Геометрические характеристики плоских сечений. Моменты инерции плоских сечений Рассчитать момент инерции сечения относительно оси y

Моментами инерции сечений называются интегралы следующего вида:

у ;

– осевой момент инерции сечения относительно оси z ;

– центробежный момент инерции сечения;

– полярный момент инерции сечения.

3.2.1. Свойства моментов инерции сечения

Размерность моментов инерции – [длина 4 ], обычно [м 4 ] или [см 4 ].

Осевые и полярный моменты инерции всегда положительные. Центробежный момент инерции может быть положительным, отрицательным или равным нулю.

Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции сечения.

Оси симметрии всегда главные. Если из двух взаимно перпендикулярных осей хотя бы одна является осью симметрии, то обе оси главные.

Момент инерции составного сечения равен сумме моментов инерции элементов этого сечения.

Полярный момент инерции равен сумме осевых моментов инерции.

Докажем последнее свойство. В сечении с площадью А для элементарной площадки dA радиус-вектор ρ и координаты у и z (рис. 6) связаны по теореме Пифагора: ρ 2 = у 2 + z 2 . Тогда

Рис. 6. Связь полярных и декартовых координат

элементарной площадки

3.2.2. Моменты инерции простейших фигур

В прямоугольном сечении (рис. 7) выберем элементарную площадку dA с координатами y и z и площадью dA = dydz .

Рис. 7. Прямоугольное сечение

Осевой момент инерции относительно оси у

.

Аналогично получаем момент инерции относительно оси z :

Поскольку у и z – оси симметрии, то центробежный момент D zy = 0.

Для круга диаметром d вычисления упрощаются, если учесть круговую симметрию и использовать полярные координаты. Возьмем в качестве элементарной площадки бесконечно тонкое кольцо с радиусом ρ и толщиной d ρ (рис. 8). Его площадь dA = 2πρd ρ. Тогда полярный момент инерции:

.

Рис. 8. Круглое сечение

Как показано выше, осевые моменты инерции относительно любой центральной оси одинаковы и равны

.

Момент инерции кольца находим как разность моментов инерции двух кругов – наружного (с диаметром D ) и внутреннего (с диаметром d ):

Момент инерции I z треугольника определим относительно оси, проходящей через центр тяжести (рис. 9). Очевидно, ширина элементарной полоски, находящейся на расстоянииу от осиz , равна

Следовательно,

Рис. 9. Треугольное сечение

3.3. Зависимости между моментами инерции относительно параллельных осей

При известных величинах моментов инерции относительно осей z и у определим моменты инерции относительно других осей z 1 и y 1 , параллельных заданным. Пользуясь общей формулой для осевых моментов инерции, находим

Если оси z и y центральные, то
, и

Из полученных формул видно, что моменты инерции относительно центральных осей (когда
) имеют наименьшие значения по сравнению с моментами инерции относительно любых других параллельных осей.

3.4. Главные оси и главные моменты инерции

При повороте осей на угол α центробежный момент инерции становится равным

.

Определим положение главных главных осей инерции u , v относительно которых

,

где α 0 – угол, на который надо развернуть оси y и z , чтобы они стали главными.

Поскольку формула дает два значения углаи
, то существуют две взаимно перпендикулярные главные оси. Ось максимума всегда составляет меньший угол () с той из осей (z или y ), относительно которой осевой момент инерции имеет большее значение. Напомним, что положительные углы откладываются от оси z против хода часовой стрелки.

Моменты инерции относительно главных осей называются главными моментами инерции. Можно показать, что они

.

Знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.

Нижеприведенные формулы для определения моментов инерции простых сечений относительно их центральных осей получены из интегральных выражений для моментов инерции (5.4), (5.5), (5.6):


1. Прямоугольник

(5.10)

(5.11)

так как оси Z иY– оси симметрии.

2. Круг

(5.12)

(5.13)

Здесь – полярный момент инерции сечения.

3. Полукруг

(5.14)

(5.15)


4. Равнобедренный треугольник


(5.16)

(5.17)

5. Прямоугольный треугольник


(5.18)

(5.19)

(5.20)

Полезно запомнить, что в формулах (5.10), (5.11) и (5.16)–(5.19) возводится в куб размер стороны фигуры, перпендикулярной рассматриваемой оси.

В формуле (5.20) при определении центробежного момента инерции знак "минус" ставится тогда, когда острые углы треугольника находятся в отрицательных четвертях (т.е. 2-й и 4-й). В тех случаях, когда эти углы находятся в положительных четвертях (т.е. 1-й и 3-й), в формуле (5.20) ставится знак "плюс".

5.3. Главные центральные моменты инерции сложных симметричных сечений

Положение главных центральных осей и величины главных центральных моментов инерции для симметричных сечений определяются в следующем порядке:

1. Сложное сечение разбивается на простые фигуры (круг, прямоугольник, двутавр, уголок и т.п.) и проводятся их центральные оси Z i и Y i (как правило – горизонтально и вертикально).

2. Определяется по формулам (5.3) положение центра тяжести всего сечения и через эту точку проводятся его центральные оси Z и Y. При наличии двух осей симметрии центр тяжести всего сечения находится в точке их пересечения.

Если сечение обладает только одной осью симметрии, то по формулам (5.3) определяется только одна координата центра тяжести. Поясним это для фигуры, показанной на рис. 5.8:

а) оси Z" и Y" выбираем так, чтобы ось Y" совпала с осью симметрии фигуры, а ось Z" – чтобы было удобно определить расстояние до этой оси от центральных осей простых фигур;

б) определяем статический момент площади сечения относительно произвольной оси Z" по формуле:

= А 1 у 1 + А 2 у 2 ,

где А i – площади сечений простых фигур; у i – расстояния от произвольной осиZ" до центральных осей простых фигурZ i . Расстояния у i необходимо брать с учетом знаков;

в) определяем координату у C центра тяжести по формуле (5.3):

=

г) на расстоянии у C от осиZпроводим вторую центральную осьZ. Первой центральной осью является ось симметрии Y.

