Геометрическая модель. Геометрическая модель модель такое представление данных которое

Подсистемы машинной графики и геометрического моделирования (МГиГМ) занимают центральное место в машиностроительных САПР-К. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму деталей, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, момент инерции, цвета поверхности и т.п.).

В подсистемах МГиГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию в аппаратуре рабочей станции и при необходимости корректировку решения в интерактивном режиме. Две последние операции реализуются на базе аппаратных средств машинной графики . Когда говорят о математическом обеспечении МГиГМ, имеют в виду прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации. При этом часто именно математическое обеспечение подготовки к визуализации называют математическим обеспечением машинной графики.

Различают математическое обеспечение двумерного (2D) и трехмерного (3D) моделирования. Основные применения 2D-графики — подготовка чертежной документации в машиностроительных САПР , топологическое проектирование печатных плат и кристаллов БИС в САПР электронной промышленности. В развитых машиностроительных САПР используют как 2D, так и 3D моделирование для синтеза конструкций, представления траекторий рабочих органов станков при обработке заготовок, генерации сетки конечных элементов при анализе прочности и т.п.

В процессе 3D моделирования создаются геометрические модели , т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).

Каркасная модель представляет форму детали в виде конечного множества линий, лежащих на поверхностях детали. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях маршрутов проектирования неудобно, и поэтому каркасные модели в настоящее время используют редко.

Поверхностная модель отображает форму детали с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.

Особое место занимают модели деталей с поверхностями сложной формы, так называемыми скульптурными поверхностями . К таким деталям относятся корпуса многих транспортных средств (например, судов, автомобилей), детали, обтекаемые потоками жидкостей и газов (лопатки турбин, крылья самолетов), и др.

Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к детали пространству.

Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.

Результатом геометрического моделирования некоторого объекта является математическая модель его геометрии. Математическая модель позволяет графически отобразить моделируемый объект, получить его геометрические характеристики, выполнить исследование многих физических свойств объекта путем постановки численных экспериментов, подготовить производство и, наконец, изготовить объект.

Для того чтобы увидеть, как выглядит объект, нужно смоделировать поток падающих и возвращающихся от его поверхностей лучей света. При этом граням модели можно придать необходимый цвет, прозрачность, фактуру и другие физические свойства. Модель можно осветить с разных сторон светом различного цвета и интенсивности.

Геометрическая модель позволяет определить массово-центровочные и инерционные характеристики проектируемого объекта, выполнить измерения длин и углов его элементов. Она дает возможность произвести расчет размерных цепей и определить собираемость проектируемого объекта. Если объект представляет собой механизм, то на модели можно проверить его работоспособность и выполнить расчет кинематических характеристик.

Используя геометрическую модель, можно поставить численный эксперимент по определению напряженно-деформированного состояния, частот и форм собственных колебаний, устойчивости элементов конструкции, тепловых, оптических и других свойств объекта. Для этого нужно дополнить геометрическую модель физическими свойствами, смоделировать внешние условия ее работы и, используя физические законы, выполнить соответствующий расчет.

По геометрической модели можно вычислить траекторию режущего инструмента для механической обработки объекта. При выбранной технологии изготовления объекта геометрическая модель позволяет спроектировать оснастку и выполнить подготовку производства, а также проверить саму возможность изготовления объекта данным способом и качество этого изготовления. Кроме того, возможна графическая имитация процесса изготовления. Но для того, чтобы изготовить объект, кроме геометрической информации нужна информация о технологическом процессе, производственном оборудовании и многом другом, связанном с производством.

Многие из перечисленных проблем образуют самостоятельные разделы прикладной науки и по своей сложности не уступают, а в большинстве случаев и превосходят проблему создания геометрической модели. Геометрическая модель является отправной точкой для дальнейших действий. При построении геометрической модели мы не использовали физические законы, радиус-вектор каждой точки границы раздела внешней и внутренней частей моделируемого объекта является известным, поэтому при построении геометрической модели нам приходится составлять и решать алгебраические уравнения.

Задачи, в которых используются физические законы, приводят к дифференциальным и интегральным уравнениям, решение которых сложнее решения алгебраических уравнений.

В данной главе остановимся на выполнении расчетов, не связанных с физическими процессами. Мы рассмотрим вычисление чисто геометрических характеристик тел и их плоских сечений: площади поверхности, объема, центра масс, моментов инерции и ориентации главных осей инерции. Эти расчеты не требуют привлечения дополнительной информации. Кроме этого, мы рассмотрим проблемы численного интегрирования, которые приходится решать при определении геометрических характеристик.

