График плотности вероятности нормального распределения. Нормальный закон распределения вероятностей непрерывной случайной величины

Случайная величина называется распределенной по нормальному (Гауссовскому) закону с параметрами аи () , если плотность распределения вероятностей имеет вид

Величина, распределенная по нормальному закону, всегда имеет бесчисленное множество возможных значений, поэтому ее удобно изображать графически, с помощью графика плотности распределения. Согласно формуле

вероятность того, что случайная величина примет значение из интервала равна площади под графиком функции на этом интервале (геометрический смысл определенного интеграла). Рассматриваемая функция неотрицательна и непрерывна. График функ­ции имеет вид колокола и называется кривой Гаусса или нормальной кривой.

На рисунке изображено несколько кривых плотности распределения случайной величины, заданной по нормальному закону.

Все кривые имеют одну точку максимума, при удалении от которой вправо и влево кривые убывают. Максимум достигается при и равен .

Кривые симметричны относительно вертикальной прямой, проведенной через наивысшую точку. Площадь подграфика каждой кривой равна 1.

Различие отдельных кривых распределения состоит лишь в том, что суммарная площадь подграфика, одна и та же для всех кривых, различным образом распределена между различными участками. Основная часть площади подграфика любой кривой сосредоточена в непосредственной близости наивероятнейшего значения , а это значение у всех трех кривых разное. При различных значениях и а получаются различные нормальные законы и различные графики плотности функции распределения.

Теоретические исследования показали, что большинство встречающихся на практике случайных величин имеет нормальный закон распределения. По этому закону распределяется скорость газовых молекул, вес новорожденных, размер одежды и обуви населения страны и много других случайных событий физической и биологической природы. Впервые эту закономерность заметил и теоретически обосновал А. Муавр.

При , функция совпадает с функцией , о которой уже шла речь в локальной предельной теореме Муавра–Лапласа. Плотность вероятности нормального распределения легко выражаетсячерез :

При таких значениях параметров нормальный закон называется основным .

Функция распределения для нормированной плотности называется функцией Лапласа и обозначается Φ(х) . Мы также уже встречались с этой функцией.

Функция Лапласа не зависит от конкретных параметров а и σ. Для функции Лапласа, с помощью методов приближенного интегрирования составлены таблицы значений на проме­жутке с разной степенью точности. Очевидно, что функция Лапласа является нечетной, следовательно, нет необходимости помещать в таблицу ее значения при отрицательных .



Для случайной величины, распределенной по нормальному закону с параметрами а и , математическое ожидание и дисперсия вычисляются по формулам: , .Среднее квадратическое отклонение равно .

Вероятность того, что нормально распределенная величина примет значение из интервала , равна

где есть функция Лапласа, введенная в интегральной предельной теореме.

Часто в задачах требуется вычислить вероятность того, что отклонение нормально распределенной случайной величины X от своего математического ожидания по абсолютной величине не превосходит некоторого значения , т.е. вычислить вероятность . Применяя формулу (19.2), имеем:

В заключение приведем одно важное следствие из формулы (19.3). Положим в этой формуле . Тогда , т.е. вероятность того, что абсолютная величина отклонения X от своего математического ожидания не превысит , равна 99,73%. Практически такое событие можно считать достоверным. В этом и состоит сущность правила трех сигм.

Правило трех сигм. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания практически не превосходит утроенного среднего квадратического отклонения.

Определение 1

Случайная величина $X$ имеет нормальное распределение (распределение Гаусса), если плотность её распределения определяется формулой:

\[\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}\]

Здесь $aϵR$ -- математическое ожидание, а $\sigma >0$ -- среднее квадратическое отклонение.

Плотность нормального распределения.

Покажем, что эта функция действительно является плотностью распределения. Для этого проверим следующее условие:

Рассмотрим несобственный интеграл $\int\limits^{+\infty }_{-\infty }{\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}dx}$.

Сделаем замену: $\frac{x-a}{\sigma }=t,\ x=\sigma t+a,\ dx=\sigma dt$.

Так как $f\left(t\right)=e^{\frac{-t^2}{2}}$ четная функция, то

Равенство выполняется, значит, функция $\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}$ действительно является плотностью распределения некоторой случайной величины.

Рассмотрим некоторые простейшие свойства функции плотности вероятности нормального распределения $\varphi \left(x\right)$:

  1. График функции плотности вероятности нормального распределения симметричен относительно прямой $x=a$.
  2. Функция $\varphi \left(x\right)$ достигает максимума при $x=a$, при этом $\varphi \left(a\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(a-a)}^2}{2{\sigma }^2}}=\frac{1}{\sqrt{2\pi }\sigma }$
  3. Функция $\varphi \left(x\right)$ убывает, при $x>a$, и возрастает, при $x
  4. Функция $\varphi \left(x\right)$ имеет точки перегиба при $x=a+\sigma $ и $x=a-\sigma $.
  5. Функция $\varphi \left(x\right)$ асимптотически приближается к оси $Ox$ при $x\to \pm \infty $.
  6. Схематический график выглядит следующим образом (рис. 1).