3. Моменты инерции относительно главных центральных осейZиY(рис. 5.8) определяем по формулам (5.9), которые в развернутом виде запишутся так:

так как одна из рассматриваемых осей

(ось Y) является осью симметрии.

В этих формулах:

– осевые моменты инерции простых фигур относительно своих центральных осей (собственные моменты инерции), которые определяются по формулам (5.10)–(5.19) или по таблицам сортаментов для прокатных элементов;

– расстояния от общих центральных осей сеченияZиYдо центральных осей простых фигур. В рассматриваемом примере
и
показаны на рис. 5.8;

A i – площади простых фигур. Если простой фигурой является фигура, вырезанная от общей, т.е. "пустая" фигура, то в соответствующие формулы площади таких фигурAи их собственные моменты инерции
подставляются со знаком "минус".

ПРИМЕР 5.1

Требуется определить главные центральные моменты инерции сечения, изображенного на рис. 5.9.

1. Разбиваем сечение на простые фигуры и проводим их горизонтальные и вертикальные центральные оси Z i иY i

2. Проводим центральные оси для всей фигуры, т.е. оси симметрии ZиY.

3. Определяем расстояния от общих центральных осей ZиYдо центральных осей простых фигур и площади этих фигур:









4. Вычисляем собственные центральные моменты фигур по формулам (5.10)–(5.17):

5. Определяем осевые моменты инерции всего сечения относительно центральных осей ZиY:

Центробежный момент инерции
так какZиY– оси симметрии. Поэтому вычисленные намиI Z иI Y поэтому являются главными центральными осями:

ПРИМЕР 5.2

Требуется определить главные центральные моменты инерции сечения показанного на (рис. 5.10).

1. Разбиваем сечение на простые фигуры и проводим их центральные оси иY i .

2. Проводим ось симметрии Y. Она является главной центральной осью заданного сечения.

3. Для определения положения 2-й главной центральной оси выбираем произвольную ось Z, перпендикулярную оси симметрии. Пусть эта ось совпадает с осьюZ 3 .

4. По формуле (5.3) определяем ординату у с центра тяжести поперечного сечения по оси Y:


Откладываем размер у C вверх от осиZ" и проводим 2-ю главную центральную осьZ.

5. Определяем осевые моменты инерции простых фигур относи­тельно собственных центральных осей (см. формулы (5.10)–(5.17)):



6. Вычисляем расстояния от центральных осей всего сечения ZиYдо центральных осей отдельных фигур (рис. 5.10):

так как оси Y 1 ,Y 2 ,Y 3 совпадают с осью симметрииY.

7. Вычисляем осевые моменты инерции всего сечения относи­тельно центральных осей ZиYпо формулам (5.9):

Центробежный момент инерции I ZY всего сечения равен нулю, так как ось Y является осью симметрии, т.е. осиZиYявляются главными центральными осями инерции сечения, а вычисленные осевые моменты инерции являются главными центральными моментами инерции:

ПРИМЕР 5.3

Требуется определить главные центральные моменты инерции составного сечения, показанного на (рис. 5.11).

Порядок решения подробно рассмотрен в примере 5.2.

1. Разбиваем сечение на отдельные фигуры, геометрические характеристики которых приводятся в таблице сортаментов (двутавр и швеллер) или легко вычисляются по формулам (5.10)–(5.20) (в данном примере прямоугольник) и проводим их центральные оси.

2. Проводим ось симметрии Y. Центр тяжести всего сечения лежит на этой оси.

3. Выбираем произвольную ось Z. Пусть в данном примере эта ось совпадает с осьюZ 3 .

4. Расстояние у C определяем от произвольной осиZдо центра тяжести всего сечения:

Расстояния от произвольно выбранной оси Z" до центральных осей каждой фигуры (у 1 , у 2 , у 3) показаны на рис. 5.11.


Площади сечений швеллера А 1 и двутавра А 2 выписываем из соответствующих таблиц сортамента, а площадь прямоугольника А 3 вычисляем:

А 1 = 23,4 см 2 , А 2 = 46,5 см 2 , А 3 = 242 = 48 см 2 .

Отложим величину у C вверх от осиZ" (так как у C > 0) и на этом расстоянии проведем главную центральную осьZ.

5. Геометрические характеристики прокатных профилей выписываем из таблицы сортаментов, учитывая различие в ориентации осей в таблице сортаментов и на рис. 5.12а, в.

1. Швеллер № 20

ГОСТ 8240-89

(рис. 5.12а)
;

Двутавр № 30

ГОСТ 8239-89

(рис. 5.12б)
h= 30 см.

Буква "с" в индексе осевых моментов инерции I означает ссылку на обозначение осей в сортаменте.

Моменты инерции прямоугольника (рис. 5.12в) вычисляем отдельно по формулам (5.10) и (5.11):


6. Определяем расстояния от общих центральных осей Y и Z до центральных осей отдельных фигур (они показаны на рис. 5.11):

так как оси Y 1 ,Y 2 ,Y 3 совпадают с осью симметрии всего сеченияY.

7. Определяем осевые моменты инерции сложной фигуры относительно центральных осей ZиYпо формулам (5.9):

Центробежный момент инерции
так как ось Y является осью симметрии. Поэтому оси Z и Y являются главными центральными осями.

I = ∑r i 2 dF i =∫r 2 dF (1.1)

В принципе и определение и формула, его описывающая, не сложные и запомнить их намного легче, чем вникнуть в суть. Но все-таки попробуем разобраться, что же такое момент инерции и откуда он взялся.

Понятие момент инерции пришло в сопромат и строительную механику из другого раздела физики, изучающего кинематику движения, в частности вращательное движение. Но все равно начнем издалека.

