Характерные значения валентности некоторых атомов химических элементов. Определение по формуле

», «препарат ». Использование в рамках современного определения зафиксировано в 1884 году (нем. Valenz ). В 1789 году Уильям Хиггинс опубликовал работу, в которой высказал предположение о существовании связей между мельчайшими частицами вещества.

Однако точное и позже полностью подтверждённое понимание феномена валентности было предложено в 1852 году химиком Эдуардом Франклендом в работе, в которой он собрал и переосмыслил все существовавшие на тот момент теории и предположения на этот счёт. . Наблюдая способность к насыщению разных металлов и сравнивая состав органических производных металлов с составом неорганических соединений, Франкленд ввёл понятие о «соединительной силе », положив этим основание учению о валентности. Хотя Франкленд и установил некоторые частные закономерности, его идеи не получили развития.

Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле . В 1857 г. он показал, что углерод является четырёхосновным (четырёхатомным) элементом, и его простейшим соединением является метан СН 4 . Уверенный в истинности своих представлений о валентности атомов, Кекуле ввёл их в свой учебник органической химии: основность, по мнению автора - фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и атомный вес . В 1858 г. взгляды, почти совпадающие с идеями Кекуле, высказал в статье «О новой химической теории » Арчибальд Скотт Купер .

Уже три года спустя, в сентябре 1861 г. А. М. Бутлеров внёс в теорию валентности важнейшие дополнения. Он провёл чёткое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму ». Бутлеров ввёл представление о полноте использования сил сродства и о «напряжении сродства », то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы в зависимости от их структурного окружения приобретают различное «химическое значение ». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.

Огромным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х гг. появились первые молекулярные модели. Уже в 1864 г. А. Браун предложил использовать структурные формулы в виде окружностей с помещёнными в них символами элементов, соединённых линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 г. А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары. В 1866 г. в учебнике Кекуле появились рисунки стереохимических моделей , в которых атом углерода имел тетраэдрическую конфигурацию.

Современные представления о валентности

С момента возникновения теории химической связи понятие «валентность» претерпело существенную эволюцию. В настоящее время оно не имеет строгого научного толкования, поэтому практически полностью вытеснено из научной лексики и используется, преимущественно, в методических целях.

В основном, под валентностью химических элементов понимается способность свободных его атомов к образованию определённого числа ковалентных связей . В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся двухэлектронных двухцентровых связей. Именно такой подход принят в теории локализованных валентных связей , предложенной в 1927 году В. Гайтлером и Ф. Лондоном в 1927 г. Очевидно, что если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами . При оценке максимальной валентности следует исходить из электронной конфигурации гипотетического, т. н. «возбуждённого» (валентного) состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 - и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, с валентностью отождествляются такие характеристики молекулярной системы как степень окисления элемента, эффективный заряд на атоме, координационное число атома и т. д. Эти характеристики могут быть близки и даже совпадать количественно, но ни коим образом не тождественны друг другу . Например, в изоэлектронных молекулах азота N 2 , монооксида углерода CO и цианид-ионе CN - реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления элементов равна, соответственно, 0, +2, −2, +2 и −3. В молекуле этана (см. рис.) углерод четырёхвалентен, как и в большинстве органических соединений, тогда как степень окисления формально равна −3.

Особенно это справедливо для молекул с делокализованными химическими связями, например в азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4. Известное из многих школьных учебников правило - «Максимальная валентность элемента численно равна номеру группы в Периодической таблице» - относится исключительно к степени окисления. Понятия «постоянной валентности» и «переменной валентности» также преимущественно относятся к степени окисления.

См. также

Примечания

Ссылки

  • Угай Я. А. Валентность, химическая связь и степень окисления - важнейшие понятия химии // Соросовский образовательный журнал . - 1997. - № 3. - С. 53-57.
  • / Левченков С. И. Краткий очерк истории химии

Литература

  • Л. Паулинг Природа химической связи. М., Л.: Гос. НТИ хим. литературы, 1947.
  • Картмелл, Фоулс. Валентность и строение молекул. М.: Химия, 1979. 360 с.]
  • Коулсон Ч. Валентность. М.: Мир, 1965.
  • Маррел Дж., Кеттл С., Теддер Дж. Теория валентности. Пер. с англ. М.: Мир. 1968.
  • Развитие учения о валентности. Под ред. Кузнецова В. И. М.: Химия, 1977. 248с.
  • Валентность атомов в молекулах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - С. 126.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Валентность" в других словарях:

