=9.

Среднее квадратическое отклонение s=3.

Функция Лапласа, имеющая вид:

,

связана с функцией нормального распределения (5.17), cоотношением:

F 0 (x) = Ф(х) + 0,5.

Функции Лапласа нечётная.

Ф(-x )=-Ф(x ).

Значения функции Лапласа Ф(х) табулированы и берутся из таблицы по значению х (см. Приложение 1).

Нормальное распределение непрерывной случайной величины играет важную роль в теории вероятностей и при описании реальности, имеет очень широкое распространение в случайных явлениях природы. На практике очень часто встречаются случайные величины, образующиеся именно в результате суммирования многих случайных слагаемых. В частности, анализ ошибок измерения показывает, что они являются суммой разного рода ошибок. Практика показывает, что распределение вероятностей ошибок измерения близко к нормальному закону.

С помощью функции Лапласа можно решать задачи вычисления вероятности попадания в заданный интервал и заданного отклонения нормальной случайной величины.

Равномерным считается распределœение, при котором всœе значения случайной величины (в области ее существования, к примеру, в интервале ) равновероятны. Функция распределœения для такой случайной величины имеет вид:

Плотность распределœения:

1

Рис. Графики функции распределœения (слева) и плотности распределœения (справа).

Равномерное распределение - понятие и виды. Классификация и особенности категории "Равномерное распределение" 2017, 2018.

  • - Равномерное распределение

    Основные дискретные распределения случайных величин Определение 1. Случайная величина Х, принимающая значения 1, 2, …, n, имеет равномерное распределение, если Pm = P(Х = m) = 1/n, m = 1, …, n. Очевидно, что. Рассмотрим следующую задачу.В урне имеется N шаров, из них M шаров белого... .


  • - Равномерное распределение

    Законы распределения непрерывных случайных величин Определение 5. Непрерывная случайная величина Х, принимающая значение на отрезке , имеет равномерное распределение, если плотность распределения имеет вид. (1) Нетрудно убедиться, что, . Если случайная величина... .


  • - Равномерное распределение

    Равномерным считается распределение, при котором все значения случайной величины (в области ее существования, например, в интервале ) равновероятны. Функция распределения для такой случайной величины имеет вид: Плотность распределения: F(x) f(x) 1 0 a b x 0 a b x ... .


  • - Равномерное распределение

    Нормальный законы распределения Равномерный, показательный и Функция плотности вероятности равномерного закона такова: (10.17) где a и b – данные числа, a < b; a и b – это параметры равномерного закона. Найдем функцию распределения F(x)... .


  • - Равномерное распределение

    Равномерное распределение вероятностей является простейшим и может быть как дискретным, так и непрерывным. Дискретное равномерное распределение – это такое распределение, для которого вероятность каждого из значений СВ одна и та же, то есть: где N – количество... .


  • - Равномерное распределение

    Определение 16.Непрерывная случайная величина имеет равномерное распределение на отрезке , если на этом отрезке плотность распределения данной случайной величины постоянна, а вне его равна нулю, то есть (45) График плотности для равномерного распределения изображен...

  • Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

    • равномерное распределение вероятностей непрерывной случайной величины;
    • показательное распределение вероятностей непрерывной случайной величины;
    • нормальное распределение вероятностей непрерывной случайной величины.

    Дадим понятие равномерного и показательного законов распределения, формулы вероятности и числовые характеристики рассматриваемых функций.

    Показатель Раномерный закон распределения Показательный закон распределения
    Определение Равномерным называется распределение вероятностей непрерывной случайной величины X, плотность которого сохраняет постоянное значение на отрезке и имеет вид Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью, имеющей вид

    где λ – постоянная положительная величина
    Функция распределения
    Вероятность попадания в интервал
    Математическое ожидание
    Дисперсия
    Среднее квадратическое отклонение

    Примеры решения задач по теме «Равномерный и показательный законы распределения»

    Задача 1.

    Автобусы идут строго по расписанию. Интервал движения 7 мин. Найти: а) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее двух минут; б) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус не менее трех минут; в) математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания пассажира.

    Решение. 1. По условию задачи непрерывная случайная величина X={время ожидания пассажира} равномерно распределена между приходами двух автобусов. Длина интервала распределения случайной величины Х равна b-a=7, где a=0, b=7.

    2. Время ожидания будет менее двух минут, если случайная величина X попадает в интервал (5;7). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
    Р(5 < Х < 7) = (7-5)/(7-0) = 2/7 ≈ 0,286.

    3. Время ожидания будет не менее трех минут (т.е. от трех до семи мин.), если случайная величина Х попадает в интервал (0;4). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
    Р(0 < Х < 4) = (4-0)/(7-0) = 4/7 ≈ 0,571.

    4. Математическое ожидание непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: М(Х)=(a+b)/2 . М(Х) = (0+7)/2 = 7/2 = 3,5.

    5. Среднее квадратическое отклонение непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: σ(X)=√D=(b-a)/2√3 . σ(X)=(7-0)/2√3=7/2√3≈2,02.

    Задача 2.

    Показательное распределение задано при x ≥ 0 плотностью f(x) = 5e – 5x. Требуется: а) записать выражение для функции распределения; б) найти вероятность того, что в результате испытания X попадает в интервал (1;4); в) найти вероятность того, что в результате испытания X ≥ 2 ; г) вычислить M(X), D(X), σ(X).

    Решение. 1. Поскольку по условию задано показательное распределение , то из формулы плотности распределения вероятностей случайной величины X получаем λ = 5. Тогда функция распределения будет иметь вид:

    2. Вероятность того, что в результате испытания X попадает в интервал (1;4) будем находить по формуле:
    P(a < X < b) = e −λa − e −λb .
    P(1 < X < 4) = e −5*1 − e −5*4 = e −5 − e −20 .

    3. Вероятность того, что в результате испытания X ≥ 2 будем находить по формуле: P(a < X < b) = e −λa − e −λb при a=2, b=∞.
    Р(Х≥2) = P(1< X < 4) = e −λ*2 − e −λ*∞ = e −2λ − e −∞ = e −2λ - 0 = e −10 (т.к. предел e −х при х стремящемся к ∞ равен нулю).

    4. Находим для показательного распределения:

    • математическое ожидание по формуле M(X) =1/λ = 1/5 = 0,2;
    • дисперсию по формуле D(X) = 1/ λ 2 = 1/25 = 0,04;
    • среднее квадратическое отклонение по формуле σ(Х) = 1/λ = 1/5 = 1,2.

    Рассмотрим равномерное непрерывное распределение. Вычислим математическое ожидание и дисперсию. Сгенерируем случайные значения с помощью функции MS EXCEL СЛЧИС() и надстройки Пакет Анализа, произведем оценку среднего значения и стандартного отклонения.

    Равномерно распределенная на отрезке случайная величина имеет :

    Сгенерируем массив из 50 чисел из диапазона }