Я точно не знаю, упало ли Исааку Ньютону на голову яблоко, упало оно рядом, или вообще не падало, теория вероятности допускает все эти варианты (к тому же в этом яблоке слишком много от библейской легенды о древе познания), однако я уверен, что Ньютон был наблюдательным человеком, способным делать выводы из своих наблюдений. Так наблюдательность и воображение позволили Ньютону сформулировать основной закон динамики (второй закон Ньютона), согласно которому масса тела m , умноженная на ускорение a , равна действующей силе Q (вообще-то более привычным для силы является обозначение F, но так как дальше мы будем иметь дело с площадью, которая также часто обозначается как F, то я использую для внешней силы, рассматриваемой в теоретической механике как сосредоточенная нагрузка, обозначение Q, сути дела это не меняет):

Q = ma (1.2)

По мне величие Ньютона именно в простоте и понятности данного определения. А еще, если учесть, что при равноускоренном движении ускорение а равно отношению приращения скорости ΔV к периоду времени Δt , за который скорость изменилась:

a = Δv/Δt = (v - v о)/t (1.3.1)

при V о = 0 a = v/t (1.3.2)

то можно определить основные параметры движения, такие как расстояние, скорость, время и даже импульс р , характеризующий количество движения:

p = mv (1.4)

Например, яблоко, падающее с разной высоты под действием только силы тяжести, будет падать до земли разное время, иметь разную скорость в момент приземления и соответственно разный импульс. Другими словами, яблоко, падающее с бóльшей высоты, будет дольше лететь и сильнее треснет по лбу незадачливого наблюдателя. И все это Ньютон свел к простой и понятной формуле.

А еще Ньютон сформулировал закон инерции (первый закон Ньютона): если ускорение а = 0 , то в инерциальной системе отсчета невозможно определить, находится ли наблюдаемое тело, на которое не действуют внешние силы, в состоянии покоя или движется прямолинейно с постоянной скоростью. Это свойство материальных тел сохранять свою скорость, пусть даже и нулевую, называется инертностью. Мерой инертности является инерционная масса тела. Иногда инерционная масса называется инертной, но сути дела это не меняет. Считается, что инерционная масса равна гравитационной массе и потому часто не уточняется, какая именно масса имеется в виду, а упоминается просто масса тела.

Не менее важным и значимым является и третий закон Ньютона, согласно которому сила действия равна силе противодействия, если силы направлены по одной прямой, но при этом в противоположные стороны . Не смотря, на кажущуюся простоту, и этот вывод Ньютона гениален и значение этого закона трудно переоценить. Об одном из применений этого закона чуть ниже.

Однако данные положения справедливы только для тел, движущихся поступательно, т.е. по прямолинейной траектории и при этом все материальные точки таких тел двигаются с одинаковой скоростью или одинаковым ускорением. При криволинейном движении и в частности при вращательном движении, например, когда тело вращается вокруг своей оси симметрии, материальные точки такого тела перемещаются в пространстве с одинаковой угловой скоростью w , но при этом линейная скорость v у различных точек будет разная и эта линейная скорость прямо пропорциональна расстоянию r от оси вращения до этой точки:

v = wr (1.5)

при этом угловая скорость равна отношению приращения угла поворота Δφ к периоду времени Δt , за который угол поворота изменился:

w = Δφ/Δt = (φ - φ о)/t (1.6.1)

при φ о = 0 w = φ/t (1.7.2)

соответственно нормальное ускорение а n при вращательном движении равно:

a n = v 2 /r = w 2 r (1.8)

И получается, что для вращательного движения мы не можем прямо использовать формулу (1.2), так как при вращательном движении одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Получается, что чем ближе материальные точки тела к оси вращения, тем меньшую силу требуется приложить, чтобы заставить тело вращаться и наоборот, чем дальше материальные точки тела от оси вращения, тем большую силу нужно приложить, чтобы заставить тело вращаться (в данном случае речь идет о приложении силы в одной и той же точке). К тому же при вращении тела более удобно рассматривать не действующую силу, а вращающий момент, так как при вращательном движении точка приложения силы также имеет большое значение.

Поразительные свойства момента нам известны со времен Архимеда и если применить понятие момента к вращательному движению, то значение момента М будет тем больше, чем больше расстояние r от оси вращения до точки приложения силы F (в строительной механике внешняя сила часто обозначается как Р или Q ):

М = Qr (1.9)

Из этой также не очень сложной формулы выходит, что если сила будет приложена по оси вращения, то никакого вращения не будет, так как r = 0, а если сила будет приложена на максимальном удалении от оси вращения, то и значение момента будет максимальным. А если мы подставим в формулу (1.9) значение силы из формулы (1.2) и значение нормального ускорения и формулы (1.8), то получим следующее уравнение:

М = mw 2 r·r = mw 2 r 2 (1.10)

В частном случае когда тело является материальной точкой, имеющей размеры намного меньше, чем расстояние от этой точки до оси вращения, уравнение (1.10) применимо в чистом виде. Однако для тела, вращающегося вокруг одной из своих осей симметрии, расстояние от каждой материальной точки составляющей данное тело, всегда меньше одного из геометрических размеров тела и потому распределение массы тела имеет большое значение, в этом случае требуется учесть эти расстояния отдельно для каждой точки:

M = ∑r i 2 w 2 m i (1.11.1)

М с = w 2 ∫r 2 dm

И тогда получается, что согласно третьему закону Ньютона в ответ на действие вращающего момента будет возникать так называемый момент инерции I . При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. В итоге формула момента инерции примет следующий вид:

[- М] = I = ∑r i 2 m i (1.12.1)

I c = ∫r 2 dm (1.11.2) - при вращении тела вокруг оси симметрии

где I - общепринятое обозначение момента инерции, I c - обозначение осевого момента инерции тела, кг/м 2 . Для однородного тела, имеющего одинаковую плотность ρ по всему объему тела V формулу осевого момента инерции тела можно записать так:

I c = ∫ρr 2 dV (1.13)

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении .

Все круг замкнулся. И тут может возникнуть вопрос, какое отношение все эти законы динамики и кинематики имеют к расчету статических строительных конструкций? Оказывается, что ни на есть самое прямое и непосредственное. Во-первых потому, что все эти формулы выводились физиками и математиками в те далекие времена, когда таких дисциплин, как "Теоретическая механика" или "Теория сопротивления материалов" попросту не существовало. А во-вторых потому, что весь расчет строительных конструкций и построен на основе указанных законов и формулировок и пока ни кем не опровергнутом утвержении о равенстве гравитационной и инертой масс. Вот только в теории сопротивления материалов все еще проще, как ни парадоксально это звучит.

А проще потому, что при решении определенных задач может рассматриваться не все тело, а только его поперечное сечение, а при необходимости несколько поперечных сечений. Но в этих сечениях действуют такие же физические силы, правда имеющие несколько иную природу. Таким образом, если рассматривать некое тело, длина которого постоянна, а само тело является однородным, то если не учитывать постоянные параметры - длину и плотность (l = const, ρ = const ) - мы получим модель поперечного сечения. Для такого поперечного сечения с математической точки зрения будет справедливым уравнение:

I р = ∫r 2 dF (2.1) → (1.1)

где I p - полярный момент инерции поперечного сечения, м 4 . В итоге мы получили формулу, с которой начинали (а вот стало ли понятнее, что такое момент инерции сечения, не знаю).

Так как в теории сопротивления материалов часто рассматриваются прямоугольные сечения, да и прямоугольная система координат более удобна, то при решении задач обычно рассматриваются два осевых момента инерции поперечного сечения:

I z = ∫y 2 dF (2.2.1)

I y = ∫z 2 dF (2.2.2)

Рисунок 1 . Значения координат при определении осевых моментов инерции.

Тут может возникнуть вопрос, почему использованы оси z и у , а не более привычные х и у ? Так уж сложилось, что определение усилий в поперечном сечении и подбор сечения, выдерживающего действующие напряжения, равные приложенным усилиям - две разные задачи. Первую задачу - определение усилий - решает строительная механика, вторую задачу - подбор сечения - теория сопротивления материалов. При этом в строительной механике рассматривается при решении простых задач достаточно часто стержень (для прямолинейных конструкций), имеющий определенную длину l , а высота и ширина сечения не учитываются, при этом считается, что ось х как раз и проходит через центры тяжести всех поперечных сечений и таким образом при построении эпюр (порой достаточно сложных) длина l как раз и откладывается по оси х , а по оси у откладываются значения эпюр. В то же время теория сопротивления материалов рассматривает именно поперечное сечение, для которого важны ширина и высота, а длина не учитывается. Само собой при решении задач теории сопротивления материалов, также порой достаточно сложных используются все те же привычные оси х и у . Мне такое положение дел кажется не совсем правильным, так как не смотря на разницу, это все же смежные задачи и потому будет более целесообразным использование единых осей для рассчитываемой конструкции.

Значение полярного момента инерции в прямоугольной системе координат будет:

I р = ∫r 2 dF = ∫y 2 dF + ∫z 2 dF (2.3)

Так как в прямоугольной системе координат радиус - это гипотенуза прямоугольного треугольника, а как известно квадрат гипотенузы равен сумме квадратов катетов. А еще существует понятие центробежного момента инерции поперечного сечения:

I xz = ∫xzdF (2.4)

Среди осей прямоугольной системы координат, проходящих через центр тяжести поперечного сечения, есть две взаимно-перпендикулярные оси, относительно которых осевые моменты инерции принимают максимальное и минимальное значение, при этом центробежный момент инерции сечения I zy = 0 . Такие оси называют главными центральными осями поперечного сечения, а моменты инерции относительно таких осей - главными центральными моментами инерции

Когда в теории сопротивления материалов речь заходит о моментах инерции, то как правило в виду имеются именно главные центральные моменты инерции поперечного сечения. Для квадратных, прямоугольных, круглых сечений главные оси будут совпадать с осями симметрии. Моменты инерции поперечного сечения также называют геометрическими моментами инерции или моментами инерции площади, но суть от этого не изменяется.

В принципе самому определять значения главных центральных моментов инерции для поперечных сечений наиболее распространенных геометрических форм - квадрата, прямоугольника, круга, трубы, треугольника и некоторых других - большой необходимости нет. Такие моменты инерции давно определены и широко известны. А при расчете осевых моментов инерции для сечений сложной геометрической формы справедлива теорема Гюйгенса-Штейнера:

I = I c + r 2 F (2.5)

таким образом, если известны площади и центры тяжести простых геометрических фигур, составляющих сложное сечение, то определить значение осевого момента инерции всего сечения не составит труда. А для того, чтобы определить центр тяжести сложного сечения, используются статические моменты поперечного сечения. Более подробно статические моменты рассматриваются в другой статье, здесь лишь добавлю. Физический смысл статического момента следующий: статический момент тела - это сумма моментов для материальных точек, составляющих тело, относительно некоторой точки (полярный статический момент) или относительно оси (осевой статический момент), а так как момент - это произведение силы на плечо (1.9), то и определяется статический момент тела соответственно:

S = ∑M = ∑r i m i = ∫rdm (2.6)

и тогда полярный статический момент поперечного сечения будет:

S р = ∫rdF (2.7)

Как видим, определение статического момента сходно с определением момента инерции. Но есть и принципиальная разница. Статический момент потому и называется статическим, что для тела, на которое действует сила тяжести, статический момент равен нулю относительно центра тяжести. Другими словами такое тело находится в состоянии равновесия, если опора приложена к центру тяжести тела. А согласно первому закону Ньютона такое тело или находится в состоянии покоя или движется с постоянной скоростью, т.е. ускорение = 0. А еще с чисто математической точки зрения статический момент может быть равен нулю по той простой причине, что при определении статического момента необходимо учитывать направление действия момента. Например относительно осей координат, проходящих через центр тяжести прямоугольника, площади верхней части и нижней части прямоугольника будут положительными так как символизируют силу тяжести, действующую в одном направлении. При этом расстояние от оси до центра тяжести можно рассматривать как положительное (условно: момент от силы тяжести верхней части прямоугольника пытается вращать сечение по часовой стрелке), а до центра тяжести нижней части - как отрицательное (условно: момент от силы тяжести нижней части прямоугольника пытается вращать сечение против часовой стрелки). А так как такие площади численно равны и равны расстояния от центров тяжести верхней части прямоугольника и нижней части прямоугольника, то сумма действующих моментов и составит искомый 0.

