Химический процесс получения водорода. Получение водорода

Имя изобретателя: Ермаков Виктор Григорьевич
Имя патентообладателя: Ермаков Виктор Григорьевич
Адрес для переписки: 614037, Пермь, ул.Мозырская, д.5, кв.70 Ермакову Виктору Григорьевичу
Дата начала действия патента: 1998.04.27

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550 o C . Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В ) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом.

Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода.

Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500 o C , описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977) . Этот способ сложен, энергоемок и трудноосуществим.

Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981) .

К недостаткам этого способа относятся:

    невозможность получения водорода в больших количествах;

    энергоемкость;

    сложность устройства и использование дорогих материалов;

    невозможность осуществления этого способа при использовании технической воды, т. к. при температуре насыщенного пара на стенках устройства и на катализаторе будут образовываться отложения и накипь, что приведет к ее быстрому выходу из строя;

    для сбора полученных водорода и кислорода используются специальные сборные емкости, что делает способ пожаро- и взрывоопасным.

Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла.

Это достигается тем , что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550 o C и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода .

ПРЕДЛОЖЕННЫЙ СПОСОБ ОСНОВАН НА СЛЕДУЮЩЕМ

    Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.

    Температура воспламенения водорода от 580 до 590 o C , разложение воды должно быть ниже порога зажигания водорода.

    Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам.

    Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве.

    Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов.

Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок .

Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.

Первый вариант
Работа и устройство установки первого варианта (схема 1 ).

Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с .

Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.

Один литр воды содержит 124 л водорода и 622 л кислорода , в пересчете на калории составляет 329 ккал .

Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/.

Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C , свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.

В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В . Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм .

Труба - электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.

Выход водорода по отношению к кислороду 1:5 .

Второй вариант
Работа и устройство установки по второму варианту (схема 2 ).

Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС /.

Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения - "пуск" и "работа".

Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1 / до 550 o C . Теплообменник /То / - труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.

Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.

Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, - образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:

2H 2 + O 2 = 2H 2 O + тепло

В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС .

После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения "пуск" переводится в положение "работа", после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.

Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.

Недостаток силовых установок для ВЭС - это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1 /, 227 котлов /К2 /. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС , дешевой электрической энергии и тепле.

Третий вариант
3-й вариант силовой установки (схема 3 ).

Это точно такая же силовая установка, как и вторая.

Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C . Давление пара 250 ат . Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч .

Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м . Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА - 380 х 6000 В .

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

    Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.

    Небольшой расход воды при получении электроэнергии и тепла.

    Простота способа.

    Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.

    Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.

    Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.

    В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.

    Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое - воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды , включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 - 550 o C , пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

В ограниченном масштабе применяют способ взаимодействия водяного пара с фосфором и термического разложения углеводородов:

СН 4 (1000 °С) = С + 2 Н 2 (выделяется в виде газа).

В некоторых случаях водород получают в результате каталитического расщепления метанола с водяным паром

СН 3 ОН + Н 2 О (250 °С) = СО 2 + 3 Н 2 ,

или в результате каталитического термического разложения аммиака

2 NH 3 (950 °С) --> N 2 + 3 H 2 .

Однако эти исходные соединения получают в больших масштабах из водорода; между тем получение из них водорода является особенно простым и может быть использовано в таких производствах, которые потребляют его в сравнительно малых количествах (менее 500 м 3 /сутки).

Важнейшие методы получения водорода.

1. Растворение цинка в разбавленной соляной кислоте

Zn + 2 HCl = ZnCl 2 + H 2

Этот способ чаще всего применяют в лабораториях.

Вместо соляной кислоты можно также использовать разбавленную серную кислоту; однако если концентрация последней слишком высока, то выделяющийся газ легко загрязняется SO 2 и H 2 S. При использовании не вполне чистого цинка образуются ещё и другие соединения, загрязняющие водород, например AsH 3 и PH 3 . Их присутствие и обусловливает неприятный запах получаемого этим способом водорода.