    ВАЛЕНТНОСТЬ, мера «соединительной способности» химического элемента, равная числу индивидуальных ХИМИЧЕСКИХ СВЯЗЕЙ, которые может образовать один АТОМ. Валентность атома определяется числом ЭЛЕКТРОНОВ на самом верхнем (валентном) уровне (внешней… … Научно-технический энциклопедический словарь

    ВАЛЕНТНОСТЬ - (от лат. valere иметь значение), или атомность, число атомов водорода или эквивалентных ему атомов или радикалов, к рое может присоединить данный атом или радикал. В. является одной из основ распределения элементов в периодической системе Д. И.… … Большая медицинская энциклопедия

    Валентность - * валентнасць * valence термин происходит от лат. имеющий силу. 1. В химии это способность атомов химических элементов образовывать определенное число химических связей с атомами др. элементов. В свете строения атома В. это способность атомов… … Генетика. Энциклопедический словарь

    - (от лат. valentia сила) в физике число, показывающее, со сколькими атомами водорода может соединяться данный атом или замещать их. В психологии валентность есть идущее из Англии обозначение для побуждающей способности. Философский… … Философская энциклопедия

    Атомность Словарь русских синонимов. валентность сущ., кол во синонимов: 1 атомность (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    ВАЛЕНТНОСТЬ - (от лат. valentia – крепкий, прочный, влиятельный). Способность слова к грамматическому сочетанию с другими словами в предложении (например, у глаголов валентность определяет способность сочетаться с подлежащим, прямым или косвенным дополнением) … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    - (от латинского valentia сила), способность атома химического элемента присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи … Современная энциклопедия

    - (от лат. valentia сила) способность атома химического элемента (или атомной группы) образовывать определенное число химических связей с другими атомами (или атомными группами). Вместо валентности часто пользуются более узкими понятиями, напр.… … Большой Энциклопедический словарь

Элемента;
> прогнозировать возможные значения валентности элемента, исходя из его размещения в периодической системе;
> определять значения валентности элементов в бинарных соединениях по их формулам;
> составлять формулы бинарных соединений, исходя из значений валентности элементов.


Значение валентности элемента при необходимости указывают в химической формуле римской цифрой над его символом: В математических расчетах и тексте для этого используют арабские цифры.

Определите валентность элементов в молекулах аммиака NH 3 и метана CH 4 .

Сведения о валентности элементов в веществе можно представить другим способом. Сначала записывают на определенном расстоянии друг от друга символы каждого атома, находящегося в молекуле. Затем одновалентный атом соединяют с другим одной черточкой, от двухвалентного атома проводят две черточки и т. д.:

Такие формулы называют графическими. Они показывают порядок соединения атомов в молекулах.

Молекула простого вещества водорода имеет графическую формулу H-H. Аналогичными являются графические формулы молекул фтора, хлора, брома, иода. Графическая формула молекулы кислорода 0=0, а молекулы азота .

Составляя такие формулы для молекул сложных веществ, следует иметь в виду, что атомы одного элемента, как правило, не соединены между собой.

Изобразите графические формулы молекул аммиака и метана.

Из графической формулы молекулы легко определить валентность каждого атома. Значение валентности равно количеству черточек, которые исходят от атома.

Для соединений ионного и атомного строения графические формулы не используют.

Валентность элемента и его размещение в периодической системе.

Некоторые элементы имеют постоянную валентность.

Это интересно

В начале XIX в. во взглядах на состав химических соединений господствовал
принцип «наибольшей простоты». Так, формулу воды записывали HO, а не H 2 O.

Гидроген и Флуор всегда одновалентны, а Оксиген - двухвалентен. Другие элементы с постоянной валентностью находятся в I-III группах периодической системы, причем значение валентности каждого элемента совпадает с номером группы. Так, элемент I группы Литий одновалентен, элемент II группы Магний двухвалентен, а элемент III группы Бор трехвалентен. Исключениями являются элементы I группы Купрум (значения валентности - I и 2) и Аурум (I и 3).

Большинство элементов имеют переменную валентность. Приводим ее значения для некоторых из них:

Плюмбум (IV группа) - 2,4;
Фосфор (V группа) - 3,5;
Хром (VI группа) - 2, 3, 6;
Сульфур (VI группа) - 2, 4, 6;
Манган (VII группа) - 2, 4, 6, 7;
Хлор (VII группа) - I, 3, 5, 7.