S z = ∫ydF = 0 (2.8)

А еще этот великий ноль позволяет определять опорные реакции строительных конструкций. Если рассматривать строительную конструкцию, к которой приложена например сосредоточенная нагрузка Q в некоторой точке, то такую строительную конструкцию можно рассматривать, как тело с центром тяжести в точке приложения силы, а опорные реакции в этом случае рассматриваются, как силы приложенные в точках опор. Таким образом зная значение сосредоточенной нагрузки Q и расстояния от точки приложения нагрузки до опор строительной конструкции, можно определить опорные реакции. Например для шарнирно опертой балки на двух опорах значение опорных реакций будет пропорционально расстоянию до точки приложения силы, а сумма реакций опор будет равна приложенной нагрузке. Но как правило при определении опорных реакций поступают еще проще: за центр тяжести принимается одна из опор и тогда сумма моментов от приложенной нагрузки и от остальных опорных реакций все равно равна нулю. В этом случае момент от опорной реакции относительно которой составляется уравнение моментов, равен нулю, так как плечо действия силы = 0, а значит в сумме моментов остаются только две силы: приложенная нагрузка и неизвестная опорная реакция (для статически определимых конструкций).

Таким образом принципиальная разница между статическим моментом и моментом инерции в том, что статический момент характеризует сечение, которое сила тяжести как бы пытается сломать пополам относительно центра тяжести или оси симметрии, а момент инерции характеризует тело, все материальные точки которого перемещаются (или пытаются переместиться в одном направлении). Возможно, более наглядно представить себе эту разницу помогут следующие достаточно условные расчетные схемы для прямоугольного сечения:

Рисунок 2 . Наглядная разница между статическим моментом и моментом инерции.

А теперь вернемся еще раз к кинематике движения. Если проводить аналогии между напряжениями, возникающими в поперечных сечениях строительных конструкций, и различными видами движения, то в центрально растягиваемых и центрально сжатых элементах возникают напряжения равномерные по всей площади сечения. Эти напряжения можно сравнить с действием некоторой силы на тело, при котором тело будет двигаться прямолинейно и поступательно. А самое интересное, это то, что поперечные сечения центрально-растянутых или центрально сжатых элементов действительно движутся, так как действующие напряжения вызывают деформации. И величину таких деформаций можно определить для любого поперечного сечения конструкции. Для этого достаточно знать значение действующих напряжений, длину элемента, площадь сечения и модуль упругости материала, из которого изготовлена конструкция.

У изгибаемых элементов поперечные сечения также не остаются на месте, а перемещаются, при этом перемещение поперечных сечений изгибаемых элементов подобно вращению некоего тела относительно некоторой оси. Как вы уже наверное догадались, момент инерции позволяет определить и угол наклона поперечного сечения и перемещение Δl для крайних точек сечения. Эти крайние точки для прямоугольного сечения находятся на расстоянии, равном половине высоты сечения (почему - достаточно подробно описано в статье "Основы сопромата. Определенение прогиба "). А это в свою очередь позволяет определить прогиб конструкции.

А еще момент инерции позволяет определить момент сопротивления сечения . Для этого момент инерции нужно просто разделить на расстояние от центра тяжести сечения до наиболее удаленной точки сечения, для прямоугольного сечения на h/2. А так как исследуемые сечения не всегда симметричны, то значение момента сопротивления может быть разным для разных частей сечения.

А началось все с банального яблока... хотя нет, начиналось все со слова.

§ 4.5. ВЫЧИСЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ СЕЧЕНИЙ ПРОСТОЙ ФОРМЫ

Как указано в § 1.5, геометрические характеристики сложных сечений определяются путем расчленения их на ряд простых фигур, геометрические характеристики которых можно вычислить по соответствующим формулам или определить по специальным таблицам. Эти формулы получаются в результате непосредственного интегрирования выражений (8.5)-(10.5). Приемы их получения рассматриваются ниже на примерах прямоугольника, треугольника и круга.

Прямоугольное сечение

Определим осевой момент инерции прямоугольника высотой h и шириной b относительно оси проходящей через его основание (рис. 11.5, а). Выделим из прямоугольника линиями, параллельными оси элементарную полоску высотой и шириной b.

Площадь этой полоски расстояние от полоски до оси равно их. Подставим эти величины в выражение момента инерции (8.5):

Аналогичным путем для момента инерции относительно оси можно получить выражение

Для определения центробежного момента инерции выделим из прямоугольника линиями, параллельными осям (рис.

11.5, б), элементарную площадку величиной. Определим сначала центробежный момент инерции не всего прямоугольника, а лишь вертикальной полоски высотой h и шириной расположенной на расстоянии от оси

Произведение вынесено за знак интеграла, так как для всех площадок, принадлежащих рассматриваемой вертикальной полоске, оно постоянно.

Проинтегрируем затем выражение в пределах от до

Определим теперь осевые моменты инерции прямоугольника относительно осей у и, проходящих через центр тяжести параллельно сторонам прямоугольника (рис. 12.5). Для этого случая пределы интегрирования будут от до

Центробежный момент инерции прямоугольника относительно осей (рис. 12.5) равен нулю, так как эти оси совпадают с его осями симметрии.

Треугольное сечение

Определим осевые моменты инерции треугольника относительно трех параллельных осей, проходящих через его основание (рис. 13.5, а), центр тяжести (рис. 13.5,б) и вершину (рис. 13.5, е).