Для очистки водород пропускают через подкисленный раствор перманганата или бихромата калия, а затем через раствор едкого кали, а также через концентрированную серную кислоту или через слой силикагеля для освобождения от влаги. Мельчайшие капельки жидкости, захваченные водородом при его получении и заключённые в пузырьках газа, лучше всего устранять при помощи фильтра из плотно спрессованной обычной или стеклянной ваты.

Если приходится пользоваться чистым цинком, то к кислоте необходимо добавить две капли платинохлористоводородной кислоты или сернокислой меди, иначе цинк не вступает в реакцию.

2. Растворение алюминия или кремния в едкой щёлочи

2 Al + 2 NaOH + 6 H 2 O = 2 Na + 3 H 2

Si + 2 KOH + H 2 O = Na 2 SiO 3 + 2 H 2

Эти реакции применяли раньше для получения водорода в полевых условиях (для наполнения аэростатов). Для получения 1 м 3 водорода (при 0 °С и 760 мм рт. ст.) требуется только 0,81 кг алюминия или 0,63 кг кремния по сравнению с 2,9 кг цинка или 2,5 кг железа.

Вместо кремния также применяют ферросилиций (кремниевый метод). Смесь ферросилиция и раствора едкого натра, введённая в употребление незадолго до первой мировой войны во французской армии под названием гидрогенита, обладает свойством после поджигания тлеть с энергичным выделением водорода по следующей реакции:

Si + Ca(OH) 2 + 2 NaOH = Na 2 SiO 3 + CaO + 2 H 2 .

3. Действие натрия на воду

2 Na + 2 H 2 O = 2 NaOH + H 2

Ввиду того, что чистый натрий реагирует в этом случае слишком энергично, его чаще вводят в реакцию в виде амальгамы натрия; этот способ применяют преимущественно для получения водорода, когда им пользуются для восстановления "in statu nascendi". Аналогично натрию с водой реагируют и остальные щелочные и щелочноземельные металлы.

4. Действие гидрида кальция на воду

СaН 2 + 2 H 2 O = Сa(OH) 2 + 2 H 2

Этот метод является удобным способом получения водорода в полевых условиях. Для получения 1 м 3 водорода теоретически необходимо 0,94 кг СаН 2 и, кроме воды, не требуется никаких других реактивов.5. Пропускание водяного пара над раскалённым докрасна железом

4 Н 2 О + 3 Fe = Fe 3 O 4 + 4 H 2

При помощи этой реакции в 1783 г. Лавуазье впервые аналитически доказал состав воды. Образующийся при этой реакции оксид железа нетрудно восстановить до металлического железа, пропуская над ним генераторный газ так, что пропускание водяного пара над одним и тем же железом можно провести произвольное число раз. Этот метод долгое время имел большое промышленное значение. В небольших масштабах его применяют и в настоящее время.

6. Пропускание водяного пара над коксом.

При температуре выше 1000 °С реакция идёт главным образом по уравнению

Н 2 О + С = СО + Н 2 .

Вначале получают водяной газ, т. е. смесь водорода и монооксида углерода с примесью небольших количеств углекислого газа и азота. От углекислого газа легко освобождаются промыванием водой под давлением. Монооксид углерода и азот удаляют при помощи процесса Франка-Каро-Линде, т. е. сжижением этих примесей, что достигается охлаждением жидким воздухом до -200 °С. Следы СО удаляют, пропуская газ над нагретой натронной известью

СО + NaOH = HCOONa - формиат натрия.

Этот метод даёт очень чистый водород, который используют, например, для гидрогенизации жиров.

Чаще, однако, водяной газ в смеси с парами воды при температуре 400 °С пропускают над соответствующими катализаторами, например над оксидом железа или кобальта (контактный способ получения водяного газа). В этом случае СО реагирует с водой по уравнению

СО + Н 2 Опар = СО 2 + Н 2 ("конверсия СО").

