Генетический код содержит. Генетический код как способ записи наследственной информации

ГЕНЕТИЧЕСКИЙ КОД (греч, genetikos относящийся к происхождению; син.: код, биологический код, аминокислотный код, белковый код, код нуклеиновых к-т ) - система записи наследственной информации в молекулах нуклеиновых кислот животных, растений, бактерий и вирусов чередованием последовательности нуклеотидов.

Генетическая информация (рис.) из клетки в клетку, из поколения в поколение, за исключением РНК-содержащих вирусов, передается путем редупликации молекул ДНК (см. Репликация). Реализация наследственной информации ДНК в процессе жизнедеятельности клетки осуществляется через 3 типа РНК: информационную (иРНК или мРНК), рибосомную (рРНК) и транспортную (тРНК), которые с помощью фермента РНК-полимеразы синтезируются на ДНК как на матрице. При этом последовательность нуклеотидов в молекуле ДНК однозначно определяет последовательность нуклеотидов во всех трех типах РНК (см. Транскрипция). Информацию гена (см.), кодирующего белковую молекулу, несет только иРНК. Конечным продуктом реализации наследственной информации является синтез белковых молекул, специфичность которых определяется последовательностью входящих в них аминокислот (см. Трансляция).

Поскольку в составе ДНК или РНК представлено только по 4 разных азотистых основания [в ДНК - аденин (А), тимин (Т), гуанин (Г), цитозин (Ц); в РНК - аденин (А), урацил (У), цитозин (Ц), гуанин (Г)], последовательность которых определяет последовательность 20 аминокислот в составе белка, возникает проблема Г. к., т. е. проблема перевода 4-буквенного алфавита нуклеиновых к-т в 20-буквенный алфавит полипептидов.

Впервые идея матричного синтеза белковых молекул с правильным предсказанием свойств гипотетической матрицы была сформулирована Н. К. Кольцовым в 1928 г. В 1944 г. Эйвери (О. Avery) с соавт, установил, что за передачу наследственных признаков при трансформации у пневмококков ответственны молекулы ДНК. В 1948 г. Чаргафф (E. Chargaff) показал, что во всех молекулах ДНК имеет место количественное равенство соответствующих нуклеотидов (А-T, Г-Ц). В 1953 г. Ф. Крик, Дж. Уотсон и Уилкинс (М. H. F. Wilkins), исходя из этого правила и данных рентгеноструктурного анализа (см.), пришли к выводу, что молекул а ДНК представляет собой двойную спираль, состоящую из двух полинуклеотидных нитей, соединенных между собой водородными связями. Причем против А одной цепи во второй может находиться только Т, против Г - только Ц. Эта комплементарность приводит к тому, что последовательность нуклеотидов одной цепи однозначно определяет последовательность другой. Второй существенный вывод, вытекающий из этой модели,- молекула ДНК способна к самовоспроизведению.

В 1954 г. Гамов (G. Gamow) сформулировал проблему Г. к. в ее современном виде. В 1957 г. Ф. Крик высказал Гипотезу адаптера, предположив, что аминокислоты взаимодействуют с нуклеиновой к-той не непосредственно, а через посредников (теперь известных под названием тРНК). В ближайшие после этого годы все принципиальные звенья общей схемы передачи генетической информации, вначале гипотетичные, были подтверждены экспериментально. В 1957 г. были открыты иРНК [А. С. Спирин, А. Н. Белозерский с соавт.; Фолькин и Астрахан (E. Volkin, L. Astrachan)] и тРНК [Хоугленд (М. В. Hoagland)]; в 1960 г. синтезирована ДНК вне клетки с использованием в качестве матрицы существующих макромолекул ДНК (А. Корнберг) и открыт ДНК-зависимый синтез РНК [Вейсс (S. В. Weiss) с соавт.]. В 1961 г. была создана бесклеточная система, в к-рой в присутствии естественной РНК или синтетических полирибонуклеотидов осуществлялся синтез белковоподобных веществ [М. Ниренберг и Маттеи (J. H. Matthaei)]. Проблема познания Г. к. состояла из исследования общих свойств кода и собственно его расшифровки, т. е. выяснения, какие комбинации нуклеотидов (кодоны) кодируют определенные аминокислоты.