Для случая, когда ось проходит через основание треугольника (рис. 13.5, а),

Для случая, когда ось проходит через центр тяжести треугольника параллельно его основанию (рис. 13.5, б),

В случае, когда ось проходит через вершину треугольника параллельно его основанию (рис. 13.5, в),

Момент инерции значительно больше (в три раза), чем момент инерции так как основная часть площади треугольника более удалена от оси чем от оси

Выражения (17.5) - (19.5) получены для равнобедренного треугольника. Однако они верны и для неравнобедренных треугольников. Сравнивая, например, треугольники, показанные на рис. 13.5, а и 13.5, г, из которых первый равнобедренный, а второй неравнобедренный, устанавливаем, что размеры площадки и пределы, в которых изменяется у (от 0 до) для обоих треугольников одинаковы. Следовательно, моменты инерции для них также одинаковы. Аналогично можно показать, что осевые моменты инерции всех сечений, изображенных на рис. 14.5, одинаковы. Вообще смещение частей сечения параллельно некоторой оси не влияет на величину осевого момента инерции относительно этой оси.

Очевидно, что сумма осевых моментов инерции треугольника относительно осей показанных на рис. 13.5, а и 13.5, в, должна быть равна осевому моменту инерции прямоугольника относительно оси показанной на рис. 11.5, а. Это следует из того, что прямоугольник можно рассматривать как два треугольника, для одного из которых ось проходит через основание, а для другого - через вершину параллельно его основанию (рис. 15.5).

Действительно, по формулам (17.5) и (19.5)

что совпадает с выражением прямоугольника по формуле (12.5).

Сечение в форме круга

Определим осевой момент инерции круга относительно любой оси, проходящей через его центр тяжести. Из рис. 16.5, а следует

Очевидно, что относительно любой оси, проходящей через центр круга, осевой момент инерции будет равен и, следовательно,

По формуле (11.5) находим полярный момент инерции круга относительно его центра:

Формулу осевого момента инерции круга можно получить более простым путем, если предварительно вывести формулу для его полярного момента инерции относительно центра (точки О). Для этого выделим из круга элементарное кольцо толщиной радиусом и площадью (рис. 16.5,б).

Полярный момент инерции элементарного кольца относительно центра круга так как все элементарные площадки из которых состоит это кольцо, расположены на одинаковом расстоянии от центра круга. Следовательно,

Этот результат совпадает с полученным выше.

Моменты инерции (полярный и осевые) сечения, имеющего форму кругового кольца с наружным диаметром d и внутренним (рис. 17.5), можно определить как разности между соответствующими моментами инерции наружного и внутреннего кругов.

Полярный момент инерции кольца на основании формулы (21.5)

или, если обозначить

Аналогично, для осевых моментов инерции кольца

Момент инерции и момент сопротивления

При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для рассматриваемого поперечного сечения конструкции. Что такое момент сопротивления и как он связан с моментом инерции изложено отдельно. Кроме того, для сжимаемых конструкций также нужно знать значение радиуса инерции. Определить момент сопротивления и момент инерции, а иногда и радиус инерции для большинства поперечных сечений простой геометрической формы можно по давно известным формулам:

Таблица 1. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм.

Обычно, этих формул достаточно для большинства расчетов, но случаи бывают всякие и сечение конструкции может быть не такой простой геометрической формы или положение осей, относительно которых нужно определить момент инерции или момент сопротивления, может быть не таким, тогда можно воспользоваться следующими формулами:

Таблица 2. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций более сложных геометрических форм

Как видно из таблицы 2, высчитывать момент инерции и момент сопротивления для неравнополочных уголков достаточно сложно, да нет в этом необходимости. Для неравнополочных и равнополочных прокатных уголков, а также для швеллеров, двутавров и профильных труб есть сортаменты. В сортаментах значения момента инерции и момента сопротивления приводятся для каждого профиля.

Таблица 3. Изменения моментов инерции и моментов сопротивления в зависимости от положения осей.

Формулы из таблицы 3 могут понадобиться для расчета наклонных элементов кровли.

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье “Основы сопромата, расчетные формулы”, здесь лишь повторюсь: “W – это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы”. Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено).

Момент инерции и момент сопротивления - Доктор Лом


При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для поперечного сечения конструкции. Определить момент сопротивления и момент энерции для абсолютного большинства поперечных сечений простой геометрической формы можно по давно известным формулам

Глава 5. МОМЕНТЫ ИНЕРЦИИ ПЛОСКИХ СЕЧЕНИЙ

Любое плоское сечение характеризуется рядом геометрических характеристик: площадью, координатами центра тяжести, статическим моментом, моментом инерции и др.

Статические моменты относительно осей х и y равны:

Статические моменты обычно выражаются в кубических сантиметрах или метрах и могут иметь как положительные, так и отрицательные значения. Ось, относительно которой статический момент равен нулю, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения . Формулы для определения координат центра тяжести x c и y c сложного сечения, разбитого на простейшие составные части, для которых известны площади А i и положение центра тяжести x ci и y ci ,имеют вид

Величина момента инерции характеризует сопротивляемость стержня деформации (кручения, изгиба) в зависимости от размеров и формы поперечного сечения. Различают моменты инерции:

– осевые, определяемые интегралами вида

Осевые и полярные моменты инерции всегда положительны и не

обращаются в нуль. Полярный момент инерции I p равен сумме осевых моментов инерции I х и I у относительно любой пары взаимно перпендикулярных осей х и у :

Центробежный момент инерции может быть положительным, отрицательным и равным нулю. Размерность моментов инерции - см 4 или м 4 . Формулы для определения моментов инерции простых сечений относительно центральных осей приведены в справочниках. При вычислении моментов инерции сложных сечений часто используют формулы перехода от центральных осей простых сечений к другим осям, параллельным центральным.

где – моменты инерции простых сечений относительно центральных осей;

m, n – расстояния между осями (рис. 18).

Рис. 18. К определению моментов инерции относительно осей,

Важное значение имеют главные центральные оси сечения. Главными центральными называются две взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции имеют экстремальные значения. Главные моменты инерции обозначаются I u (max) и I v (min) и определяются по формуле

Положение главных осей определяется углом α , который находится из формулы

Угол α откладывается от оси с большим неглавным моментом инерции; положительное значение – против часовой стрелки.