Образующийся при этом СО 2 поглощается водой (под давлением). Остаток монооксида углерода (~1 об. %) вымывают аммиачным раствором однохлористой меди. Применяемый в этом способе водяной газ получают пропусканием водяного пара над раскалённым коксом. В последнее время всё больше используют взаимодействие водяного пара с пылевидным углём (превращение угольной пыли в газы). Полученный таким способом водяной газ содержит обычно большое количество водорода. Выделяемый из водяного газа водород (содержащий азот) применяют главным образом для синтеза аммиака и гидрирования угля.

7. Фракционное сжиженнее коксового газа.

Подобно получению из водяного газа, водород можно получать фракционным сжижением коксового газа, основной составной частью которого является водород.

Сначала коксовый газ, из которого предварительно удаляют серу, очищают от СО 2 промыванием водой под давлением с последующей обработкой раствором едкого натра. Затем постепенно освобождают от остальных примесей ступенчатой конденсацией, проводимой до тех пор, пока не остаётся только водород; от других примесей его очищают промыванием сильно охлаждённым жидким азотом. Этот метод применяют главным образом, чтобы получить водород для синтеза аммиака.

8. Взаимодействие метана с водяным паром (разложение метана).

Метан взаимодействует с водяным паром в присутствии соответствующих катализаторов при нагревании (1100 °С) по уравнению

СН 4 + Н 2 Опар + 204 кДж (при постоянном давлении).

Необходимое для реакции тепло следует подводить или извне, или применяя "внутреннее сгорание", т. е. подмешивая воздух или кислород таким образом, чтобы часть метана сгорала до диоксида углерода

СН 4 + 2 О 2 = СО 2 + 2 Н 2 Опар + 802 кДж (при постоянном давлении).

При этом соотношение компонентов выбирают с таким расчётом, чтобы реакция в целом была экзотермичной

12 СН 4 + 5 Н 2 Опар + 5 О 2 = 29 Н2 + 9 СО + 3 СО 2 + 85,3 кДж.

Из монооксида углерода посредством "конверсии СО" также получают водород. Удаление диоксида углерода производят вымыванием водой под давлением. Получаемый методом разложения метана водород используют главным образом при синтезе аммиака и гидрировании угля.

9. Взаимодействие водяного пара с фосфором (фиолетовым).

2 Р + 8 Н 2 О = 2 Н 3 РО 4 + 5 Н 2

Обычно процесс проводят таким образом: пары фосфора, получающиеся при восстановлении фосфата кальция в электрической печи, пропускают вместе с водяным паром над катализатором при 400-600 °С (с повышением температуры равновесие данной реакции смещается влево). Взаимодействие образовавшейся вначале Н 3 РО 4 с фосфором с образованием Н 3 РО 3 и РН 3 предотвращают быстрым охлаждением продуктов реакции (закалка). Этот метод применяют прежде всего, если водород идёт для синтеза аммиака, который затем перерабатывают на важное, не содержащее примесей удобрение - аммофос (смесь гидро- и дигидрофосфата аммония).

10. Электролитическое разложение воды.

2 H 2 O = 2 H 2 + O 2

Чистая вода практически не проводит тока, поэтому к ней прибавляются электролиты (обычно КОН). При электролизе водород выделяется на катоде. На аноде выделяется эквивалентное количество кислорода, который, следовательно, в этом методе является побочным продуктом.

Получающийся при электролизе водород очень чист, если не считать примеси небольших количеств кислорода, который легко удалить пропусканием газа над подходящими катализаторами, например над слегка нагретым палладированным асбестом. Поэтому его используют как для гидрогенизации жиров, так и для других процессов каталитического гидрирования. Водород, получаемый этим методом довольно дорог.

Применение водорода.

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

Получение.

В ограниченном масштабе применяют способ взаимодействия водяного пара с фосфором и термического разложения углеводородов:

СН 4 (1000 °С) = С + 2 Н 2 (выделяется в виде газа).

В некоторых случаях водород получают в результате каталитического расщепления метанола с водяным паром

СН 3 ОН + Н 2 О (250 °С) = СО 2 + 3 Н 2 ,

или в результате каталитического термического разложения аммиака

2 NH 3 (950 °С) --> N 2 + 3 H 2 .

Однако эти исходные соединения получают в больших масштабах из водорода; между тем получение из них водорода является особенно простым и может быть использовано в таких производствах, которые потребляют его в сравнительно малых количествах (менее 500 м 3 /сутки).