Рисунок 1. Рис. 1. График плотности нормального распределения

Заметим, что, если $a=0$, то график функции симметричен относительно оси $Oy$. Следовательно, функция $\varphi \left(x\right)$ четна.

Функция нормального распределения вероятности.

Для нахождения функции распределения вероятности при нормальном распределении воспользуемся следующей формулой:

Следовательно,

Определение 2

Функция $F(x)$ называется стандартным нормальным распределением, если $a=0,\ \sigma =1$, то есть:

Здесь $Ф\left(x\right)=\frac{1}{\sqrt{2\pi }}\int\limits^x_0{e^{\frac{-t^2}{2}}dt}$ - функция Лапласса.

Определение 3

Функция $Ф\left(x\right)=\frac{1}{\sqrt{2\pi }}\int\limits^x_0{e^{\frac{-t^2}{2}}dt}$ называется интегралом вероятности.

Числовые характеристики нормального распределения.

Математическое ожидание: $M\left(X\right)=a$.

Дисперсия : $D\left(X\right)={\sigma }^2$.

Среднее квадратическое распределение: $\sigma \left(X\right)=\sigma $.

Пример 1

Пример решения задачи на понятие нормального распределения.

Задача 1 : Длина пути $X$ представляет собой случайную непрерывную величину. $X$ распределена по нормальному закону распределения среднее значение которого равно $4$ километра, а среднее квадратическое отклонение равно $100$ метров.

  1. Найти функцию плотности распределения $X$.
  2. Построить схематически график плотности распределения.
  3. Найти функцию распределения случайной величины $X$.
  4. Найти дисперсию.
  1. Для начала представим все величины в одном измерении: 100м=0,1км

Из определения 1, получим:

\[\varphi \left(x\right)=\frac{1}{0,1\sqrt{2\pi }}e^{\frac{-{(x-4)}^2}{0,02}}\]

(так как $a=4\ км,\ \sigma =0,1\ км)$

  1. Используя свойства функции плотности распределения, имеем, что график функции $\varphi \left(x\right)$ симметричен относительно прямой $x=4$.

Максимум функция достигает в точке $\left(a,\frac{1}{\sqrt{2\pi }\sigma }\right)=(4,\ \frac{1}{0,1\sqrt{2\pi }})$

Схематический график имеет вид:

Рисунок 2.

  1. По определению функции распределения $F\left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }\int\limits^x_{-\infty }{e^{\frac{-{(t-a)}^2}{2{\sigma }^2}}dt}$, имеем:
\
  1. $D\left(X\right)={\sigma }^2=0,01$.

Закон нормального распределения вероятностей непрерывной случайной величины занимает особое место среди различных теоретических законов, т. к. является основным во многих практических исследованиях. Им описывается большинство случайных явлений, связанных с производственными процессами.

К случайным явлениям, подчиняющимся нормальному закону распределения, относятся ошибки измерений производственных параметров, распределение технологических погрешностей изготовления, рост и вес большинства биологических объектов и др.

Нормальным называют закон распределения вероятностей непрерывной случайной величины, который описывается дифференциальной функцией

a - математическое ожидание случайной величины;

Среднее квадратичное отклонение нормального распределения.

График дифференциальной функции нормального распределения называют нормальной кривой (кривой Гаусса) (рис.7).

Рис. 7 Кривая Гаусса

Свойства нормальной кривой (кривой Гаусса):

1. кривая симметрична относительно прямой x = a;

2. нормальная кривая расположена над осью X, т. е. при всех значениях X функция f(x) всегда положительна;

3. ось ox является горизонтальной асимптотой графика, т. к.

4. при x = a функция f(x) имеет максимум равный

,

в точках A и B при и кривая имеет точки перегиба, ординаты которых равны.

При этом, вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит среднего квадратичного отклонения , равна 0,6826.

в точках E и G, при и , значение функции f(x) равно

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит удвоенного среднего квадратичного отклонения, равна 0,9544.

Асимптотически приближаясь к оси абсцисс, кривая Гаусса в точках C и D, при и , очень близко подходит к оси абсцисс. В этих точках значение функции f(x) очень мало

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит утроенного среднего квадратичного отклонения, равна 0,9973. Это свойство кривой Гаусса называется "правило трех сигм ".



Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Изменение величины параметра a (математического ожидания случайной величины) не изменяет форму нормальной кривой, а приводит лишь к ее смещению вдоль оси X: вправо, если a возрастает, и влево, если a убывает.