Из этих сведений вытекает важное правило: максимальное значение валентности элемента совпадает с номером группы, в которой он находится1. Поскольку в периодической системе восемь групп, то значения валентности элементов могут быть от I до 8.

Существует еще одно правило: значение валентности неметаллического элемента в соединении с Гидрогеном или с металлическим элементом равно 8 минус номер группы, в которой размещен элемент. Подтвердим его примерами соединений элементов с Гидрогеном. Элемент VII группы Иод в иодоводороде HI одновалентен (8-7=1), элемент VI группы Оксиген в воде H 2 O двухвалентен (8 - 6 = 2), элемент V группы Нитроген в аммиаке
NH3 трехвалентен (8 - 5 = 3).

Определение валентности элементов в бинарном соединении по его формуле.

Бинарным 2 называют соединение, образованное двумя элементами.

1 Существует несколько исключений.
2 Термин происходит от латинского слова binarius - двойной; состоящий из двух частей.

Это интересно

Формулы соединений, образованных тремя и более элементами, составляют иначе.

Выяснить значение валентности элемента в соединении нужно тогда, когда элемент имеет переменную валентность. Как выполняют такое задание , покажем на примере.

Найдем значение валентности Иода в его соединении с Оксигеном, которое имеет формулу I 2 O 5 .

Вы знаете, что Оксиген - двухвалентный элемент. Запишем значение его валентности над символом этого элемента в химической формуле соединения: . На 5 атомов Оксигена приходится 2 * 5 = 10 единиц валентности. Их нужно «распределить» между двумя атомами Иода (10: 2 = 5). Из этого следует, что Иод в соединении пятивалентен.

Формула соединения с обозначением валентности элементов -

Определите валентность элементов в соединениях с формулами CO 2 и Cl 2 O 7 .

Составление химических формул соединений по валентности элементов.

Выполним задание, противоположное предыдущему, - составим химическую формулу соединения Сульфура с Оксигеном, в котором Сульфур шестивалентен.

Сначала запишем символы элементов, образующих соединение, и укажем над ними значения валентности: . Затем находим наименьшее число, которое делится без остатка на оба значения валентности. Это число 6. Делим его на значение валентности каждого элемента и получаем соответствующие индексы в химической формуле соединения: .

Для проверки химической формулы используют правило: произведения значений валентности каждого элемента на количество его атомов в формуле одинаковы. Эти произведения для только что выведенной химической формулы: 6 -1 = 2-3.

Запомните, что в формулах соединений, в том числе бинарных, сначала записывают символы металлических элементов, а потом - неметаллических. Если соединение образовано только неметаллическими элементами и среди них есть Оксиген или Флуор, то эти элементы записывают последними.

Это интересно

Порядок записи элементов в формуле соединения Оксигена с Флуором такой: OF 2 .

Составьте химические формулы соединений Бора с Флуором и Оксигеном.

Причины соединения атомов друг с другом и объяснение значений валентности элементов связаны со строением атомов. Этот материал будет рассмотрен в 8 классе.

Выводы

Валентность - это способность атома соединяться с определенным количеством таких же или других атомов.

Существуют элементы с постоянной и переменной валентностью. Гидроген и Флуор всегда одновалентны, Оксиген - двухвалентен.

Значения валентности элементов отражают в графических формулах молекул соответствующим количеством черточек возле атомов.

Произведения значений валентности каждого элемента на количество его атомов в формуле бинарного соединения одинаковы.

?
75. Что такое валентность? Назовите максимальное и минимальное значения валентности химических элементов.

76. Укажите символы элементов, имеющих постоянную валентность: К, Ca, Cu, Cl, Zn, F, Н.

77. Определите валентность всех элементов в соединениях, которые имеют такие формулы:

78. Определите валентность элементов в соединениях с такими формулами:
a) BaH 2 , V 2 O 5 , MoS 3 , SiF 4 , Li 3 P; б) CuS, TiCI 4 , Ca 3 N 2 , P 2 O 3 , Mn 2 O 7 .

79. Составьте формулы соединений, образованных элементами с постоян­ной валентностью: Na...H..., Ba...F..., Al...О..., AI...F....