Важнейшие методы получения водорода.

1. Растворение цинка в разбавленной соляной кислоте

Zn + 2 HCl = ZnCl 2 + H 2

Этот способ чаще всего применяют в лабораториях.

Вместо соляной кислоты можно также использовать разбавленную серную кислоту; однако если концентрация последней слишком высока, то выделяющийся газ легко загрязняется SO 2 и H 2 S. При использовании не вполне чистого цинка образуются ещё и другие соединения, загрязняющие водород, например AsH 3 и PH 3 . Их присутствие и обусловливает неприятный запах получаемого этим способом водорода.

Для очистки водород пропускают через подкисленный раствор перманганата или бихромата калия, а затем через раствор едкого кали, а также через концентрированную серную кислоту или через слой силикагеля для освобождения от влаги. Мельчайшие капельки жидкости, захваченные водородом при его получении и заключённые в пузырьках газа, лучше всего устранять при помощи фильтра из плотно спрессованной обычной или стеклянной ваты.

Если приходится пользоваться чистым цинком, то к кислоте необходимо добавить две капли платинохлористоводородной кислоты или сернокислой меди, иначе цинк не вступает в реакцию.

2. Растворение алюминия или кремния в едкой щёлочи

2 Al + 2 NaOH + 6 H 2 O = 2 Na + 3 H 2

Si + 2 KOH + H 2 O = Na 2 SiO 3 + 2 H 2

Эти реакции применяли раньше для получения водорода в полевых условиях (для наполнения аэростатов). Для получения 1 м 3 водорода (при 0 °С и 760 мм рт. ст.) требуется только 0,81 кг алюминия или 0,63 кг кремния по сравнению с 2,9 кг цинка или 2,5 кг железа.

Вместо кремния также применяют ферросилиций (кремниевый метод). Смесь ферросилиция и раствора едкого натра, введённая в употребление незадолго до первой мировой войны во французской армии под названием гидрогенита, обладает свойством после поджигания тлеть с энергичным выделением водорода по следующей реакции:

Si + Ca(OH) 2 + 2 NaOH = Na 2 SiO 3 + CaO + 2 H 2 .

3. Действие натрия на воду

2 Na + 2 H 2 O = 2 NaOH + H 2

Ввиду того, что чистый натрий реагирует в этом случае слишком энергично, его чаще вводят в реакцию в виде амальгамы натрия; этот способ применяют преимущественно для получения водорода, когда им пользуются для восстановления "in statu nascendi". Аналогично натрию с водой реагируют и остальные щелочные и щелочноземельные металлы.

4. Действие гидрида кальция на воду

СaН 2 + 2 H 2 O = Сa(OH) 2 + 2 H 2

Этот метод является удобным способом получения водорода в полевых условиях. Для получения 1 м 3 водорода теоретически необходимо 0,94 кг СаН 2 и, кроме воды, не требуется никаких других реактивов.

5. Пропускание водяного пара над раскалённым докрасна железом

4 Н 2 О + 3 Fe = Fe 3 O 4 + 4 H 2

При помощи этой реакции в 1783 г. Лавуазье впервые аналитически доказал состав воды. Образующийся при этой реакции оксид железа нетрудно восстановить до металлического железа, пропуская над ним генераторный газ так, что пропускание водяного пара над одним и тем же железом можно провести произвольное число раз. Этот метод долгое время имел большое промышленное значение. В небольших масштабах его применяют и в настоящее время.

6. Пропускание водяного пара над коксом.

При температуре выше 1000 °С реакция идёт главным образом по уравнению

Н 2 О + С = СО + Н 2 .