Определение площади, центра масс и моментов инерции плоского сечения тела приводит к вычислению интегралов по площади сечения. Для плоских сечений мы располагаем информацией об их границах. Интегралы по площади плоского сечения мы сведем к криволинейным интегралам, которые в свою очередь сводятся к определенным интегралам. Определение площади поверхности, объема, центра масс, моментов инерции тела приводит к вычислению поверхностных и объемных интегралов. Мы будем опираться на представление тела с помощью границ , т. е. на описание тела совокупностью ограничивающих его поверхностей и топологическую информацию о взаимном соседстве этих поверхностей. Мы сведем интегралы по объему тела к поверхностным интегралам по поверхностям граней тела, которые в свою очередь сводятся к двойным интегралам. В общем случае область интегрирования представляет собой связную двухмерную область. Вычисление двойных интегралов численными методами можно выполнить для областей простых типов - четырехугольной или треугольной формы. В связи с этим в конце главы рассмотрены методы вычисления определенных интегралов и двойных интегралов по четырехугольным и треугольным областям. Методы разбивки областей определения параметров поверхностей на совокупности треугольных подобластей рассмотрены в следующей главе.

В начале главы рассмотрим сведение интегралов по площади к криволинейным интегралам и сведение объемных интегралов к поверхностным интегралам. На этом будут базироваться вычисления геометрических характеристик моделей.


Моделирование – один из основных методов познания, который заключается в выделении из сложного явления (объекта) некоторых частей и замещении их другими объектами, более понятными и удобными для описания, объяснения и разработки.

Модель – реальный физический объект или процесс, теоретическое построение, упорядоченный набор данных, которые отражают некоторые элементы или свойства изучаемого объекта или явления, существенные с точки зрения моделирования.

Математическая модель – модель объекта, процесса или явления, представляющая собой математические закономерности, с помощью которых описаны основные характеристики моделируемого объекта, процесса или явления.

Геометрическое моделирование – раздел математического моделирования – позволяет решать разнообразные задачи в двумерном, трехмерном и, в общем случае, в многомерном пространстве.

Геометрическая модель включает в себя системы уравнений и алгоритмы их реализации. Математической основой построения модели являются уравнения, описывающие форму и движение объектов. Все многообразие геометрических объектов является комбинацией различных примитивов – простейших фигур, которые в свою очередь состоят из графических элементов - точек, линий и поверхностей.

В настоящее время геометрическое моделирование успешно используется в управлении и других областях человеческой деятельности. Можно выделить две основные области применения геометрического моделирования: проектирование и научные исследования.


Геометрическое моделирование может использоваться при анализе числовых данных. В таких случаях исходным числовым данным ставится в соответствие некоторая геометрическая интерпретация, которая затем анализируется, а результаты анализа истолковываются в понятиях исходных данных.

Этапы геометрического моделирования :

● постановка геометрической задачи, соответствующая исходной прикладной задаче или ее части;

● разработка геометрического алгоритма решения поставленной задачи;

● реализация алгоритма при помощи инструментальных средств;

● анализ и интерпретация полученных результатов.

Методы геометрического моделирования :

● аналитический;

● графический;

● графический, с использованием средств машинной графики;

● графоаналитические методы.

Графоаналитические методы основываются на разделах вычислительной геометрии, таких как теория R-функций, теория поверхностей Кунса, теория кривых Безье, теория сплайнов и др.

Для современных научных исследований характерно использование, наряду с двумерными и трехмерными, многомерных геометрических моделей (физика элементарных частиц, ядерная физика и т. д.).

Системы координат

Система координат (СК) – совокупность базисных (линейно независимых) векторов и единиц измерения расстояния вдоль этих векторов (e 1, e 2, …, en ).

Если базисные вектора нормированы (единичной длины) и взаимно ортогональны, то такая СК называется декартовой (ДСК).

Мировая система координат (МСК) xyz – содержит точку отсчета (начало координат) и линейно независимый базис, благодаря которым становится возможным цифровое описание геометрических свойств любого графического объекта в абсолютных единицах.

Экранная система координат (ЭСК) x эy эz э. В ней задается положение проекций геометрических объектов на экране дисплея. Проекция точки в ЭСК имеет координату z э = 0. Тем не менее, не следует отбрасывать эту координату, поскольку МСК и ЭСК часто выбираются совпадающими, а, вектор проекции [x э, y э, 0] может участвовать в преобразованиях, где нужны не две, а три координаты.