80. Составьте формулы соединений, используя указанные валентности некоторых элементов:

81. Напишите формулы соединений с Оксигеном таких элементов: а) Лития; б) Магния; в) Осмия (проявляет валентность 4 и 8).

82. Изобразите графические формулы молекул CI 2 O, PH 3 , SO 3 .

83. Определите валентность элементов по графическим формулам молекул:

На досуге

«Конструируем» молекулы


Рис. 45. Модель молекулы метана CH 4

По графическим формулам можно изготовлять модели молекул (рис. 45). Самым удобным материалом для этого является пластилин. Из него делают шарикиатомы (для атомов различных элементов используют пластилин разного цвета). Шарики соединяют с помощью спичек; каждая спичка заменяет одну черточку в графической формуле молекулы.

Изготовьте модели молекул H 2 , O 2 , H 2 O (имеет угловую форму), NH3 (имеет форму пирамиды), CO 2 (имеет линейную форму).

Одной из важных в изучении школьных тем является курс, касающийся валентности. Об этом пойдет речь в статье.

Валентность – что это такое?

Валентность в химии означает свойство атомов химического элемента привязывать к себе атомы другого элемента. В переводе с латыни – сила. Выражается она в числах. Например, валентность водорода всегда будет равняться единице. Если взять формулу воды – Н2О, ее можно представить в виде Н – О – Н. Один атом кислорода смог связать с собой два атома водорода. Значит, количество связей, которые создает кислород, равно двум. И валентность этого элемента будет равняться двум.

В свою очередь, водород будет двухвалентным. Его атом может быть соединен только с одним атомом химического элемента. В данном случае с кислородом. Говоря точнее, атомы в зависимости от валентности элемента, образуют пары электронов. Сколько таких пар образовано – таковой и будет валентность. Числовое значение именуется индексом. У кислорода индекс 2.

Как определить валентность химических элементов по таблице Дмитрия Менделеева

Посмотрев на таблицу элементов Менделеева, можно заметить вертикальные ряды. Их называют группами элементов. От группы зависит и валентность. Элементы первой группы имеют первую валентность. Второй – вторую. Третьей – третью. И так далее.

Есть также элементы с постоянным индексом валентности. Например, водород, группа галогенов, серебро и так далее. Их необходимо выучить обязательно.


Как определить валентность химических элементов по формулам?

Иногда сложно определить по таблице Менделеева валентность. Тогда нужно смотреть конкретную химическую формулу. Возьмем оксид FeO. Здесь и у железа, как у кислорода, индекс валентности будет равняться двум. А вот в оксиде Fe2O3 – по-другому. Железо будет трехвалентным.


Нужно помнить всегда разные способы определения валентности и не забывать их. Знать постоянные ее числовые значения. У каких элементов они есть. И, конечно, пользоваться таблицей химических элементов. А также изучать отдельные химические формулы. Лучше представлять их в схематическом виде: Н – О – Н, например. Тогда видны связи. И количество черточек (тире) будет числовым значением валентности.

Часто люди слышат слово «валентность», не до конца понимая, что это такое. Так что такое валентность? Валентность - один из терминов, которые употребляются в химическом строении. Валентность, по сути, определяет возможность атома образовывать химические связи. Количественно валентность - это число связей, в которых участвует атом.

Что такое валентность элемента

Валентность - это показатель способности атома присоединить другие атомы, образовав с ними, внутри молекулы, химические связи. Число связей атома равно числу его неспаренных электронов. Эти связи называют ковалентными.

Неспаренный электрон - это свободный электрон на внешней оболочке атома, который соединяется в пары с внешним электроном иного атома. Каждая пара таких электронов называется «электронной», а каждый из электронов - валентным. Так определение слова «валентность» - это количество электронных пар, с помощью которых один атом связан с другим атомом.

Валентность схематично можно изобразить в структурных химических формулах. Когда это не нужно, используют простые формулы, где валентность не указана.

Максимальная валентность химических элементов из одной группы периодической системы Менделеева равна порядковому номеру этой группы. Атомы одного и того же элемента могут иметь разную валентность в разных химических соединениях. Полярность ковалентных связей, которые образуются, при этом не учитывается. Вот почему валентность не имеет знака. Также валентность не может быть отрицательной величиной и равняться нулю.