Вначале получают водяной газ, т. е. смесь водорода и монооксида углерода с примесью небольших количеств углекислого газа и азота. От углекислого газа легко освобождаются промыванием водой под давлением. Монооксид углерода и азот удаляют при помощи процесса Франка-Каро-Линде, т. е. сжижением этих примесей, что достигается охлаждением жидким воздухом до -200 °С. Следы СО удаляют, пропуская газ над нагретой натронной известью

СО + NaOH = HCOONa - формиат натрия.

Этот метод даёт очень чистый водород, который используют, например, для гидрогенизации жиров.

Чаще, однако, водяной газ в смеси с парами воды при температуре 400 °С пропускают над соответствующими катализаторами, например над оксидом железа или кобальта (контактный способ получения водяного газа). В этом случае СО реагирует с водой по уравнению

СО + Н 2 Опар = СО 2 + Н 2 ("конверсия СО").

Образующийся при этом СО 2
поглощается водой (под давлением). Остаток монооксида углерода (~1 об. %) вымывают аммиачным раствором однохлористой меди. Применяемый в этом способе водяной газ получают пропусканием водяного пара над раскалённым коксом. В последнее время всё больше используют взаимодействие водяного пара с пылевидным углём (превращение угольной пыли в газы). Полученный таким способом водяной газ содержит обычно большое количество водорода. Выделяемый из водяного газа водород (содержащий азот) применяют главным образом для синтеза аммиака и гидрирования угля.

7. Фракционное сжиженнее коксового газа.

Подобно получению из водяного газа, водород можно получать фракционным сжижением коксового газа, основной составной частью которого является водород.

Сначала коксовый газ, из которого предварительно удаляют серу, очищают от СО 2 промыванием водой под давлением с последующей обработкой раствором едкого натра. Затем постепенно освобождают от остальных примесей ступенчатой конденсацией, проводимой до тех пор, пока не остаётся только водород; от других примесей его очищают промыванием сильно охлаждённым жидким азотом. Этот метод применяют главным образом, чтобы получить водород для синтеза аммиака.

8. Взаимодействие метана с водяным паром (разложение метана).

Метан взаимодействует с водяным паром в присутствии соответствующих катализаторов при нагревании (1100 °С) по уравнению

СН 4 + Н 2 Опар + 204 кДж (при постоянном давлении).

Необходимое для реакции тепло следует подводить или извне, или применяя "внутреннее сгорание", т. е. подмешивая воздух или кислород таким образом, чтобы часть метана сгорала до диоксида углерода

СН 4 + 2 О 2 = СО 2 + 2 Н 2 Опар + 802 кДж (при постоянном давлении).

При этом соотношение компонентов выбирают с таким расчётом, чтобы реакция в целом была экзотермичной

12 СН 4 + 5 Н 2 Опар + 5 О 2 = 29 Н2 + 9 СО + 3 СО 2 + 85,3 кДж.

Из монооксида углерода посредством "конверсии СО" также получают водород. Удаление диоксида углерода производят вымыванием водой под давлением. Получаемый методом разложения метана водород используют главным образом при синтезе аммиака и гидрировании угля.

9. Взаимодействие водяного пара с фосфором (фиолетовым).

2 Р + 8 Н 2 О = 2 Н 3 РО 4 + 5 Н 2

Обычно процесс проводят таким образом: пары фосфора, получающиеся при восстановлении фосфата кальция в электрической печи, пропускают вместе с водяным паром над катализатором при 400-600 °С (с повышением температуры равновесие данной реакции смещается влево). Взаимодействие образовавшейся вначале Н 3 РО 4 с фосфором с образованием Н 3 РО 3 и РН 3 предотвращают быстрым охлаждением продуктов реакции (закалка). Этот метод применяют прежде всего, если водород идёт для синтеза аммиака, который затем перерабатывают на важное, не содержащее примесей удобрение - аммофос (смесь гидро- и дигидрофосфата аммония).

10. Электролитическое разложение воды.

2 H 2 O = 2 H 2 + O 2

Чистая вода практически не проводит тока, поэтому к ней прибавляются электролиты (обычно КОН). При электролизе водород выделяется на катоде. На аноде выделяется эквивалентное количество кислорода, который, следовательно, в этом методе является побочным продуктом.

