Гармонические колебания идеальный гармонический осциллятор. Универсальное движение по окружности

Гармонический осциллятор.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).

Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).


Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

Открытий в квантовой области и других сферах. При этом изобретаются новые устройства и приспособления, посредством которых можно проводить различные исследования и объяснять явления микромира. Одним из таких механизмов является гармонический осциллятор, принцип действия которого знали еще представители древних цивилизаций.

Устройство и его виды

Гармонический осциллятор - это механическая система, находящаяся в движении, которое описывается дифференциала с коэффициентами постоянного значения. Наиболее простые примеры таких устройств - груз на пружине, маятник, системы акустики, движение молекулярных частиц и др.

Условно можно выделить следующие виды этого устройства:

Применение устройства

Данное приспособление применяется в различных сферах, в основном для изучения природы колебательных систем. Квантовый гармонический осциллятор применяют при исследовании поведения элементов фотонов. Результаты экспериментов могут использоваться в различных сферах. Так, ученые-физики из американского института обнаружили, что атомы бериллия, находящиеся на довольно больших расстояниях друг от друга, могут взаимодействовать на квантовом уровне. При этом поведение этих частиц подобно телам (металлическим шарам) в макромире, двигающимся в поступательно-возвратном порядке, аналогично гармоничному осциллятору. Ионы бериллия, несмотря на физически большие расстояния, обменивались наименьшими единицами энергии (квантами). Это открытие позволяет значительно продвинуть IT-технологии, а также дает новое решение в производстве компьютерной техники и электроники.

Гармонический осциллятор используют при оценке музыкальных произведений. Этот метод называют спектроскопическим исследованием. При этом установлено, что наиболее устойчивой системой является состав из четырех музыкантов (квартет). А современные произведения в большинстве своем являются ангармоничными.

Рассмотрим колебания грузика массой m на пружинке с коэффициентом жесткости k, который лежит на плоском горизонтальном столе, предполагая, что трение грузика об поверхности стола отсутствует. Если грузик вывести из положения равновесия, он будет совершать колебания относительно этого положения. Эти колебания мы будем описываем зависящей от времени функцией, считая, что она определяет отклонение грузика из своего положения равновесия в момент времени t.

В горизонтальном направлении на грузик действует только одна сила - сила упругости пружинки, определенная известным законом Гука

Деформация пружины является функцией времени, в силу чего, также является переменной.

Из второго закона Ньютона имеем

поскольку ускорение является второй производной от смещения: .

Уравнение (9) можно переписать в форме

где. Это уравнение получило название уравнение гармонического осциллятора.

Замечание. В математической литературе, при написании дифференциального уравнения обычно не указывают аргумент (t) около всех, зависящих от него функций. Такая зависимость предполагается по умолчанию. При использовании же математического пакета Maple в (10) необходимо указывать явную зависимость функции.

В отличие от предыдущего примера движения тела под действием постоянной силы в нашем случае сила изменяется с течением времени, и уравнение (10) уже нельзя решить с помощью обычной процедуры интегрирования. Попытаемся угадать решение этого уравнения, зная, что оно описывает некоторый колебательный процесс. В качестве одного из возможных решений уравнения (10) можно выбрать следующую функцию:

Дифференцируя функцию (11), имеем

Подставляя выражение (12) в уравнение (10), убеждаемся, что оно удовлетворяется тождественно при любом значении t.

Однако, функция (11) не является единственным решением уравнения гармонического осциллятора. Например, в качестве другого его решения можно выбрать функцию, что также легко проверить аналогичным образом. Более того, можно проверить, что любая линейная комбинация этих двух наугад названных решений

с постоянными коэффициентами A и B также является решениеv уравнения гармонического осциллятора.

Можно доказать, что зависящее от двух постоянных решение (13) является общим решением уравнения гармонического осциллятора (10). Это означает, что формула (13) исчерпывает все возможные решения этого уравнения. Иными словами, других частных решений, кроме тех, которые получаются из формулы (13) фиксацией произвольных постоянных А и В, уравнение гармонического осциллятора не имеет.