При a=0 нормальная кривая симметрична относительно оси ординат.

Изменение величины параметра (среднего квадратичного отклонения) изменяет форму нормальной кривой: с возрастанием ординаты нормальной кривой убывают, кривая растягивается вдоль оси X и прижимается к ней. При убывании ординаты нормальной кривой увеличиваются, кривая сжимается вдоль оси X и становится более "островершинной".

При этом, при любых значениях и площадь ограниченная нормальной кривой и осью X, остается равной единице (т. е. вероятность того, что случайная величина, распределенная нормально, примет значение ограниченное на оси X нормальной кривой, равна 1).

Нормальное распределение с произвольными параметрами и , т. е. описываемое дифференциальной функцией

называется общим нормальным распределением .

Нормальное распределение с параметрами и называется нормированным распределением (рис. 8). В нормированном распределении дифференциальная функция распределения равна:

Рис. 8 Нормированная кривая

Интегральная функция общего нормального распределения имеет вид:

Пусть случайная величина X распределена по нормальному закону в интервале (c, d). Тогда вероятность того, что X примет значение, принадлежащее интервалу (c, d) равна

Пример. Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратичное отклонение этой случайной величины равны a=30 и . Найти вероятность того, что X примет значение в интервале (10, 50).

По условию: . Тогда

Пользуясь готовыми таблицами Лапласа (см. приложение 3), имеем.

В теории вероятностей рассматривается достаточно большое количество разнообразных законов распределения. Для решения задач, связанных с построением контрольных карт, представляют интерес лишь некоторые из них. Важнейшим из них является нормальный закон распределения , который применяется для построения контрольных карт, используемых при контроле по количественному признаку , т.е. когда мы имеем дело с непрерывной случайной величиной. Нормальный закон распределения занимает среди других законов распределения особое положение. Это объясняется тем, что, во-первых, наиболее часто встречается на практике, и, во-вторых, он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях. Что касается второго обстоятельства, то в теории вероятностей доказано, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, могут быть представлены как сумма весьма большего числа сравнительно малых слагаемых - элементарных ошибок, каждая из которых вызвана действием отдельной причины, независящей от остальных. Нормальный закон проявляется в тех случаях, когда случайная переменная Х является результатом действия большого числа различных факторов. Каждый фактор в отдельности на величину Х влияет незначительно, и нельзя указать, какой именно влияет в большей степени, чем остальные.

Нормальное распределение (распределение Лапласа–Гаусса ) – распределение вероятностей непрерывной случайной величины Х такое, что плотность распределения вероятностей при - ¥ <х< + ¥ принимает действительное значение:

Ехр (3)

То есть, нормальное распределение характеризуется двумя параметрами m и s, где m - математическое ожидание; s- стандартное отклонение нормального распределения.

Величина s 2 – это дисперсия нормального распределения.

Математическое ожидание m характеризует положение центра распределения, а стандартное отклонение s (СКО) является характеристикой рассеивания (рис. 3).

f(x) f(x)


Рисунок 3 – Функции плотности нормального распределения с:

а) разными математическими ожиданиями m; б) разными СКО s .

Таким образом, значением μ определяется положением кривой распределения на оси абсцисс. Размерность μ - та же, что и размерность случайной величины X . С ростом математического ожидания mобе функции сдвигается параллельно вправо. С убывающей дисперсией s 2 плотность все больше концентрируется вокруг m, в то время как функция распределения становится все более крутой.

Значением σ определяется форма кривой распределения. Поскольку площадь под кривой распределения должна всегда оставаться равной единице, то при увеличении σ кривая распределения становится более плоской. На рис. 3.1 показаны три кривые при разных σ: σ1 = 0,5; σ2 = 1,0; σ3 = 2,0.

Рисунок 3.1 – Функции плотности нормального распределения с разными СКО s .

Функция распределения (интегральная функция) имеет вид (рис. 4):

(4)

Рисунок 4 – Интегральная (а) и дифференциальная (б) функции нормального распределения

Особенно важно то линейное преобразование нормально распределенной случайной переменной Х , после которого получается случайная переменная Z с математическим ожиданием 0 и дисперсией 1. Такое преобразование называется нормированием:

Его можно провести для каждой случайной переменной. Нормирование позволяет все возможные варианты нормального распределения свести к одному случаю: m = 0, s = 1.

Нормальное распределение с m = 0, s = 1 называется нормированным нормальным распределением (стандартизованным) .