Получающийся при электролизе водород очень чист, если не считать примеси небольших количеств кислорода, который легко удалить пропусканием газа над подходящими катализаторами, например над слегка нагретым палладированным асбестом. Поэтому его используют как для гидрогенизации жиров, так и для других процессов каталитического гидрирования. Водород, получаемый этим методом довольно дорог.

Электролизом воды называется физико-химический процесс, при котором под действием постоянного электрического тока вода разлагается на кислород и водород. Постоянное напряжение для ячейки получается, как правило, выпрямлением трехфазного переменного тока. В электролитической ячейке дистиллированная вода подвергается электролизу, при этом химическая реакция идет по следующей известной схеме: 2Н2O + энергия -> 2H2+O2.

В результате разделения на части молекул воды, водорода по объему получается вдвое больше чем кислорода. Перед использованием газы в установке обезвоживаются и охлаждаются. Выходные трубопроводы установки всегда защищены возвратными клапанами для предотвращения возгораний.

Непосредственно каркас конструкции изготавливается из стальных труб и толстых листов стали, что придает всей конструкции высокую жесткость и механическую прочность. Газовые резервуары обязательно тестируются под давлением.

Электронный блок устройства контролирует все стадии процесса производства, и позволяет оператору следить за параметрами на панели и на манометрах, чем обеспечивает безопасность. Эффективность электролиза такова, что из 500 мл воды получается около кубометра обоих газов с затратами около 4 квт/ч электрической энергии.

По сравнению с прочими методами получения водорода, электролиз воды отличается целым рядом преимуществ. Во-первых, в ход идет доступное сырье - деминерализованная вода и электроэнергия. Во-вторых, во время производства отсутствуют загрязняющие выбросы. В-третьих, процесс целиком автоматизирован. Наконец, на выходе получается достаточно чистый (99,99%) продукт.

Поэтому электролизные установки и получаемый на них водород, находят сегодня применение во многих отраслях: в химическом синтезе, в термической обработке металлов, в производстве растительных масел, в стекольной промышленности, в электронике, в системах охлаждения в энергетике и т. д.


Установка для электролиза устроена следующим образом. Снаружи расположена панель управления генератором водорода. Далее установлены выпрямитель, трансформатор, распределительное устройство, система деминерализованной воды и блок для ее пополнения.

В электролитической ячейке на стороне катодной пластины получается водород, а на стороне анодной - кислород. Здесь газы покидают ячейку. Они разделяются и подаются в сепаратор, затем охлаждаются деминерализованной водой, после чего отделяются под действием гравитации от жидкой фазы. Водород направляется в промыватель, где из газа удаляются капли щелока и происходит охлаждение в змеевике.

Наконец, водород проходит фильтрацию (фильтр на верху сепаратора), где капельки воды полностью устраняются, и поступает в сушильную камеру. Кислород обычно направляется в атмосферу. Деминерализованная вода подается в промыватель насосом.

Щелок используют здесь для повышения электропроводности воды. Если эксплуатация электролизера идет штатно, то щелок пополняют единожды в год в небольшом количестве. Твердое едкое кали кладется в резервуар для щелока, заполненный на две трети деминерализованной водой, после чего насос перемешивает его в раствор.

Система водяного охлаждения электролизера служит двум целям: охлаждает щелок до 80-90°C и охлаждает полученные газы до 40°C.

Система анализа газа принимает пробы водорода. Капли щелока в сепараторе отделяются, газ подается к анализатору, давление понижается, проверяется содержание в водороде кислорода. Прежде чем водород будет направлен в резервуар, во влагомере будет измерена точка росы. Сигнал будет подан оператору или на ПК, чтобы решить, подходит ли полученный водород для направления в накопительный резервуар, соответствует ли газ условиям приема.

Рабочее давление установки регулируется при помощи системы автоматического контроля. Датчик получает информацию о давлении внутри электролизера, затем данные направляются на ПК, где сравниваются с заданными параметрами. Далее результат преобразуется в сигнал порядка 10 мА, и рабочее давление удерживается на заданном уровне.