Общие свойства кода были выяснены независимо от его расшифровки и в основном до нее путем анализа молекулярных закономерностей образования мутаций (Ф. Крик и соавт., 1961; Н. В. Лучник, 1963). Они сводятся к следующему:

1. Код универсален, т. е. идентичен, по крайней мере в основном, для всех живых существ.

2. Код триплетен, т. е. каждая аминокислота кодируется тройкой нуклеотидов.

3. Код неперекрывающийся, т. е. данный нуклеотид не может входить в состав более чем одного кодона.

4. Код вырожден, т. е. одна аминокислота может кодироваться несколькими триплетами.

5. Информация о первичной структуре белка считывается с иРНК последовательно, начиная с фиксированной точки.

6. Большинство возможных триплетов имеет «смысл», т. е. кодирует аминокислоты.

7. Из трех «букв» кодона преимущественное значение имеют лишь две (облигатные), третья же (факультативная) несет значительно меньшую информацию.

Прямая расшифровка кода состояла бы в сравнении последовательности нуклеотидов в структурном гене (или синтезированной на нем иРНК) с последовательностью аминокислот в соответствующем белке. Однако такой путь пока технически невозможен. Были применены два других пути: синтез белка в бесклеточной системе с использованием в качестве матрицы искусственных полирибонуклеотидов известного состава и анализ молекулярных закономерностей образования мутаций (см.). Первый принес положительные результаты раньше и исторически сыграл в расшифровке Г. к. большую роль.

В 1961 г. М. Ниренберг и Маттеи применили в качестве матрицы гомо-полимер - синтетическую полиуридиловую к-ту (т. е. искусственную РНК состава УУУУ...) и получили полифенилаланин. Из этого следовало, что кодон фенилаланина состоит из нескольких У, т. е. в случае триплетного кода расшифровывается как УУУ. Позже наряду с гомополимерами были использованы полирибонуклеотиды, состоявшие из разных нуклеотидов. При этом был известен только состав полимеров, расположение же нуклеотидов в них было статистическим, поэтому и анализ результатов был статистическим и давал косвенные выводы. Довольно быстро удалось найти хотя бы по одному триплету для всех 20 аминокислот. Выяснилось, что присутствие органических растворителей, изменение pH или температуры, некоторые катионы и особенно антибиотики делают код неоднозначным: те же кодоны начинают стимулировать включение других аминокислот, в некоторых случаях один кодон начинал кодировать до четырех разных аминокислот. Стрептомицин влиял на считывание информации как в бесклеточных системах, так и in vivo, причем был эффективен только на стрептомицинчувствительных штаммах бактерий. У стрептомицинзависимых штаммов он «исправлял» считывание с кодонов, изменившихся в результате мутации. Подобные результаты давали основание сомневаться в правильности расшифровки Г. к. с помощью бесклеточной системы; требовалось подтверждение, и в первую очередь данными in vivo.

Основные данные о Г. к. in vivo получены при анализе аминокислотного состава белков у организмов, обработанных мутагенами (см.) с известным механизмом действия, напр, азотистой к-той, к-рая вызывает в молекуле ДНК замену Ц на У и А на Г. Полезную информацию дают также анализ мутаций, вызванных неспецифическими мутагенами, сравнение различий в первичной структуре родственных белков у разных видов, корреляция между составом ДНК и белков и т. п.

Расшифровка Г. к. на основании данных in vivo и in vitro дала совпадающие результаты. Позже были разработаны три других метода расшифровки кода в бесклеточных системах: связывание аминоацил-тРНК (т. е. тРНК с присоединенной активированной аминокислотой) тринуклеотидами известного состава (М. Ниренберг и соавт., 1965), связывание аминоацил-тРНК полинуклеотидами, начинающимися с определенного триплета (Маттеи с соавт., 1966), и использование в качестве иРНК полимеров, в которых известен не только состав, но и порядок нуклеотидов (X. Корана и соавт., 1965). Все три метода дополняют друг друга, а результаты находятся в соответствии с данными, полученными в опытах in vivo.