Если сечение имеет ось симметрии, то эта ось является главной. Другая главная ось перпендикулярна оси симметрии. На практике часто используются сечения, составленные из нескольких прокатных профилей (двутавр, швеллер, уголок). Геометрические характеристики этих профилей приведены в таблицах сортамента. Для неравнобокого и равнобокого уголков центробежный момент инерции относительно центральных осей, параллельных полкам, определяется по формуле

Обратите внимание на обозначение главных центральных осей в таблице сортамента для уголков. Знак I xy для уголка зависит от положения его в сечении. На рис.19 показаны возможные положения уголка в сечении и приведены знаки для I xy .

Рис. 19. Возможные положения уголка в сечении

Определить I u , I v и положение главных центральных осей сечения

Сложное сечение состоит из двух прокатных профилей. Выписка из таблиц сортамента (прил. 5) приведена на рис. 21.

В качестве вспомогательных примем оси, проходящие по внешним

сторонам швеллера (оси x B , y B , см. рис. 20).Координаты центра тяжести сечения:

(вычислите самостоятельно).

Рис. 20. Положение главных центральных осей инерции

U и V сложного сечения

В качестве вспомогательных можно было бы выбрать, например, центральные оси швеллера. Тогда несколько сократится объем вычислений.

Осевые моменты инерции:

Обратите внимание, что неравнобокий уголок в сечении расположен

иначе, чем показано в таблице сортаментов. Значение вычислите самостоятельно.


№ 24 180 x 110 x 12

Рис. 21. Значения геометрических характеристик прокатных профилей:

а – швеллера № 24; б – неравнобокого уголка 180 x 110 x 12

Центробежные моменты инерции:

– для швеллера (есть оси симметрии);

– для уголка,

знак минус – в связи с положением уголка в сечении;

– для всего сечения:

Проследите назначение знаков у n и m . От центральных осей швеллера переходим к общим центральным осям сечения, поэтому + m 2

Главные моменты инерции сечения:

Положение главных центральных осей сечения:

; α = 55 о 48 ′ ;

Проверка правильности вычисления величин I u , I v и α производится по формуле

Угол α для этой формулы отсчитывается от оси u .

Рассмотренное сечение имеет наибольшую сопротивляемость изгибу относительно оси u и наименьшую – относительно оси v .


Глава 5. МОМЕНТЫ ИНЕРЦИИ ПЛОСКИХ СЕЧЕНИЙ Любое плоское сечение характеризуется рядом геометрических характеристик: площадью, координатами центра тяжести, статическим моментом, моментом инерции и

При проверке прочности частей конструкций нам приходится встречаться с сечениями довольно сложной формы, для которых нельзя вычислить момент инерции таким простым путем, каким мы пользовались для прямоугольника и круга.

Таким сечением может быть, например, тавр (Рис.5 а ) кольцевое сечение трубы, работающей на изгиб (авиационные конструкции) (Рис.5, б ), кольцевое сечение шейки вала или еще более сложные сечения. Все эти сечения можно разбить на простейшие, как-то: прямоугольники, треугольники, круги и т.д. Можно показать, что момент инерции такой сложной фигуры является суммой моментов инерции частей, на которые мы ее разбиваем.

Рис.5. Сечения типа тавр — а) и кольцо б)

Известно, что момент инерции любой фигуры относительно оси у у равен:

где z — расстояние элементарных площадок до оси у у .

Разобьем взятую площадь на четыре части: , , и . Теперь при вычислении момента инерции можно сгруппировать слагаемые в подинтегральной функции так, чтобы отдельно произвести суммирование для каждой из выделенных четырех площадей, а затем эти суммы сложить. Величина интеграла от этого не изменится.

Наш интеграл разобьется на четыре интеграла, каждый из которых будет охватывать одну из площадей, , и :

Каждый из этих интегралов представляет собой момент инерции соответствующей части площади относительно оси у у ; поэтому

где — момент инерции относительно оси у у площади , — то же для площади и т. д.

Полученный результат можно формулировать так: момент инерции сложной фигуры равен сумме моментов инерции составных ее частей. Таким образом, нам необходимо уметь вычислять момент инерции любой фигуры относительно любой оси, лежащей в ее плоскости.

Решение этой задачи и составляет содержание настоящей и последующих двух собеседований.

Моменты инерции относительно параллельных осей.

Задачу — получить наиболее простые формулы для вычисления момента инерции любой фигуры относительно любой оси — будем решать в несколько приемов. Если взять серию осей, параллельных друг другу, то оказывается, что можно легко вычислить моменты инерции фигуры относительно любой из этих осей, зная ее момент инерции относительно оси, проходящей через центр тяжести фигуры параллельно выбранным осям.

Рис.1. Расчетная модель определения моментов инерции для параллельных осей.

Оси, проходящие через центр тяжести, мы будем называть центральными осями . Возьмем (Рис.1) произвольную фигуру. Проведем центральную ось Оу , момент инерции относительно этой оси назовем . Проведем в плоскости фигуры осьпараллельно оси у на расстоянии от нее. Найдем зависимость между и — моментом инерции относительно оси . Для этого напишем выражения для и . Разобьем площадь фигуры на площадки ; расстояния каждой такой площадки до осей у и назовем и . Тогда


Из рис.1 имеем:

Первый из этих трех интегралов — момент инерции относительно центральной оси Оу . Второй — статический момент относительно той же оси; он равен нулю, так как ось у проходит через центр тяжести фигуры. Наконец, третий интеграл равен площади фигуры F . Таким образом,

(1)

т. е. момент инерции относительно любой оси равен моменту инерции относительно центральной оси, проведенной параллельно у данной, плюс произведение площади фигуры на квадрат расстояния между осями.