Система координат сцены (СКС) x сy сz с – описывает положение всех объектов сцены - некоторой части мирового пространства с собственным началом отсчета и базисом, которые используются для описания положения объектов независимо от МСК.

Объектная система координат (ОСК) x оy оz о – связана с конкретным объектом и совершает с ним все движения в СКС или МСК.


В трехмерном пространстве (R3):

ортогональная декартова СК (x , y , z );

цилиндрическая СК (ρ, y , φ);

сферическая СК (r , φ, ω).

Соотношение между декартовой СК и цилиндрической СК :



Соотношение между декартовой СК и сферической СК :

Соотношение между цилиндрической СК и сферической СК : Аффинные преобразования

Аффинным называется преобразование, обладающее следующими свойствами :

● любое аффинное преобразование может быть представлено как последовательность операций из числа простейших: сдвиг, растяжение/сжатие, поворот;

● сохраняются прямые линии, параллельность прямых, отношение длин отрезков, лежащих на одной прямой, и отношение площадей фигур.

Аффинные преобразования координат на плоскости :

(x , y ) – двумерная система координат,

(X , Y ) – координаты старой СК в новой системе координат.



Обратное преобразование:

2. Растяжение/сжатие осей:

Обратное преобразование


Обратное преобразование – поворот системы (X ,Y ) на угол (-α):

Аффинные преобразования объектов на плоскости .

x , y – старые координаты точки, X , Y – новые координаты точки.



Сдвиг:

Обратное преобразование:

Масштабирование объекта:

Обратное преобразование:


3. Поворот вокруг центра координат:



Обратное преобразование:


Лекция 8 Геометрические модели плоских объектов Основные понятия

Положение точки в пространстве Rn (n -мерном пространстве) задается радиус-вектором p = [p 1, p 2,, pn ], имеющим n координат p 1, p 2,, pn и разложение по n линейно-независимым базисным векторам e 1, e 2,, en :

https://pandia.ru/text/78/331/images/image019_47.gif" width="277" height="59">

Линия на плоскости может быть задана с помощью уравнения в неявной форме:

(НФ) f (x ,y )= 0;

или в параметрической форме:

(ПФ) p (t )= [x (t ), y (t )].

В любой регулярной (гладкой и некратной) точке на линии p 0= [x 0, y 0]= p (t 0) возможна линеаризация кривой, т. е. проведение к ней касательной прямой, уравнения которой имеют вид

(НФ) Nx (x - x 0) + Ny (y - y 0) = 0 или N (p - p 0) = 0,

(ПФ) x (t ) = x 0 + Vx t , y (t )= y 0 + Vy t или p (t ) = p 0 + Vt .

Вектор нормали N = [Nx , Ny ] ортогонален линии и направлен в ту сторону, где f (p )> 0.

Направляющий вектор линии V = [Vx , Vy ] начинается в точке p 0 и направлен по касательной к p (t ) в сторону увеличения t .

Векторы N и V ортогональны, т. е. N V = 0 или NxVx + NyVy = 0.

Связь вектора нормали и направляющего вектора:

N =[Vy , - Vx ], V =[-Ny , Nx ]

Способы описания (модели) прямой линии

Неявное уравнение прямой задается тремя коэффициентами A , B и D , составляющими вектор F = [A , B , D ]:

(НФ): Ax + By + D =0.

Хотя бы одно из чисел A или B должно быть ненулевым.

Если оба коэффициента ненулевые (A ≠0 и B ≠0), то прямая проходит наклонно к осям координат и пересекается с ними в точках (-D / A , 0) и (0, - D / B ).

При A =0, B ≠0 уравнение By + D =0 описывает горизонтальную прямую y = – D / B .

При A ≠0, B = 0 уравнение Ax + D =0 описывает вертикальную прямую x = – D / A .

Прямая проходит через начало координат: f (0,0)=0 при D =0.

Благодаря свойству прямой разделять плоскость на две полуплоскости с противоположными знаками, неявное уравнение позволяет определять положение точки (точек) на плоскости относительно прямой:

1) точка q лежит на прямой, если f (q )=0;

2) точки a и b лежат по одну сторону от прямой, если f (a )f (b )>0;

3) точки a и b лежат по разные стороны от прямой, если f (a )f (b )0 точка a лежит в том же полупространстве, куда направлена нормаль, а угол Ð (a - p 0, N ) острый;

● при f (b )