В 70-х гг. 20 в. появились методы особенно надежной проверки результатов расшифровки Г. к. Известно, что мутации, возникающие под действием профлавина, состоят в выпадении или вставке отдельных нуклеотидов, что приводит к сдвигу рамки считывания. У фага Т4 был вызван профлавином ряд мутаций, при которых изменился состав лизоцима. Этот состав был проанализирован и сопоставлен с теми кодонами, которые должны были получиться при сдвиге рамки считывания. Получилось полное соответствие. Дополнительно этот метод позволил установить, какие именно триплеты вырожденного кода кодируют каждую из аминокислот. В 1970 г. Адамсу (J. М. Adams) с сотрудниками удалось провести частичную расшифровку Г. к. прямым методом: у фага R17 определили последовательность оснований во фрагменте длиной в 57 нуклеотидов и сравнили с аминокислотной последовательностью белка его оболочки. Результаты полностью совпали с полученными менее прямыми методами. Т. о., код расшифрован полностью и верно.

Результаты расшифровки сведены в таблицу. В ней указан состав кодонов и РНК. Состав антикодонов тРНК комплементарен кодонам иРНК, т. е. вместо У в них находится А, вместо А - У, вместо Ц - Г и вместо Г - Ц, и соответствует кодонам структурного гена (той нити ДНК, с к-рой считывается информация) с той лишь разницей, что место тимина занимает урацил. Из 64 триплетов, которые могут быть образованы сочетанием 4 нуклеотидов, 61 имеет «смысл», т. е. кодирует аминокислоты, а 3 являются «нонсенсами» (лишенными смысла). Между составом триплетов и их смыслом имеется довольно четкая зависимость, к-рая была обнаружена еще при анализе общих свойств кода. В ряде случаев триплеты, кодирующие определенную аминокислоту (напр., пролин, аланин), характеризуются тем, что два первых нуклеотида (облигатные) у них одинаковы, а третий (факультативный) может быть любым. В других случаях (при кодировании, напр., аспарагина, глутамина) один и тот же смысл имеют два сходных триплета, у которых совпадают два первых нуклеотида, а на месте третьего стоит любой пурин или любой пиримидин.

Нонсенс-кодоны, 2 из которых имеют специальные названия, соответствующие обозначению фаговых мутантов (УАА-охра, УАГ-амбер, УГА-опал), хотя и не кодируют каких-либо аминокислот, но имеют большое значение при считывании информации, кодируя конец полипептидной цепи.

Считывание информации происходит в направлении от 5 1 -> 3 1 - к концу нуклеотидной цепи (см. Дезоксирибонуклеиновые кислоты). При этом синтез белка идет от аминокислоты со свободной аминогруппой к аминокислоте со свободной карбоксильной группой. Начало синтеза кодируется триплетами АУГ и ГУГ, которые в этом случае включают специфичную стартовую аминоацил-тРНК, а именно N-формилметио-нил-тРНК. Эти же триплеты при локализации внутри цепи кодируют соответственно метионин и валин. Неоднозначность снимается тем, что началу считывания предшествует нонсенс. Есть данные, говорящие в пользу того, что граница между участками иРНК, кодирующими разные белки, состоит более чем из двух триплетов и что в этих местах меняется вторичная структура РНК; этот вопрос находится в стадии исследования. Если нонсенс-кодон возникает внутри структурного гена, то соответствующий белок строится только до места расположения этого кодона.

Открытие и расшифровка генетического кода - выдающееся достижение молекулярной биологии - оказало влияние на все биол, науки, положив в ряде случаев начало развитию специальных крупных разделов (см. Молекулярная генетика). Эффект открытия Г. к. и связанных с ним исследований сравнивают с тем эффектом, который оказала на биол, науки теория Дарвина.