Значит, наша задача теперь свелась к вычислению только центральных моментов инерции; если мы их будем знать, то сможем вычислить момент инерции относительно любой другой оси. Из формулы (1) следует, что центральный момент инерции является наименьшим среди моментов инерции относительно параллельных осей и для него мы получаем:

Найдем также центробежный момент инерции относительно осей , параллельных центральным, если известен (Рис.1). Так как по определению

где: , то отсюда следует

Так как два последних интеграла представляют собой статические моменты площади относительно центральных осей Оу и Oz то они обращаются в нуль и, следовательно:

(2)

Центробежный момент инерции относительно системы взаимно перпендикулярных осей, параллельных центральным, равен центробежному моменту инерции относительно этих центральных осей плюс произведение из площади фигуры, на координаты ее центра тяжести относительно новых осей.

Зависимость между моментами инерции при повороте осей.

Центральных осей можно провести сколько угодно. Является вопрос, нельзя ли выразить момент инерции относительно любой центральной оси в зависимости от момента инерции относительно одной или двух определенных осей. Для этого посмотрим, как будут меняться моменты инерции относительно двух взаимно перпендикулярных осей при повороте их на угол .

Возьмем какую-либо фигуру и проведем через ее центр тяжести О две взаимно перпендикулярные оси Оу и Oz (Рис.2).

Рис.2. Расчетная модель для определения моментов инерции для повернутых осей.

Пусть нам известны осевые моменты инерции относительно этих осей , , а также центробежный момент инерции . Начертим вторую систему координатных осей и наклоненных к первым под углом ; положительное направление этого угла будем считать при повороте осей вокруг точки О против часовой стрелки. Начало координат О сохраняем. Выразим моменты относительно второй системы координатных осей и , через известные моменты инерции и .

Напишем выражения для моментов инерции относительно этих осей:

Аналогично:

Для решения задач могут понадобиться формулы перехода от одних осей к другим для центробежного момента инерции. При повороте осей (Рис.2) имеем:

где и вычисляются по формулам (14.10); тогда

После преобразований получим:

(7)

Таким образом, для того чтобы вычислить момент инерции относительно любой центральной оси , надо знать моменты инерции и относительно системы каких-нибудь двух взаимно перпендикулярных центральных осей Оу и Oz , центробежный момент инерции относительно тех же осей и угол наклона оси к оси у .

Для вычисления же величин > , приходится так выбирать оси у и z и разбивать площадь фигуры на такие составные части, чтобы иметь возможность произвести это вычисление, пользуясь только формулами перехода от центральных осей каждой из составных частей к осям, им параллельным. Как это сделать на практике, будет показано ниже на примере. Заметим, что при этом вычислении сложные фигуры надо разбивать на такие элементарные части, для которых по возможности известны величины центральных моментов инерции относительно системы взаимно перпендикулярных осей.

Заметим, что ход вывода и полученные результаты не изменились бы, если бы начало координат было взято не в центре тяжести сечения, а в любой другой точке О . Таким образом, формулы (6) и (7) являются формулами перехода от одной системы взаимно-перпендикулярных осей к другой, повернутой на некоторый угол , независимо от того, центральные это оси или нет.

Из формул (6) можно получить еще одну зависимость между моментами инерции при повороте осей. Сложив выражения для и получим

т. е. сумма моментов инерции относительно любых взаимно перпендикулярных осей у и z не меняется при их повороте. Подставляя последнее выражение вместо и их значения, получим:

где — расстояние площадок dF от точки О . Величина является, как уже известно, полярным моментом инерции сечения относительно точки О .

Таким образом, полярный момент инерции сечения относительно какой-либо точки равен сумме осевых моментов инерции относительно взаимно перпендикулярных осей, проходящих через эту точку. Поэтому эта сумма и остается постоянной при повороте осей. Этой зависимостью (14.16) можно пользоваться для упрощения вычисления моментов инерции.

Так, для круга:

Так как по симметрии для круга то

что было получено выше путем интегрирования.

Точно также для тонкостенного кольцевого сечения можно получить:

Главные оси инерции и главные моменты инерции.

Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.

При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси . Эти оси мы будем обозначать и ; для них

Найдем, под каким углом наклонены к центральным осям у и z (фиг. 198) главные оси.

Рис.1. Расчетная модель для определения положения главных осей инерции.

В известном выражении для перехода от осей yz к осям , для центробежного момента инерции дадим углу значение ; тогда оси и , совпадут c главными, и центробежный момент инерции будет равен нулю:

(1)

Этому уравнению удовлетворяют два значения , отличающиеся на 180°, или два значения , отличающиеся на 90°. Таким образом, это уравнение дает нам положение двух осей , составляющих между собой прямой угол. Это и будут главные центральные оси и , для которых .

Пользуясь этой формулой, можно по известным , и получить формулы для главных моментов инерции и . Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить

(2)

Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является , другим .

Формулы (2) можно преобразовать к виду, свободному от значения . Выражая и через и подставляя их значения в первую формулу (2), получим, делая одновременно замену из формулы (1):

Заменяя здесь из формулы (1) дробь на

получаем

(3)

К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).

За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz , а главные оси и ; тогда в формулах не будет фигурировать центробежный момент инерции (). Обозначим угол, составленный осью , (Рис.2) с главной осью , через . Для вычисления , и , переходя от осей и нужно в ранее найденных выражениях для , и , заменить угол через , а , и — через , и . В результате получаем:

По своему виду эти формулы совершенно аналогичны формулам для нормальных и касательных напряжений по двум взаимно-перпендикулярным площадкам в элементе, подвергающемся растяжению в двух направлениях. Укажем лишь формулу, позволяющую из двух значений угла выделить то, которое соответствует отклонению первой главной оси (дающей max J ) от начального положения оси у :

Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты , проходящей на расстоянии (рис.2) от центра тяжести:

Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы мы уже имели дело с интегралом , представляющим собой центробежный момент инерции сечения относительно осей у и z ; было доказано, что если ось Oz является осью симметрии, этот интеграл обращается в нуль.

Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.

Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей и равны:

Моменты инерции относительно осей и равны:

Центробежный момент инерции равен.