Заметим, что в физике наиболее часто приходится искать именно некоторые частные решения отдельных ОДУ или их систем. Рассмотрим этот вопрос более подробно.

Возбудить колебания в рассматриваемой нами системе грузика на пружинке можно разными способами. Пусть мы задали следующие начальные условия

Это значит, что в начальный момент времени грузик был отведен из положения равновесия на величину a и свободно отпущен (т.е. он начинает свое движение с нулевой начальной скоростью). Можно представить себе и много разных других способов возбуждения, например, грузику в положении равновесия «щелчком» придается некоторая начальная скорость и т.д. [общем случае, ].

Мы рассматриваем начальные условия (14) как некоторые дополнительные условия для выделения из общего решения (13) некоторого частного решения, соответствующего нашему способу возбуждения колебаний грузика.

Полагая t=0 в выражении (13), имеем, откуда следует, что B=a. Таким образом, мы нашли одну из ранее произвольных констант в решении (13). Далее, дифференцируя в формуле (13), имеем

Полагая в этом выражении t=0 и учитывая второе начальное условие из (14), получим, отсюда следует, что A=0 и, таким образом, исходное частное решение имеет вид

Оно описывает колебательный режим рассматриваемой механической системы, который определяется условиями начального возбуждения (14).

Из школьного курса физики известно, что в формуле (16) a является амплитудой колебаний (она задает максимальную величину отклонения грузика от своего положения равновесия), является циклической частотой, а - фазой колебаний (начальная фаза оказывается при этом равной нулю).

Уравнение гармонического осциллятора (10) является примером линейного ОДУ. Это значит, что неизвестная функция и все ее производные входят в каждый член уравнения в первой степени. Линейные дифференциальные уравнения обладают чрезвычайно важным отличительным свойством: они удовлетворяют принципу суперпозиции. Это значит, что любая линейная комбинация двух каких либо решений линейного ОДУ также является его решением.

В рассматриваемом нами примере уравнения гармонического осциллятора, произвольная линейная комбинация двух частных решений и является не просто каким-то новым решением, но общим решением этого уравнения (оно исчерпывает все возможные его решения).

В общем случае, это не так. Например, если бы мы имели дело с линейным дифференциальным уравнением третьего порядка, (т.е. если бы в уравнение входила бы третья производная), то линейная комбинация каких-либо двух его частных решений также была бы решением этого уравнения, но не представляла бы собой его общее решение.

В курсе дифференциальных уравнений доказывается теорема о том, что общее решение ОДУ N-ого порядка (линейного или нелинейного) зависит от N произвольных постоянных. В случае нелинейного уравнения эти произвольные постоянные могут входить в общее решение (в отличие от (13)), нелинейным образом.

Принцип суперпозиции играет в теории ОДУ исключительно важную роль, поскольку с его помощью можно построить общее решение дифференциального уравнения в виде суперпозиции его частных решений. Например, для случая линейных ОДУ с постоянными коэффициентами и их систем (уравнение гармонического осциллятора относится именно к этому типу уравнений) в теории дифференциальных уравнений разработан общий метод решения. Суть его заключается в следующем. Ищется частное решение в виде. В результате его подстановки в исходное уравнение, все зависящие от времени множители сокращаются и мы приходим к некоторому характеристическому уравнению, которое для ОДУ N-ого порядка представляет собой алгебраическое уравнение N-ой степени. Решая его, мы находим, тем самым, все возможные частные решения, произвольная линейная комбинация которых и дает общее решение исходного ОДУ. Мы не будем далее останавливаться на этом вопросе, отсылая читателя к соответствующим учебникам по теории дифференциальным уравнениям, в которых можно найти дальнейшие детали, в частности, рассмотрение случая, когда характеристическое уравнение содержит кратные корни.

Если рассматривается линейное ОДУ с переменными коэффициентами, (его коэффициенты зависят от времени), то принцип суперпозиции также справедлив, но построить в явном виде общее решение этого уравнение каким-либо стандартным методом, уже не представляется возможным. Мы вернемся к этому вопросу далее, обсуждая явление параметрического резонанса и связанным с его исследованием уравненем Матье.