Универсальность Г. к. является прямым доказательством универсальности основных молекулярных механизмов жизни у всех представителей органического мира. Между тем большие различия в функциях генетического аппарата и его строении при переходе от прокариотов к эукариотам и от одноклеточных к многоклеточным, вероятно, связаны и с молекулярными различиями, исследование которых - одна из задач будущего. Поскольку исследования Г. к.- дело лишь последних лет, значение полученных результатов для практической медицины носит лишь Косвенный характер, позволяя пока понять природу заболеваний, механизм действия возбудителей болезней и лекарственных веществ. Однако открытие таких явлений, как трансформация (см.), трансдукция (см.), супрессия (см.), указывает на принципиальную возможность исправления патологически измененной наследственной информации или ее коррекции - так наз. генная инженерия (см.).

Таблица. ГЕНЕТИЧЕСКИЙ КОД

Первый нуклеотид кодона

Второй нуклеотид кодона

Третий, нуклеотид кодона

Фенилаланин

J Нонсенс

Триптофан

Гистидин

Глутаминовая кислота

Изолейцин

Аспарагиновая

Метионин

Аспарагин

Глутамин

* Кодирует конец цепи.

** Кодирует также начало цепи.

Библиография: Ичас М. Биологический код, пер. с англ., М., 1971; Лучник Н.Б. Биофизика цитогенетических поражений и генетический код, Л., 1968; Молекулярная генетика, пер. с англ., под ред. А. Н. Белозерского, ч. 1, М., 1964; Нуклеиновые кислоты, пер. с англ., под ред. А. Н. Белозерского, М., 1965; Уотсон Дж. Д. Молекулярная биология гена, пер. с англ., М., 1967; Физиологическая генетика, под ред. М. Е. Лобашева С. Г., Инге-Вечтомо-ва, Л., 1976, библиогр.; Desoxyribonuc-leins&ure, Schlttssel des Lebens, hrsg. v„ E. Geissler, B., 1972; The genetic code, Gold Spr. Harb. Symp. quant. Biol., v. 31, 1966; W o e s e C. R. The genetic code, N. Y. a. o., 1967.

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

Терминология

Генетический код - это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки - природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

ДНК и РНК

Дезоксирибонуклеиновая кислота - это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности - "генетический алфавит".

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований - это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и "дырами", имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и "код без запятых". В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно "коду без запятых", определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в "коде без запятых". Было выявлено, что кодоны способны провоцировать синтез белка в пробирке. Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан - 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Генетический код – система записи генетической информации в ДНК (РНК) в виде определенной последовательности нуклеотидов.Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тиминаурацил – У (U). Последовательность нуклеотидов определяет последовательность включения АК в синтезируемый белок.

Свойства генетического кода:

1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон) .
2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки) .
4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotescrassus кодирует две аминокислоты - цистеин и селеноцистеин)
5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже) .

Условия биосинтеза

Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК - переносчик этой информации из ядра к месту синтеза; рибосомы - органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ - вещество, обеспечивающее энергией процесс кодирования и биосинтеза.

Этапы

Транскрипция - процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.

Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.

После синтеза иРНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.


Трансляция - процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.

Биосинтез белка состоит из ряда реакций.

1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплет-ный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНК-аминокислота, который поступает на рибосомы.

2. Образование комплекса иРНК-рибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.

3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК - аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.

Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15-20 с.

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

- единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода следующие:

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции. Так, в молекуле иРНК три из них УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти, которое означает, что каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов). Например, в иРНК следующая последовательность азотистых оснований АУГГУГЦУУААУГУГ будет считываться только такими трип­летами: АУГ, ГУГ, ЦУУ, ААУ, ГУГ, а не АУГ, УГГ, ГГУ, ГУГ и т. Д. или АУГ, ГГУ, УГЦ, ЦУУ и т. д. или еще каким-либо образом (допустим, кодон АУГ, знак препинания Г, кодон УГЦ, знак пре­пинания У и Т. п.).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.