Рабочая температура установки регулируется пневматическим мембранным клапаном. Компьютер аналогичным образом сравнит температуру с заданной, и разница будет преобразована в соответствующий сигнал для .

Безопасность работы электролизера обеспечивается системой блокировки и сигнализации. В случае утечки водорода, обнаружение происходит автоматически детекторами. Программа при этом сразу отключает генерацию и запускает вентилятор для проветривания помещения. Переносной детектор утечки находится обязательно у оператора. Все эти меры позволяют достичь высокой степени безопасности при эксплуатации электролизеров.

Вам понадобится

  • пластиковая бутылка емкостью 1,5 литра, резиновый шарик, кастрюля с водой, гидроксид калия или гидроксид натрия (каустическая сода, едкий натр), 40 сантиметров проволоки из алюминия, кусочек цинка, стеклянная емкость с узким горлышком, раствор соляной кислоты, резиновый шарик, аккумулятор 12 Вольт, провод из меди, провод из цинка, стеклянный сосуд, вода, поваренная соль, клей, шприц.

Инструкция

Заполните наполовину водой пластиковую бутылку. Киньте в бутылку и растворите в воде 10-15 грамм едкого натра или соды. Поставьте бутылку в кастрюлю с водой. Нарежьте алюминиевую проволоку кусочками по 5 сантиметров длиной и киньте в бутылку. Наденьте на горловину бутылки резиновый шарик. Выделяемый во время реакции с раствором щелочи будет в резиновом шарике. Эта происходит с бурным выделением - будьте осторожны!

Налейте в стеклянную емкость соляной и киньте в нее цинк. Наденьте на горловину стеклянной емкости воздушный шарик. Выделяемый во время реакции с соляной кислотой водород будет собираться в воздушном шаре.

Налейте в стеклянную емкость воду и размешайте в ней 4–5 столовых ложек поваренной соли. Затем просуньте в шприц со стороны поршня медный провод. Герметизируйте это место клеем. Опустите шприц в сосуд с соляным раствором и отодвигая поршень, заполните шприц. Подключите медный провод к отрицательному выводу аккумулятора. Опустите рядом со шприцом в раствор соли цинковый провод и подключите его к положительному выводу аккумулятора. В результате реакции электролиза около медного провода выделяется водород, который вытесняет , контакт медного провода с соляным раствором прервется, и реакция прекратится.

Современное название водороду – гидроген, дал французский знаменитый химик Лавуазье. Название обозначает – гидро (вода) и генез (рождающий). Открыл «горючий воздух», как его раньше называли, Кавендиш в 1766 году, он же и доказал, что водород легче воздуха. В школьной программе по химии присутствуют уроки, в которых рассказывается не только об этом газе, но и способе его получения.

Вам понадобится

  • Колба Вюрца, гидроксид натрия, алюминий в гранулах и пудра, мерный стакан, алюминиевая ложка, штатив,капельная воронка. Защитные очки и перчатки, лучина, зажигалка или спички.

Инструкция

Первый способ.
Возьмите колбу Вюрца, в которой к горловине припаяна стеклянная отводная трубка, и капельную воронку. Соберите систему на штативе, прикрепив колбу зажимом и установив ее на поверхность стола. Сверху в нее вставьте капельную воронку с краником.

Проверьте плотное закрепление всех системы – колбы Вюрца и зажима. Возьмите . Он должен быть в гранулах. Положите его в колбу. Налейте в капельную воронку более-менее насыщенный раствор . Приготовьте две емкости для сдерживания , а также лучину и зажигалку или спички, чтобы ее поджечь.

Влейте из капельной воронки в колбу Вюрца гидроксид натрия, для этого откройте кран на воронке. Подождите, через некоторое начнется выделение водорода. Водород, с небольшим содержанием , заполнит колбу полностью. Чтобы ускорить этот процесс, нагрейте колбу Вюрца снизу при помощи горелки.