Рассмотрим простую физическую системуматериальную точку, способную без трения колебаться на горизонтальной поверхности под действием силы Гука (см. рис. 2).

Если смещение груза невелико (много меньше, чем длина недеформированной пружины), а жесткость пружины равна k, то но груз действует единственная сила, сила Гука. Тогда уравнение

движения груза (Второй закон Ньютона) имеет вид

Перенеся слагаемые в левую часть равенства и разделив на массу материальной точки (массой пружины пренебрегаем по сравнению с m), получим уравнение движения

(*) ,

,

,

период колебаний.

Тогда, взяв функцию

и продифференцировав её по времени, убеждаемся, во-первых, что скорость движения груза равна

а во-вторых, после повторного дифференцирования,

,

то есть X(t) действительно является решением уравнения груза на пружинке.

Такая система, вообще, любая система, механическая, электрическая или иная, обладающая уравнением движения (*), называется гармоническим осциллятором. Функция типа X(t) носит название закона движения гармонического осциллятора, величины
называютсяамплитудой ,циклической илисобственной частотой ,начальной фазой . Собственная частота определяется параметрами осциллятора, амплитуда и начальная фаза задаются начальными условиями.

Закон движения X(t) представляет собой свободные колебания. Такие колебания совершают незатухающие маятники (математический или физический), ток и напряжения в идеальном колебательном контуре и некоторые другие системы.

Гармонические колебания могут складываться как в одном, так и в различных направлениях. Результатом сложения тоже оказывается гармоническое колебание, например,

.

Это принцип суперпозиции (наложения) колебаний.

Математики разработали теорию рядов такого рода, которые называются рядами Фурье. Имеется также ряд обобщений типа интегралов Фурье (частоты могут меняться непрерывным образом) и даже интегралы Лапласа, работающие с комплексными частотами.

§15. Затухающий осциллятор. Вынужденные колебания.

Реальные механические системы всегда обладают, хотя бы малым, трением. Простейший случай – жидкое или вязкое трение. Это трение, величина которого пропорционально скорости движения системы (и направлена, естественно, против направления движения). Если движение происходит вдоль оси Х, то уравнение движения может быть записано (например, для грузика на пружинке) в виде

,

где – коэффициент вязкого трения.

Это уравнение движения можно преобразовать к виду

.

Здесь
– коэффициент затухания,– по-прежнему собственная частота осциллятора (который уже нельзя назвать гармоническим; это затухающий осциллятор с вязким трением).

Математики умеют решать такие дифференциальные уравнения. Было показано, что решением является функция

В последней формуле используются обозначения: – начальная амплитуда, частота слабозатухающих колебаний
,
. Кроме того, часто используют другие параметры, характеризующие затухание: логарифмический декремент затухания
, время релаксации системы
, добротность системы
, где в числителе стоит запасенная системой энергия, а в знаменателе – потери энергии за период Т.

В случае сильного затухания
решение имеет апериодический вид.

Часто встречаются случаи, когда кроме сил трения на осциллятор действует внешняя сила. Тогда уравнение движения приводится к виду

,

стоящее справа выражение часто называют приведенной силой, само выражение
называют вынуждающей силой. Для произвольной вынуждающей силы найти решение уравнения не удается. Обычно рассматривают гармоническую вынуждающую силу типа
. Тогда решение представляет собой затухающую часть типа (**), которая для больших времен стремится к нулю, и установившиеся (вынужденные) колебания

Амплитуда вынужденных колебаний

,

а фаза вынужденных колебаний

.

Заметим, что при приближении собственной частоты к частоте вынуждающей силы амплитуда вынужденных колебаний возрастает. Это явление известно как резонанс . Если затухание велико, то резонансное увеличение не велико. Такой резонанс называют «тупым». При малых затуханиях амплитуда «острого» резонанса может возрасти весьма значительно. Если же система идеальна, и трение в ней отсутствует, то амплитуда вынужденных колебаний увеличивается неограниченно.

Заметим также, что при частоте вынуждающей силы

Достигается максимальное значение амплитуды вынуждающей силы, равное

.