Http двойкам нет рф явление фотоэффекта. Фотоэффект и его законы

§ 3 . Фотоэффект

Внешний фотоэффект – это явление вырывания электронов из твердых и жидких тел под действием света.

Обнаружил явление фотоэффекта Генрих Герц (1857 – 1894) в 1887 году. Он заметил, что проскакивание искры между шариками разрядника значительно облегчается, если один из шариков осветить ультрафиолетовыми лучами.

Затем в1888-1890 -х годах фотоэффект исследовал Александр Григорьевич Столетов (1839 – 1896).

Он установил, что:

    наибольшее действие оказывают ультрафиолетовые лучи;

    с ростом светового потока растет фототок;

    заряд частиц, вылетающих из твердых и жидких тел под действием света отрицателен.

Параллельно со Столетовым фотоэффект исследовал немецкий ученый Филипп Ленард (1862 – 1947).

Они и установили основные законы фотоэффекта.

Прежде чем сформулировать эти законы, рассмотрим современную схему для наблюдения и исследования фотоэффекта. Она проста. В стеклянных баллон впаяны два электрода (катод и анод), на которые подается напряжениеU. В отсутствии света амперметр показывает, что тока в цепи нет.

Когда катод освещается светом даже при отсутствии напряжения между катодом и анодом амперметр показывает наличие небольшого тока в цепи – фототока. То есть электроны, вылетевшие из катода, обладают некоторой кинетической энергией
и достигают анода «самостоятельно».

При увеличении напряжения фототок растет.

Зависимость величины фототока от величины напряжения между катодом и анодом называется вольтамперной характеристикой.

Она имеет следующий вид. При одной и той же интенсивности монохроматического света с ростом напряжения ток сначала растет, но затем его рост прекращается.Начиная с некоторого значения ускоряющего напряжения, фототок перестает изменяться, достигая своего максимального (при данной интенсивности света) значения. Этот фототок называется током насыщения.

Чтобы «запереть» фотоэлемент, то есть фототок уменьшить до нуля, необходимо подать «запирающее напряжение»
. В этом случае электростатическое поле совершает работу и тормозит вылетевшие фотоэлектроны

. (1)

Это означает, что ни один из вылетающих из металла электронов не достигает анода, если потенциал анода ниже потенциала катода на величину
.

Эксперимент показал, чтопри изменении частоты падающего света начальная точка графика сдвигается по оси напряжений. Из этого следует, что величина запирающего напряжения, а, следовательно, кинетическая энергия и максимальная скорость вылетающих электронов, зависят от частоты падающего света.

Первый закон фотоэффекта . Величина максимальной скорости вылетающих электронов зависит от частоты падающего излучения (растет с ростом частоты) и не зависит от его интенсивности.

Если сравнить вольтамперные характеристики, полученные при разных значениях интенсивности (на рисункеI 1 и I 2) падающего монохроматического (одночастотного) света, то можно заметить следующее.

Во-первых, все вольтамперные характеристики берут начало в одной и той же точке, то есть, при любой интенсивности света фототок обращается в ноль при конкретном (для каждого значения частоты) задерживающем напряжении
. Это является еще одним подтверждением верности первого закона фотоэффекта.

Во-вторых. При увеличении интенсивности падающего света характер зависимости тока от напряжения не изменяется, лишь увеличивается величина тока насыщения.

Второй закон фотоэффекта . Величина тока насыщения пропорциональная величине светового потока.

При изучении фотоэффекта было установлено, что не всякое излучение вызывает фотоэффект.

Третий закон фотоэффекта . Для каждого вещества существует минимальная частота (максимальная длина волны) при которой еще возможен фотоэффект.

Эту длину волны называют «красной границей фотоэффекта» (а частоту – соответствующей красной границе фотоэффекта).

Через 5 лет после появления работы Макса Планка Альберт Эйнштейн использовал идею дискретности излучения света для объяснения закономерностей фотоэффекта. эйнштейн предположил, что свет не только излучается порциями, но и распространяется и поглощается порциями. Это означает, что дискретность электромагнитных волн – это свойство самого излучения, а не результат взаимодействия излучения с веществом. По Эйнштейну, квант излучения во многом напоминает частицу. Квант либо поглощается целиком, либо не поглощается вовсе. Эйнштейн представил вылет фотоэлектрона как результат столкновения фотона с электроном металла, при котором вся энергия фотона передается электрону. Так Эйнштейн создал квантовую теорию света и, исходя из нее, написал уравнение для фотоэффекта:

.

Здесь – постоянная Планка,– частота,
– работа выхода электрона из металла,
– масса покоя электрона,v – скорость электрона.

Это уравнение объясняло все экспериментально установленные законы фотоэффекта.

    Так как работа выхода электрона из вещества постоянна, то, с ростом частоты, растет и скорость электронов.

    Каждый фотон выбивает один электрон. Следовательно, количество выбитых электронов не может быть больше числа фотонов. Когда все выбитые электроны достигнут анода, фототок расти прекращает. С ростом интенсивности света растет и число фотонов, падающих на поверхность вещества. Следовательно, увеличивается число электронов, которые эти фотоны выбивают. При этом растет фототок насыщения.

    Если энергии фотоны хватает лишь на совершение работы выхода, то скорость вылетающий электронов будет равна нулю. Это и есть «красная граница» фотоэффекта.

Внутренний фотоэффект наблюдается в кристаллических полупроводниках и диэлектриках. Он состоит в том, что под действием облучения увеличивается электропроводность этих веществ за счет возрастания в них числа свободных носителей тока (электронов и дырок).

Иногда это явление называют фотопроводимостью.