Стандартное нормальное распределение (стандартное распределение Лапласа–Гаусса или нормированное нормальное распределение) – это распределение вероятностей стандартизованной нормальной случайной величины Z , плотность распределения которой равна:

при - ¥ <z < + ¥

Значения функции Ф(z) определяется по формуле:

(7)

Значения функции Ф(z) и плотности ф(z) нормированного нормального распределения рассчитаны и сведены в таблицы (табулированы). Таблица составлена только для положительных значений z поэтому:

Ф (z) = 1 Ф (z) (8)

С помощью этих таблиц можно определить не только значения функции и плотности нормированного нормального распределения для заданного z , но и значения функции общего нормального распределения, так как:

; (9)

. 10)

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины Х , подчиненной нормальному закону с параметрами m и s, на определенный участок. Таким участком может быть, например, поле допуска на параметр от верхнего значения U до нижнего L .

Вероятность попадания в интервал от х 1 до х 2 можно определить по формуле:

Таким образом, вероятность попадания случайной величины (значение параметра) Х в поле допуска определяется формулой

(вещественный, строго положительный)

Норма́льное распределе́ние , также называемое распределением Гаусса или Гаусса - Лапласа - распределение вероятностей , которое в одномерном случае задаётся функцией плотности вероятности , совпадающей с функцией Гаусса :

f (x) = 1 σ 2 π e − (x − μ) 2 2 σ 2 , {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {(x-\mu)^{2}}{2\sigma ^{2}}}},}

где параметр μ - математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение ( σ  ² - дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в статье «Многомерное нормальное распределение ».

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1 .

Энциклопедичный YouTube

  • 1 / 5

    Важное значение нормального распределения во многих областях науки (например, в математической статистике и статистической физике) вытекает из центральной предельной теоремы теории вероятностей . Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.

    Свойства

    Моменты

    Если случайные величины X 1 {\displaystyle X_{1}} и X 2 {\displaystyle X_{2}} независимы и имеют нормальное распределение с математическими ожиданиями μ 1 {\displaystyle \mu _{1}} и μ 2 {\displaystyle \mu _{2}} и дисперсиями σ 1 2 {\displaystyle \sigma _{1}^{2}} и σ 2 2 {\displaystyle \sigma _{2}^{2}} соответственно, то X 1 + X 2 {\displaystyle X_{1}+X_{2}} также имеет нормальное распределение с математическим ожиданием μ 1 + μ 2 {\displaystyle \mu _{1}+\mu _{2}} и дисперсией σ 1 2 + σ 2 2 . {\displaystyle \sigma _{1}^{2}+\sigma _{2}^{2}.} Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.

    Максимальная энтропия

    Нормальное распределение имеет максимальную дифференциальную энтропию среди всех непрерывных распределений, дисперсия которых не превышает заданную величину .

    Моделирование нормальных псевдослучайных величин

    Простейшие приближённые методы моделирования основываются на центральной предельной теореме . Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией , то сумма будет распределена приблизительно нормально. Например, если сложить 100 независимых стандартно равномерно  распределённых случайных величин, то распределение суммы будет приближённо нормальным .

    Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса - Мюллера . Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.

    Нормальное распределение в природе и приложениях

    Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

    • отклонение при стрельбе.
    • погрешности измерений (однако погрешности некоторых измерительных приборов имеют не нормальные распределения).
    • некоторые характеристики живых организмов в популяции.

    Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и пуассоновское . Этим распределением моделируются многие не детерминированные физические процессы.

    Связь с другими распределениями

    • Нормальное распределение является распределением Пирсона типа XI .
    • Отношение пары независимых стандартных нормально распределенных случайных величин имеет распределение Коши . То есть, если случайная величина X {\displaystyle X} представляет собой отношение X = Y / Z {\displaystyle X=Y/Z} (где Y {\displaystyle Y} и Z {\displaystyle Z} - независимые стандартные нормальные случайные величины), то она будет обладать распределением Коши.
    • Если z 1 , … , z k {\displaystyle z_{1},\ldots ,z_{k}} - совместно независимые стандартные нормальные случайные величины, то есть z i ∼ N (0 , 1) {\displaystyle z_{i}\sim N\left(0,1\right)} , то случайная величина x = z 1 2 + … + z k 2 {\displaystyle x=z_{1}^{2}+\ldots +z_{k}^{2}} имеет распределение хи-квадрат с k степенями свободы.
    • Если случайная величина X {\displaystyle X} подчинена логнормальному распределению , то её натуральный логарифм имеет нормальное распределение. То есть, если X ∼ L o g N (μ , σ 2) {\displaystyle X\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} , то Y = ln ⁡ (X) ∼ N (μ , σ 2) {\displaystyle Y=\ln \left(X\right)\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} . И наоборот, если Y ∼ N (μ , σ 2) {\displaystyle Y\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} , то X = exp ⁡ (Y) ∼ L o g N (μ , σ 2) {\displaystyle X=\exp \left(Y\right)\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} .
    • Отношение квадратов двух стандартных нормальных случайных величин имеет имеет