Иногда понятие «валентность» приравнивают к понятию «степень окисления», но это не так, хотя иногда эти показатели действительно совпадают. Степень окисления - это формальный термин, который обозначает возможный заряд, который бы атом получил, если его электронные пары перешли бы к более электрически отрицательным атомам. Тут степень окисления может иметь какой то знак и выражена в единицах заряда. Этот термин распространен в неорганической химии, ведь в неорганических соединениях тяжело судить о валентности. И, наоборот, в органической химии используют валентность, потому что молекулярное строение имеет большая часть органических соединений.

Теперь Вы знаете, что такое валентность химических элементов!

ОПРЕДЕЛЕНИЕ

Под валентностью подразумевается свойство атома данного элемента присоединять или замещать определенное число атомов другого элемента.

Мерой валентности поэтому может быть число химических связей, образуемых данным атомом с другими атомами. Таким образом, в настоящее время под валентностью химического элемента обычно понимается его способность (в более узком смысле - мера его способности) к образованию химических связей (рис. 1). В представлении метода валентных связей числовое значение валентности соответствует числу ковалентных связей, которые образует атом.

Рис. 1. Схематическое образование молекул воды и аммиака.

Таблица валентности химических элементов

Первоначально за единицу валентности принимали валентность водорода. Валентность другого элемента при этом выражали числом атомов водорода, которые присоединяет к себе или замещает один атом этого элемента (т.н. валентность по водороду). Например, в соединениях состава HCl, H 2 O, NH 3 , CH 4 валентность по водороду хлора равна единице, кислорода - двум, азота - трем, углерода - четырем.

Потом было решено, что определить валентность искомого элемента можно и по кислороду, валентность которого, как правило, равна двум. В этом случае валентность химического элемента рассчитывается как удвоенное число атомов кислорода, которое может присоединить один атом данного элемента (т.н. валентность по кислороду). Например, в соединениях составаN 2 O, CO, SiO 2 , SO 3 валентность по кислороду азота равна единице, углерода - двум, кремния - четырем, серы - шести.

На деле оказалось, что у большинства химических элементов значения валентности в водородных и в кислородных соединениях различны: например, валентность серы по водороду равна двум (H 2 S), а по кислороду - шести (SO 3). Кроме того, большинство элементов проявляют в своих соединениях различную валентность. Например, углерод образует два оксида: монооксид CO и диоксид CO 2 . В первом из которых валентность углерода равна II, а во втором - четырем. Откуда следует, что охарактеризовать валентность элемента каким-нибудь одним числом, как правило, нельзя.

Высшая и низшая валентности химических элементов

Значения высшей и низшей валентностей химического элемента можно определить при помощи Периодической таблицы Д.И. Менделеева. Высшая валентность элемента совпадает с номером группы, в которой он расположен, а низшая представляет собой разность между числом 8 и номером группы. Например, бром расположен в VIIA группе, значит его высшая валентность равна VII, а низшая - I.

Существуют элементы с т.н. постоянной валентностью (металлы IA и IIA групп, алюминий водород, фтор, кислород), которые в своих соединениях проявляют единственную степень окисления, которая чаще всего совпадает с номером группы Периодической таблицы Д.И. Менделеева, где они расположены).

Элементы, для которых характерны несколько значений валентности (причем не всегда это высшая и низшая валентность) называются переменновалентными. Например, для серы характерны валентности II, IV и VI.

Для того, чтобы легче было запомнить сколько и какие валентности характерны для конкретного химического элемента используют таблицы валентности химических элементов, которые выглядят следующим образом:

Примеры решения задач

ПРИМЕР 1

Задание Валентность III характерна для: а)Ca; б) P; в) O; г)Si?
Решение

а) Кальций - металл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность кальция равна II. Ответ неверный.

б) Фосфор - неметалл. Относится к группе химических элементов с переменной валентностью: высшая определяется номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. равна V, а низшая -разностью между числом 8 и номером группы, т.е. равна III. Это верный ответ.

Ответ Вариант (б)

ПРИМЕР 2

Задание Валентность III характерна для: а)Be; б) F; в) Al; г)C?
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем рассматривать каждый из предложенных вариантов в отдельности.

а) Бериллий - металл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность бериллия равна II. Ответ неверный.

б) Фтор - неметалл. Характеризуется единственно возможным значением валентности равным I. Ответ неверный.

в) Алюминий - металл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность алюминия равна III. Это верный ответ.

Ответ Вариант (в)