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

Рис. 2.1 Рис. 2.2

Два электрода (катод К из исследуемого материала и анод А , в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I , образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U , при котором все электроны, испускаемые катодом, достигают анода:

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888-1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее - внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU |. Если напряжение на аноде меньше, чем -U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина U з оказалась независящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5.2.3).

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

2. Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота ν min , при которой еще возможен внешний фотоэффект.

3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h - постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций - квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию h ν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого электрон должен совершить работу выхода A , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e :

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A :

где c - скорость света, λ кр - длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10 -19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон-вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Энергия фотонов равна

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах - корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом - корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма , о которой говорил еще Ломоносов. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

ФОТОЭФФЕКТ - явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

ФОТОЭФФЕКТ - испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

фотоэффект - сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

фотоэффект - а; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Фотоэффект - испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

фотоэффект - (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В… Купить за 2220 грн (только Украина)
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…

Теория

Фотоэффект - вырывание электронов из вещества под действием света. В металле электрон движется свободно, но при вылете его с поверхности сам металл из-за этого заряжается положительным зарядом и препятствует вылету. Поэтому для того, чтобы покинуть металл, электрон должен обладать дополнительной энергией, зависящей от вещества. Эта энергия называется работой выхода.

Для исследования фотоэффекта можно собрать установку, изображенную на рис. 1. Она состоит из стеклянного баллона, из которого выкачан воздух. Окно, через которое падает свет, сделано из кварцевого стекла, пропускающего видимые и ультрафиолетовые лучи. Внутри баллона впаяны два электрода: один из которых - катод - освещается через окно. Между электродами источник создает электрическое поле, которое заставляет двигаться фотоэлектроны от катода к аноду.

движущиеся электроны образуют электрический ток (фототок). При изменении напряжения меняется сила тока. График зависимости I от U - вольтамперная характеристика - приведен на рис. 2. При малых напряжениях не все вырванные из катода электроны достигают анода, при увеличении напряжения их число возрастает. При некотором напряжении все вырванные светом электроны достигают анода, тогда устанавливается ток насыщения I н , при дальнейшем увеличении напряжения ток не изменяется.

При увеличении интенсивности падающего излучения наблюдается возрастание тока насыщения, пропорционального числу вырванных электронов. 1-й закон фотоэффекта утверждает, что количество электронов, вырванных светом с поверхности металла, пропорционально поглощенной энергии световой волны.

Для измерения кинетической энергии электронов нужно поменять полярность источника тока. На графике этому случаю соответствует участок при U , на котором фототок падает до нуля. Теперь поле не разгоняет, а тормозит фотоэлектроны. При некотором напряжении, названном задерживающим U 3 , фототок исчезает. При этом все электроны будут остановлены полем, затем поле вернет их в бывший катод, подобно тому, как брошенный вверх камень будет остановлен полем тяготения Земли и возвращен снова на Землю.

Работа сил электрического поля A = qU 3 , затраченная на торможение электрона, равна изменению кинетической энергии электрона, то есть m v 2 /2 = qU 3 , где m - масса электрона, v - его скорость, q - заряд. Т.е., измеряя задерживающее напряжение U 3 , мы определяем максимальную кинетическую энергию. Оказалось, что максимальная кинетическая энергия электронов зависит не от интенсивности света, а только от частоты. Это утверждение называют 2-м законом фотоэффекта.

При некоторой граничной частоте света, которая зависит от конкретного вещества, и при более низких частотах фотоэффект не наблюдается. Эта граничная частота носит название "красной" границы фотоэффекта.

Объяснил законы фотоэффекта А. Эйнштейн в 1905 г. Он воспользовался идеей Планка о квантовой природе света. Энергия одного кванта света E = hν . Если предположить, что один квант света вырывает один электрон, то энергия кванта Е идет на совершение работы выхода электрона А и на сообщение ему кинетической энергии mv 2 /2 . То есть

hν = A + mv 2 /2 .

Это уравнение носит название уравнения Эйнштейна для фотоэффекта.

Объясним с позиций идеи Эйнштейна 1-й закон фотоэффекта. Если один квант энергии вырывает один электрон, то чем больше квантов поглощает вещество (чем больше интенсивность света), тем больше электронов вылетит из вещества.

Объясним второй закон фотоэффекта. Работа выхода А зависит от рода вещества и не зависит от частоты света. Кинетическая энергия электрона, вырванного из вещества, mv 2 /2=h - A зависит от частоты света ν : чем больше частота, тем большую кинетическую энергию получит электрон. Интенсивность света не влияет на кинетическую энергию электрона, потому что уравнение Эйнштейна описывает энергетику одного электрона. Не важно, сколько вылетит электронов, скорость каждого из них зависит от частоты.

Формула Эйнштейна объясняет и тот факт, что свет данной частоты из одного вещества может вырвать электрон, а из другого - не может. Для каждого вещества фотоэффект наблюдается в том случае, если энергия кванта света больше или, в крайнем случае, равна работе выхода (hν ≥ A ). Предельная частота, при которой еще возможен фотоэффект, ν min = A/h . Это частота, при которой совершается вырывание электронов без сообщения им кинетической энергии, - частота "красной границы" фотоэффекта.

Уравнение Эйнштейна запишем для случая, когда кинетическая энергия электрона равна по величине работе сил электрического поля, то есть при задерживающем напряжении:

hν = A + qU 3 .

Отсюда U 3 = -A/q + (h/q)ν.

Построим график зависимости задерживающего напряжения от частоты (рис. 3). Из формулы видно, что зависимость U 3 от ν является линейной. Тангенс угла наклона графика:

tg α = ΔU 3 /Δν = h/q .

Отсюда постоянная Планка:

h = qtg α = q ΔU 3 /Δν.

Эта формула служит для экспериментального определения постоянной Планка.